mirror of
https://github.com/AIDotNet/AntSK.git
synced 2026-02-17 22:10:14 +08:00
Merge pull request #92 from AIDotNet/feature_llamafactory
update llamafactory 0.8.0
This commit is contained in:
@@ -87,7 +87,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
StartInfo = new ProcessStartInfo
|
||||
{
|
||||
FileName = "python",
|
||||
Arguments = "api_demo.py --model_name_or_path " + modelName + " --template " + templateName + " ",
|
||||
Arguments = "api_antsk.py --model_name_or_path " + modelName + " --template " + templateName + " ",
|
||||
UseShellExecute = false,
|
||||
RedirectStandardOutput = true,
|
||||
RedirectStandardError=true,
|
||||
|
||||
19
src/AntSK.LLamaFactory/llamafactory/api_antsk.py
Normal file
19
src/AntSK.LLamaFactory/llamafactory/api_antsk.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
import uvicorn
|
||||
|
||||
from llamafactory.api.app import create_app
|
||||
from llamafactory.chat import ChatModel
|
||||
|
||||
|
||||
def main():
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||
uvicorn.run(app, host=api_host, port=api_port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,16 +0,0 @@
|
||||
import os
|
||||
|
||||
import uvicorn
|
||||
|
||||
from llmtuner import ChatModel, create_app
|
||||
|
||||
|
||||
def main():
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
|
||||
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,6 @@
|
||||
# Level: api, webui > chat, eval, train > data, model > hparams > extras
|
||||
|
||||
from .cli import VERSION
|
||||
|
||||
|
||||
__version__ = VERSION
|
||||
108
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/app.py
Normal file
108
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/app.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import os
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Optional
|
||||
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from ..chat import ChatModel
|
||||
from ..extras.misc import torch_gc
|
||||
from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available
|
||||
from .chat import (
|
||||
create_chat_completion_response,
|
||||
create_score_evaluation_response,
|
||||
create_stream_chat_completion_response,
|
||||
)
|
||||
from .protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ModelCard,
|
||||
ModelList,
|
||||
ScoreEvaluationRequest,
|
||||
ScoreEvaluationResponse,
|
||||
)
|
||||
|
||||
|
||||
if is_fastapi_available():
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
|
||||
|
||||
|
||||
if is_starlette_available():
|
||||
from sse_starlette import EventSourceResponse
|
||||
|
||||
|
||||
if is_uvicorn_available():
|
||||
import uvicorn
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: "FastAPI"): # collects GPU memory
|
||||
yield
|
||||
torch_gc()
|
||||
|
||||
|
||||
def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
api_key = os.environ.get("API_KEY")
|
||||
security = HTTPBearer(auto_error=False)
|
||||
|
||||
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
|
||||
if api_key and (auth is None or auth.credentials != api_key):
|
||||
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")
|
||||
|
||||
@app.get(
|
||||
"/v1/models",
|
||||
response_model=ModelList,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def list_models():
|
||||
model_card = ModelCard(id="gpt-3.5-turbo")
|
||||
return ModelList(data=[model_card])
|
||||
|
||||
@app.post(
|
||||
"/v1/chat/completions",
|
||||
response_model=ChatCompletionResponse,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
if not chat_model.engine.can_generate:
|
||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||
|
||||
if request.stream:
|
||||
generate = create_stream_chat_completion_response(request, chat_model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
else:
|
||||
return await create_chat_completion_response(request, chat_model)
|
||||
|
||||
@app.post(
|
||||
"/v1/score/evaluation",
|
||||
response_model=ScoreEvaluationResponse,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def create_score_evaluation(request: ScoreEvaluationRequest):
|
||||
if chat_model.engine.can_generate:
|
||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||
|
||||
return await create_score_evaluation_response(request, chat_model)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def run_api() -> None:
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||
uvicorn.run(app, host=api_host, port=api_port)
|
||||
219
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/chat.py
Normal file
219
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/chat.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple
|
||||
|
||||
from ..data import Role as DataRole
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available
|
||||
from .common import dictify, jsonify
|
||||
from .protocol import (
|
||||
ChatCompletionMessage,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatCompletionResponseUsage,
|
||||
ChatCompletionStreamResponse,
|
||||
ChatCompletionStreamResponseChoice,
|
||||
Finish,
|
||||
Function,
|
||||
FunctionCall,
|
||||
Role,
|
||||
ScoreEvaluationResponse,
|
||||
)
|
||||
|
||||
|
||||
if is_fastapi_available():
|
||||
from fastapi import HTTPException, status
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if is_requests_available():
|
||||
import requests
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ..chat import ChatModel
|
||||
from .protocol import ChatCompletionRequest, ScoreEvaluationRequest
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
ROLE_MAPPING = {
|
||||
Role.USER: DataRole.USER.value,
|
||||
Role.ASSISTANT: DataRole.ASSISTANT.value,
|
||||
Role.SYSTEM: DataRole.SYSTEM.value,
|
||||
Role.FUNCTION: DataRole.FUNCTION.value,
|
||||
Role.TOOL: DataRole.OBSERVATION.value,
|
||||
}
|
||||
|
||||
|
||||
def _process_request(
|
||||
request: "ChatCompletionRequest",
|
||||
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional["NDArray"]]:
|
||||
logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False)))
|
||||
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
|
||||
|
||||
if request.messages[0].role == Role.SYSTEM:
|
||||
system = request.messages.pop(0).content
|
||||
else:
|
||||
system = None
|
||||
|
||||
if len(request.messages) % 2 == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
|
||||
|
||||
input_messages = []
|
||||
image = None
|
||||
for i, message in enumerate(request.messages):
|
||||
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||
|
||||
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
|
||||
name = message.tool_calls[0].function.name
|
||||
arguments = message.tool_calls[0].function.arguments
|
||||
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)
|
||||
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content})
|
||||
elif isinstance(message.content, list):
|
||||
for input_item in message.content:
|
||||
if input_item.type == "text":
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text})
|
||||
else:
|
||||
image_url = input_item.image_url.url
|
||||
if image_url.startswith("data:image"): # base64 image
|
||||
image_data = base64.b64decode(image_url.split(",", maxsplit=1)[1])
|
||||
image_path = io.BytesIO(image_data)
|
||||
elif os.path.isfile(image_url): # local file
|
||||
image_path = open(image_url, "rb")
|
||||
else: # web uri
|
||||
image_path = requests.get(image_url, stream=True).raw
|
||||
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
else:
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content})
|
||||
|
||||
tool_list = request.tools
|
||||
if isinstance(tool_list, list) and len(tool_list):
|
||||
try:
|
||||
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
|
||||
except Exception:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
|
||||
else:
|
||||
tools = None
|
||||
|
||||
return input_messages, system, tools, image
|
||||
|
||||
|
||||
def _create_stream_chat_completion_chunk(
|
||||
completion_id: str,
|
||||
model: str,
|
||||
delta: "ChatCompletionMessage",
|
||||
index: Optional[int] = 0,
|
||||
finish_reason: Optional["Finish"] = None,
|
||||
) -> str:
|
||||
choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason)
|
||||
chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data])
|
||||
return jsonify(chunk)
|
||||
|
||||
|
||||
async def create_chat_completion_response(
|
||||
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||
) -> "ChatCompletionResponse":
|
||||
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
input_messages, system, tools, image = _process_request(request)
|
||||
responses = await chat_model.achat(
|
||||
input_messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
do_sample=request.do_sample,
|
||||
temperature=request.temperature,
|
||||
top_p=request.top_p,
|
||||
max_new_tokens=request.max_tokens,
|
||||
num_return_sequences=request.n,
|
||||
stop=request.stop,
|
||||
)
|
||||
|
||||
prompt_length, response_length = 0, 0
|
||||
choices = []
|
||||
for i, response in enumerate(responses):
|
||||
if tools:
|
||||
result = chat_model.engine.template.format_tools.extract(response.response_text)
|
||||
else:
|
||||
result = response.response_text
|
||||
|
||||
if isinstance(result, tuple):
|
||||
name, arguments = result
|
||||
function = Function(name=name, arguments=arguments)
|
||||
tool_call = FunctionCall(id="call_{}".format(uuid.uuid4().hex), function=function)
|
||||
response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=[tool_call])
|
||||
finish_reason = Finish.TOOL
|
||||
else:
|
||||
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
|
||||
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
|
||||
|
||||
choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason))
|
||||
prompt_length = response.prompt_length
|
||||
response_length += response.response_length
|
||||
|
||||
usage = ChatCompletionResponseUsage(
|
||||
prompt_tokens=prompt_length,
|
||||
completion_tokens=response_length,
|
||||
total_tokens=prompt_length + response_length,
|
||||
)
|
||||
|
||||
return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage)
|
||||
|
||||
|
||||
async def create_stream_chat_completion_response(
|
||||
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||
) -> AsyncGenerator[str, None]:
|
||||
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
input_messages, system, tools, image = _process_request(request)
|
||||
if tools:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
|
||||
|
||||
if request.n > 1:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.")
|
||||
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="")
|
||||
)
|
||||
async for new_token in chat_model.astream_chat(
|
||||
input_messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
do_sample=request.do_sample,
|
||||
temperature=request.temperature,
|
||||
top_p=request.top_p,
|
||||
max_new_tokens=request.max_tokens,
|
||||
stop=request.stop,
|
||||
):
|
||||
if len(new_token) != 0:
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token)
|
||||
)
|
||||
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
|
||||
)
|
||||
yield "[DONE]"
|
||||
|
||||
|
||||
async def create_score_evaluation_response(
|
||||
request: "ScoreEvaluationRequest", chat_model: "ChatModel"
|
||||
) -> "ScoreEvaluationResponse":
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
||||
|
||||
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
|
||||
return ScoreEvaluationResponse(model=request.model, scores=scores)
|
||||
@@ -0,0 +1,20 @@
|
||||
import json
|
||||
from typing import TYPE_CHECKING, Any, Dict
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
def dictify(data: "BaseModel") -> Dict[str, Any]:
|
||||
try: # pydantic v2
|
||||
return data.model_dump(exclude_unset=True)
|
||||
except AttributeError: # pydantic v1
|
||||
return data.dict(exclude_unset=True)
|
||||
|
||||
|
||||
def jsonify(data: "BaseModel") -> str:
|
||||
try: # pydantic v2
|
||||
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
|
||||
except AttributeError: # pydantic v1
|
||||
return data.json(exclude_unset=True, ensure_ascii=False)
|
||||
@@ -1,6 +1,6 @@
|
||||
import time
|
||||
from enum import Enum, unique
|
||||
from typing import List, Optional
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Literal
|
||||
@@ -39,15 +39,37 @@ class Function(BaseModel):
|
||||
arguments: str
|
||||
|
||||
|
||||
class FunctionDefinition(BaseModel):
|
||||
name: str
|
||||
description: str
|
||||
parameters: Dict[str, Any]
|
||||
|
||||
|
||||
class FunctionAvailable(BaseModel):
|
||||
type: Literal["function", "code_interpreter"] = "function"
|
||||
function: Optional[FunctionDefinition] = None
|
||||
|
||||
|
||||
class FunctionCall(BaseModel):
|
||||
id: Literal["call_default"] = "call_default"
|
||||
id: str
|
||||
type: Literal["function"] = "function"
|
||||
function: Function
|
||||
|
||||
|
||||
class ImageURL(BaseModel):
|
||||
url: str
|
||||
|
||||
|
||||
class MultimodalInputItem(BaseModel):
|
||||
type: Literal["text", "image_url"]
|
||||
text: Optional[str] = None
|
||||
image_url: Optional[ImageURL] = None
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: Role
|
||||
content: str
|
||||
content: Optional[Union[str, List[MultimodalInputItem]]] = None
|
||||
tool_calls: Optional[List[FunctionCall]] = None
|
||||
|
||||
|
||||
class ChatCompletionMessage(BaseModel):
|
||||
@@ -59,12 +81,13 @@ class ChatCompletionMessage(BaseModel):
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
tools: list = []
|
||||
tools: Optional[List[FunctionAvailable]] = None
|
||||
do_sample: bool = True
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
n: int = 1
|
||||
max_tokens: Optional[int] = None
|
||||
stop: Optional[Union[str, List[str]]] = None
|
||||
stream: bool = False
|
||||
|
||||
|
||||
@@ -74,7 +97,7 @@ class ChatCompletionResponseChoice(BaseModel):
|
||||
finish_reason: Finish
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
class ChatCompletionStreamResponseChoice(BaseModel):
|
||||
index: int
|
||||
delta: ChatCompletionMessage
|
||||
finish_reason: Optional[Finish] = None
|
||||
@@ -87,7 +110,7 @@ class ChatCompletionResponseUsage(BaseModel):
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
id: Literal["chatcmpl-default"] = "chatcmpl-default"
|
||||
id: str
|
||||
object: Literal["chat.completion"] = "chat.completion"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
model: str
|
||||
@@ -96,11 +119,11 @@ class ChatCompletionResponse(BaseModel):
|
||||
|
||||
|
||||
class ChatCompletionStreamResponse(BaseModel):
|
||||
id: Literal["chatcmpl-default"] = "chatcmpl-default"
|
||||
id: str
|
||||
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
model: str
|
||||
choices: List[ChatCompletionResponseStreamChoice]
|
||||
choices: List[ChatCompletionStreamResponseChoice]
|
||||
|
||||
|
||||
class ScoreEvaluationRequest(BaseModel):
|
||||
@@ -110,7 +133,7 @@ class ScoreEvaluationRequest(BaseModel):
|
||||
|
||||
|
||||
class ScoreEvaluationResponse(BaseModel):
|
||||
id: Literal["scoreeval-default"] = "scoreeval-default"
|
||||
id: str
|
||||
object: Literal["score.evaluation"] = "score.evaluation"
|
||||
model: str
|
||||
scores: List[float]
|
||||
@@ -4,15 +4,13 @@ from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Opti
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from vllm import AsyncLLMEngine
|
||||
|
||||
from ..data import Template
|
||||
from ..extras.packages import is_vllm_available
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import AsyncLLMEngine
|
||||
|
||||
|
||||
@dataclass
|
||||
class Response:
|
||||
@@ -49,6 +47,7 @@ class BaseEngine(ABC):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]: ...
|
||||
|
||||
@@ -58,6 +57,7 @@ class BaseEngine(ABC):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]: ...
|
||||
|
||||
@@ -2,12 +2,15 @@ import asyncio
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
||||
|
||||
from ..extras.misc import torch_gc
|
||||
from ..hparams import get_infer_args
|
||||
from .hf_engine import HuggingfaceEngine
|
||||
from .vllm_engine import VllmEngine
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
@@ -36,9 +39,10 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, **input_kwargs), self._loop)
|
||||
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, image, **input_kwargs), self._loop)
|
||||
return task.result()
|
||||
|
||||
async def achat(
|
||||
@@ -46,18 +50,20 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
return await self.engine.chat(messages, system, tools, **input_kwargs)
|
||||
return await self.engine.chat(messages, system, tools, image, **input_kwargs)
|
||||
|
||||
def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> Generator[str, None, None]:
|
||||
generator = self.astream_chat(messages, system, tools, **input_kwargs)
|
||||
generator = self.astream_chat(messages, system, tools, image, **input_kwargs)
|
||||
while True:
|
||||
try:
|
||||
task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop)
|
||||
@@ -70,9 +76,10 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
async for new_token in self.engine.stream_chat(messages, system, tools, **input_kwargs):
|
||||
async for new_token in self.engine.stream_chat(messages, system, tools, image, **input_kwargs):
|
||||
yield new_token
|
||||
|
||||
def get_scores(
|
||||
@@ -89,3 +96,45 @@ class ChatModel:
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
return await self.engine.get_scores(batch_input, **input_kwargs)
|
||||
|
||||
|
||||
def run_chat() -> None:
|
||||
try:
|
||||
import platform
|
||||
|
||||
if platform.system() != "Windows":
|
||||
import readline # noqa: F401
|
||||
except ImportError:
|
||||
print("Install `readline` for a better experience.")
|
||||
|
||||
chat_model = ChatModel()
|
||||
messages = []
|
||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||
|
||||
while True:
|
||||
try:
|
||||
query = input("\nUser: ")
|
||||
except UnicodeDecodeError:
|
||||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
||||
continue
|
||||
except Exception:
|
||||
raise
|
||||
|
||||
if query.strip() == "exit":
|
||||
break
|
||||
|
||||
if query.strip() == "clear":
|
||||
messages = []
|
||||
torch_gc()
|
||||
print("History has been removed.")
|
||||
continue
|
||||
|
||||
messages.append({"role": "user", "content": query})
|
||||
print("Assistant: ", end="", flush=True)
|
||||
|
||||
response = ""
|
||||
for new_text in chat_model.stream_chat(messages):
|
||||
print(new_text, end="", flush=True)
|
||||
response += new_text
|
||||
print()
|
||||
messages.append({"role": "assistant", "content": response})
|
||||
@@ -2,25 +2,31 @@ import asyncio
|
||||
import concurrent.futures
|
||||
import os
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import GenerationConfig, TextIteratorStreamer
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import get_logits_processor
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from numpy.typing import NDArray
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
from trl import PreTrainedModelWrapper
|
||||
|
||||
from ..data import Template
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class HuggingfaceEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -30,55 +36,96 @@ class HuggingfaceEngine(BaseEngine):
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(
|
||||
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.model = load_model(
|
||||
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
) # must after fixing tokenizer to resize vocab
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
@staticmethod
|
||||
def _process_args(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Tuple[Dict[str, Any], int]:
|
||||
if (
|
||||
processor is not None
|
||||
and image is not None
|
||||
and not hasattr(processor, "image_seq_length")
|
||||
and template.image_token not in messages[0]["content"]
|
||||
): # llava-like models
|
||||
messages[0]["content"] = template.image_token + messages[0]["content"]
|
||||
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
system = system or generating_args["default_system"]
|
||||
pixel_values = None
|
||||
prompt_ids, _ = template.encode_oneturn(
|
||||
tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
if processor is not None and image is not None: # add image features
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
batch_feature = image_processor(image, return_tensors="pt")
|
||||
pixel_values = batch_feature.to(model.device)["pixel_values"] # shape (B, C, H, W)
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
prompt_length = len(prompt_ids)
|
||||
inputs = torch.tensor([prompt_ids], device=model.device)
|
||||
attention_mask = torch.ones_like(inputs, dtype=torch.bool)
|
||||
|
||||
do_sample = input_kwargs.pop("do_sample", None)
|
||||
temperature = input_kwargs.pop("temperature", None)
|
||||
top_p = input_kwargs.pop("top_p", None)
|
||||
top_k = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||
do_sample: Optional[bool] = input_kwargs.pop("do_sample", None)
|
||||
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
||||
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
||||
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
||||
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
||||
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
|
||||
if stop is not None:
|
||||
logger.warning("Stop parameter is not supported in Huggingface engine yet.")
|
||||
|
||||
generating_args = generating_args.copy()
|
||||
generating_args.update(
|
||||
dict(
|
||||
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
|
||||
temperature=temperature or generating_args["temperature"],
|
||||
top_p=top_p or generating_args["top_p"],
|
||||
top_k=top_k or generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences or 1,
|
||||
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
||||
temperature=temperature if temperature is not None else generating_args["temperature"],
|
||||
top_p=top_p if top_p is not None else generating_args["top_p"],
|
||||
top_k=top_k if top_k is not None else generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences,
|
||||
repetition_penalty=repetition_penalty
|
||||
if repetition_penalty is not None
|
||||
else generating_args["repetition_penalty"],
|
||||
length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"],
|
||||
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
)
|
||||
)
|
||||
|
||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
|
||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1: # do_sample needs temperature > 0
|
||||
generating_args["do_sample"] = True
|
||||
generating_args["temperature"] = generating_args["temperature"] or 1.0
|
||||
|
||||
if not generating_args["temperature"]:
|
||||
generating_args["do_sample"] = False
|
||||
|
||||
if not generating_args["do_sample"]:
|
||||
generating_args.pop("temperature", None)
|
||||
generating_args.pop("top_p", None)
|
||||
|
||||
if max_length:
|
||||
generating_args.pop("max_new_tokens", None)
|
||||
@@ -90,10 +137,14 @@ class HuggingfaceEngine(BaseEngine):
|
||||
|
||||
gen_kwargs = dict(
|
||||
inputs=inputs,
|
||||
attention_mask=attention_mask,
|
||||
generation_config=GenerationConfig(**generating_args),
|
||||
logits_processor=get_logits_processor(),
|
||||
)
|
||||
|
||||
if pixel_values is not None:
|
||||
gen_kwargs["pixel_values"] = pixel_values
|
||||
|
||||
return gen_kwargs, prompt_length
|
||||
|
||||
@staticmethod
|
||||
@@ -101,15 +152,17 @@ class HuggingfaceEngine(BaseEngine):
|
||||
def _chat(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> List["Response"]:
|
||||
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
|
||||
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
|
||||
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
||||
)
|
||||
generate_output = model.generate(**gen_kwargs)
|
||||
response_ids = generate_output[:, prompt_length:]
|
||||
@@ -134,15 +187,17 @@ class HuggingfaceEngine(BaseEngine):
|
||||
def _stream_chat(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Callable[[], str]:
|
||||
gen_kwargs, _ = HuggingfaceEngine._process_args(
|
||||
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
|
||||
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
||||
)
|
||||
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
gen_kwargs["streamer"] = streamer
|
||||
@@ -198,6 +253,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
if not self.can_generate:
|
||||
@@ -207,11 +263,13 @@ class HuggingfaceEngine(BaseEngine):
|
||||
input_args = (
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
self.processor,
|
||||
self.template,
|
||||
self.generating_args,
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self._semaphore:
|
||||
@@ -223,6 +281,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
if not self.can_generate:
|
||||
@@ -232,11 +291,13 @@ class HuggingfaceEngine(BaseEngine):
|
||||
input_args = (
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
self.processor,
|
||||
self.template,
|
||||
self.generating_args,
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self._semaphore:
|
||||
@@ -0,0 +1,214 @@
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence, Union
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import get_device_count
|
||||
from ..extras.packages import is_vllm_available
|
||||
from ..model import load_config, load_tokenizer
|
||||
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.sequence import MultiModalData
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class VllmEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
config = load_config(model_args) # may download model from ms hub
|
||||
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
engine_args = {
|
||||
"model": model_args.model_name_or_path,
|
||||
"trust_remote_code": True,
|
||||
"download_dir": model_args.cache_dir,
|
||||
"dtype": model_args.vllm_dtype,
|
||||
"max_model_len": model_args.vllm_maxlen,
|
||||
"tensor_parallel_size": get_device_count() or 1,
|
||||
"gpu_memory_utilization": model_args.vllm_gpu_util,
|
||||
"disable_log_stats": True,
|
||||
"disable_log_requests": True,
|
||||
"enforce_eager": model_args.vllm_enforce_eager,
|
||||
"enable_lora": model_args.adapter_name_or_path is not None,
|
||||
"max_lora_rank": model_args.vllm_max_lora_rank,
|
||||
}
|
||||
|
||||
if model_args.visual_inputs:
|
||||
image_size = config.vision_config.image_size
|
||||
patch_size = config.vision_config.patch_size
|
||||
self.image_feature_size = (image_size // patch_size) ** 2
|
||||
engine_args["image_input_type"] = "pixel_values"
|
||||
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids(self.template.image_token)
|
||||
engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size)
|
||||
engine_args["image_feature_size"] = self.image_feature_size
|
||||
if getattr(config, "is_yi_vl_derived_model", None):
|
||||
import vllm.model_executor.models.llava
|
||||
|
||||
logger.info("Detected Yi-VL model, applying projector patch.")
|
||||
vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
|
||||
|
||||
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
|
||||
else:
|
||||
self.lora_request = None
|
||||
|
||||
async def _generate(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncIterator["RequestOutput"]:
|
||||
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
|
||||
if (
|
||||
self.processor is not None
|
||||
and image is not None
|
||||
and not hasattr(self.processor, "image_seq_length")
|
||||
and self.template.image_token not in messages[0]["content"]
|
||||
): # llava-like models (TODO: paligemma models)
|
||||
messages[0]["content"] = self.template.image_token * self.image_feature_size + messages[0]["content"]
|
||||
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
system = system or self.generating_args["default_system"]
|
||||
prompt_ids, _ = self.template.encode_oneturn(
|
||||
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
|
||||
if self.processor is not None and image is not None: # add image features
|
||||
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
|
||||
pixel_values = image_processor(image, return_tensors="pt")["pixel_values"]
|
||||
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
|
||||
else:
|
||||
multi_modal_data = None
|
||||
|
||||
prompt_length = len(prompt_ids)
|
||||
|
||||
use_beam_search: bool = self.generating_args["num_beams"] > 1
|
||||
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
||||
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
||||
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
||||
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
||||
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
|
||||
if "max_new_tokens" in self.generating_args:
|
||||
max_tokens = self.generating_args["max_new_tokens"]
|
||||
elif "max_length" in self.generating_args:
|
||||
if self.generating_args["max_length"] > prompt_length:
|
||||
max_tokens = self.generating_args["max_length"] - prompt_length
|
||||
else:
|
||||
max_tokens = 1
|
||||
|
||||
if max_length:
|
||||
max_tokens = max_length - prompt_length if max_length > prompt_length else 1
|
||||
|
||||
if max_new_tokens:
|
||||
max_tokens = max_new_tokens
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=num_return_sequences,
|
||||
repetition_penalty=(
|
||||
repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"]
|
||||
)
|
||||
or 1.0, # repetition_penalty must > 0
|
||||
temperature=temperature if temperature is not None else self.generating_args["temperature"],
|
||||
top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0
|
||||
top_k=top_k if top_k is not None else self.generating_args["top_k"],
|
||||
use_beam_search=use_beam_search,
|
||||
length_penalty=length_penalty if length_penalty is not None else self.generating_args["length_penalty"],
|
||||
stop=stop,
|
||||
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
||||
max_tokens=max_tokens,
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
|
||||
result_generator = self.model.generate(
|
||||
inputs={"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data},
|
||||
sampling_params=sampling_params,
|
||||
request_id=request_id,
|
||||
lora_request=self.lora_request,
|
||||
)
|
||||
return result_generator
|
||||
|
||||
async def start(self) -> None:
|
||||
pass
|
||||
|
||||
async def chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
final_output = None
|
||||
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
||||
async for request_output in generator:
|
||||
final_output = request_output
|
||||
|
||||
results = []
|
||||
for output in final_output.outputs:
|
||||
results.append(
|
||||
Response(
|
||||
response_text=output.text,
|
||||
response_length=len(output.token_ids),
|
||||
prompt_length=len(final_output.prompt_token_ids),
|
||||
finish_reason=output.finish_reason,
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
async def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
generated_text = ""
|
||||
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
||||
async for result in generator:
|
||||
delta_text = result.outputs[0].text[len(generated_text) :]
|
||||
generated_text = result.outputs[0].text
|
||||
yield delta_text
|
||||
|
||||
async def get_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
raise NotImplementedError("vLLM engine does not support get_scores.")
|
||||
106
src/AntSK.LLamaFactory/llamafactory/llamafactory/cli.py
Normal file
106
src/AntSK.LLamaFactory/llamafactory/llamafactory/cli.py
Normal file
@@ -0,0 +1,106 @@
|
||||
import os
|
||||
import random
|
||||
import subprocess
|
||||
import sys
|
||||
from enum import Enum, unique
|
||||
|
||||
from . import launcher
|
||||
from .api.app import run_api
|
||||
from .chat.chat_model import run_chat
|
||||
from .eval.evaluator import run_eval
|
||||
from .extras.env import VERSION, print_env
|
||||
from .extras.logging import get_logger
|
||||
from .extras.misc import get_device_count
|
||||
from .train.tuner import export_model, run_exp
|
||||
from .webui.interface import run_web_demo, run_web_ui
|
||||
|
||||
|
||||
USAGE = (
|
||||
"-" * 70
|
||||
+ "\n"
|
||||
+ "| Usage: |\n"
|
||||
+ "| llamafactory-cli api -h: launch an OpenAI-style API server |\n"
|
||||
+ "| llamafactory-cli chat -h: launch a chat interface in CLI |\n"
|
||||
+ "| llamafactory-cli eval -h: evaluate models |\n"
|
||||
+ "| llamafactory-cli export -h: merge LoRA adapters and export model |\n"
|
||||
+ "| llamafactory-cli train -h: train models |\n"
|
||||
+ "| llamafactory-cli webchat -h: launch a chat interface in Web UI |\n"
|
||||
+ "| llamafactory-cli webui: launch LlamaBoard |\n"
|
||||
+ "| llamafactory-cli version: show version info |\n"
|
||||
+ "-" * 70
|
||||
)
|
||||
|
||||
WELCOME = (
|
||||
"-" * 58
|
||||
+ "\n"
|
||||
+ "| Welcome to LLaMA Factory, version {}".format(VERSION)
|
||||
+ " " * (21 - len(VERSION))
|
||||
+ "|\n|"
|
||||
+ " " * 56
|
||||
+ "|\n"
|
||||
+ "| Project page: https://github.com/hiyouga/LLaMA-Factory |\n"
|
||||
+ "-" * 58
|
||||
)
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
@unique
|
||||
class Command(str, Enum):
|
||||
API = "api"
|
||||
CHAT = "chat"
|
||||
ENV = "env"
|
||||
EVAL = "eval"
|
||||
EXPORT = "export"
|
||||
TRAIN = "train"
|
||||
WEBDEMO = "webchat"
|
||||
WEBUI = "webui"
|
||||
VER = "version"
|
||||
HELP = "help"
|
||||
|
||||
|
||||
def main():
|
||||
command = sys.argv.pop(1)
|
||||
if command == Command.API:
|
||||
run_api()
|
||||
elif command == Command.CHAT:
|
||||
run_chat()
|
||||
elif command == Command.ENV:
|
||||
print_env()
|
||||
elif command == Command.EVAL:
|
||||
run_eval()
|
||||
elif command == Command.EXPORT:
|
||||
export_model()
|
||||
elif command == Command.TRAIN:
|
||||
force_torchrun = os.environ.get("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
|
||||
if force_torchrun or get_device_count() > 1:
|
||||
master_addr = os.environ.get("MASTER_ADDR", "127.0.0.1")
|
||||
master_port = os.environ.get("MASTER_PORT", str(random.randint(20001, 29999)))
|
||||
logger.info("Initializing distributed tasks at: {}:{}".format(master_addr, master_port))
|
||||
subprocess.run(
|
||||
(
|
||||
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
|
||||
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
|
||||
).format(
|
||||
nnodes=os.environ.get("NNODES", "1"),
|
||||
node_rank=os.environ.get("RANK", "0"),
|
||||
nproc_per_node=os.environ.get("NPROC_PER_NODE", str(get_device_count())),
|
||||
master_addr=master_addr,
|
||||
master_port=master_port,
|
||||
file_name=launcher.__file__,
|
||||
args=" ".join(sys.argv[1:]),
|
||||
),
|
||||
shell=True,
|
||||
)
|
||||
else:
|
||||
run_exp()
|
||||
elif command == Command.WEBDEMO:
|
||||
run_web_demo()
|
||||
elif command == Command.WEBUI:
|
||||
run_web_ui()
|
||||
elif command == Command.VER:
|
||||
print(WELCOME)
|
||||
elif command == Command.HELP:
|
||||
print(USAGE)
|
||||
else:
|
||||
raise NotImplementedError("Unknown command: {}".format(command))
|
||||
@@ -0,0 +1,16 @@
|
||||
from .collator import KTODataCollatorWithPadding, PairwiseDataCollatorWithPadding
|
||||
from .data_utils import Role, split_dataset
|
||||
from .loader import get_dataset
|
||||
from .template import TEMPLATES, Template, get_template_and_fix_tokenizer
|
||||
|
||||
|
||||
__all__ = [
|
||||
"KTODataCollatorWithPadding",
|
||||
"PairwiseDataCollatorWithPadding",
|
||||
"Role",
|
||||
"split_dataset",
|
||||
"get_dataset",
|
||||
"TEMPLATES",
|
||||
"Template",
|
||||
"get_template_and_fix_tokenizer",
|
||||
]
|
||||
221
src/AntSK.LLamaFactory/llamafactory/llamafactory/data/aligner.py
Normal file
221
src/AntSK.LLamaFactory/llamafactory/llamafactory/data/aligner.py
Normal file
@@ -0,0 +1,221 @@
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
||||
|
||||
from datasets import Features
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from .data_utils import Role
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from .parser import DatasetAttr
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _convert_images(images: List[Any], dataset_attr: "DatasetAttr", data_args: "DataArguments") -> List[Any]:
|
||||
r"""
|
||||
Optionally concatenates image path to dataset dir when loading from local disk.
|
||||
"""
|
||||
outputs = []
|
||||
if dataset_attr.load_from in ["script", "file"]:
|
||||
for image in images:
|
||||
if isinstance(image, str) and os.path.isfile(os.path.join(data_args.dataset_dir, image)):
|
||||
outputs.append(os.path.join(data_args.dataset_dir, image))
|
||||
else:
|
||||
outputs.append(image)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_alpaca(
|
||||
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Dict[str, List[Any]]:
|
||||
r"""
|
||||
Converts alpaca format dataset to the standard format.
|
||||
"""
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
for i in range(len(examples[dataset_attr.prompt])):
|
||||
prompt = []
|
||||
if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list):
|
||||
for old_prompt, old_response in examples[dataset_attr.history][i]:
|
||||
prompt.append({"role": Role.USER.value, "content": old_prompt})
|
||||
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
|
||||
|
||||
content = []
|
||||
if dataset_attr.prompt and examples[dataset_attr.prompt][i]:
|
||||
content.append(examples[dataset_attr.prompt][i])
|
||||
|
||||
if dataset_attr.query and examples[dataset_attr.query][i]:
|
||||
content.append(examples[dataset_attr.query][i])
|
||||
|
||||
prompt.append({"role": Role.USER.value, "content": "\n".join(content)}) # "prompt\nquery"
|
||||
|
||||
if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool): # kto example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
|
||||
if examples[dataset_attr.kto_tag][i]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
dataset_attr.ranking
|
||||
and isinstance(examples[dataset_attr.chosen][i], str)
|
||||
and isinstance(examples[dataset_attr.rejected][i], str)
|
||||
): # pairwise example
|
||||
response = [
|
||||
{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.chosen][i]},
|
||||
{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.rejected][i]},
|
||||
]
|
||||
elif dataset_attr.response and isinstance(examples[dataset_attr.response][i], str): # normal example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
|
||||
else: # unsupervised
|
||||
response = []
|
||||
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
|
||||
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
||||
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_sharegpt(
|
||||
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Dict[str, List[Any]]:
|
||||
r"""
|
||||
Converts sharegpt format dataset to the standard format.
|
||||
"""
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
tag_mapping = {
|
||||
dataset_attr.user_tag: Role.USER.value,
|
||||
dataset_attr.assistant_tag: Role.ASSISTANT.value,
|
||||
dataset_attr.observation_tag: Role.OBSERVATION.value,
|
||||
dataset_attr.function_tag: Role.FUNCTION.value,
|
||||
dataset_attr.system_tag: Role.SYSTEM.value,
|
||||
}
|
||||
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
|
||||
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
|
||||
accept_tags = (odd_tags, even_tags)
|
||||
for i, messages in enumerate(examples[dataset_attr.messages]):
|
||||
if dataset_attr.system_tag and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag:
|
||||
system = messages[0][dataset_attr.content_tag]
|
||||
messages = messages[1:]
|
||||
else:
|
||||
system = examples[dataset_attr.system][i] if dataset_attr.system else ""
|
||||
|
||||
if len(messages) == 0:
|
||||
continue
|
||||
|
||||
aligned_messages = []
|
||||
broken_data = False
|
||||
for turn_idx, message in enumerate(messages):
|
||||
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
|
||||
logger.warning("Invalid role tag in {}.".format(messages))
|
||||
broken_data = True
|
||||
|
||||
aligned_messages.append(
|
||||
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
|
||||
)
|
||||
|
||||
if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
|
||||
dataset_attr.ranking and len(aligned_messages) % 2 == 0
|
||||
):
|
||||
logger.warning("Invalid message count in {}.".format(messages))
|
||||
broken_data = True
|
||||
|
||||
if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool): # kto example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
if examples[dataset_attr.kto_tag][i]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
dataset_attr.ranking
|
||||
and isinstance(examples[dataset_attr.chosen][i], dict)
|
||||
and isinstance(examples[dataset_attr.rejected][i], dict)
|
||||
): # pairwise example
|
||||
chosen = examples[dataset_attr.chosen][i]
|
||||
rejected = examples[dataset_attr.rejected][i]
|
||||
if (
|
||||
chosen[dataset_attr.role_tag] not in accept_tags[-1]
|
||||
or rejected[dataset_attr.role_tag] not in accept_tags[-1]
|
||||
):
|
||||
logger.warning("Invalid role tag in {}.".format([chosen, rejected]))
|
||||
broken_data = True
|
||||
|
||||
prompt = aligned_messages
|
||||
response = [
|
||||
{"role": tag_mapping[chosen[dataset_attr.role_tag]], "content": chosen[dataset_attr.content_tag]},
|
||||
{"role": tag_mapping[rejected[dataset_attr.role_tag]], "content": rejected[dataset_attr.content_tag]},
|
||||
]
|
||||
else: # normal example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
|
||||
if broken_data:
|
||||
logger.warning("Skipping this abnormal example.")
|
||||
continue
|
||||
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(system)
|
||||
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
||||
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def align_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
r"""
|
||||
Aligned dataset:
|
||||
prompt: [{"role": "user", "content": "..."}] * (2T - 1)
|
||||
response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
|
||||
system: "..."
|
||||
tools: "...",
|
||||
images: [],
|
||||
"""
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)
|
||||
else:
|
||||
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args)
|
||||
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
features = Features.from_dict(
|
||||
{
|
||||
"prompt": [
|
||||
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
||||
],
|
||||
"response": [
|
||||
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
||||
],
|
||||
"system": {"dtype": "string", "_type": "Value"},
|
||||
"tools": {"dtype": "string", "_type": "Value"},
|
||||
"images": [{"_type": "Image"}],
|
||||
}
|
||||
)
|
||||
kwargs = {}
|
||||
if not data_args.streaming:
|
||||
kwargs = dict(
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
load_from_cache_file=(not data_args.overwrite_cache),
|
||||
desc="Converting format of dataset",
|
||||
)
|
||||
|
||||
return dataset.map(
|
||||
convert_func,
|
||||
batched=True,
|
||||
remove_columns=column_names,
|
||||
features=features,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -0,0 +1,81 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Sequence
|
||||
|
||||
import torch
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
|
||||
@dataclass
|
||||
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Pads batched data to the longest sequence in the batch.
|
||||
|
||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||
the last n examples represent rejected examples.
|
||||
"""
|
||||
concatenated_features = []
|
||||
for key in ("chosen", "rejected"):
|
||||
for feature in features:
|
||||
target_feature = {
|
||||
"input_ids": feature["{}_input_ids".format(key)],
|
||||
"attention_mask": feature["{}_attention_mask".format(key)],
|
||||
"labels": feature["{}_labels".format(key)],
|
||||
}
|
||||
if "pixel_values" in feature:
|
||||
target_feature["pixel_values"] = feature["pixel_values"]
|
||||
|
||||
if "{}_token_type_ids".format(key) in feature:
|
||||
target_feature["token_type_ids"] = feature["{}_token_type_ids".format(key)]
|
||||
|
||||
concatenated_features.append(target_feature)
|
||||
|
||||
return super().__call__(concatenated_features)
|
||||
|
||||
|
||||
@dataclass
|
||||
class KTODataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for KTO data.
|
||||
"""
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
target_features = []
|
||||
kl_features = []
|
||||
kto_tags = []
|
||||
for feature in features:
|
||||
target_feature = {
|
||||
"input_ids": feature["input_ids"],
|
||||
"attention_mask": feature["attention_mask"],
|
||||
"labels": feature["labels"],
|
||||
}
|
||||
kl_feature = {
|
||||
"input_ids": feature["kl_input_ids"],
|
||||
"attention_mask": feature["kl_attention_mask"],
|
||||
"labels": feature["kl_labels"],
|
||||
}
|
||||
if "pixel_values" in feature:
|
||||
target_feature["pixel_values"] = feature["pixel_values"]
|
||||
|
||||
if "token_type_ids" in feature:
|
||||
target_feature["token_type_ids"] = feature["token_type_ids"]
|
||||
kl_feature["token_type_ids"] = feature["kl_token_type_ids"]
|
||||
|
||||
target_features.append(target_feature)
|
||||
kl_features.append(kl_feature)
|
||||
kto_tags.append(feature["kto_tags"])
|
||||
|
||||
batch = super().__call__(target_features)
|
||||
kl_batch = super().__call__(kl_features)
|
||||
batch["kl_input_ids"] = kl_batch["input_ids"]
|
||||
batch["kl_attention_mask"] = kl_batch["attention_mask"]
|
||||
batch["kl_labels"] = kl_batch["labels"]
|
||||
if "token_type_ids" in batch:
|
||||
batch["kl_token_type_ids"] = kl_batch["token_type_ids"]
|
||||
|
||||
batch["kto_tags"] = torch.tensor(kto_tags)
|
||||
return batch
|
||||
@@ -1,6 +1,5 @@
|
||||
import hashlib
|
||||
from enum import Enum, unique
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
|
||||
|
||||
from datasets import concatenate_datasets, interleave_datasets
|
||||
|
||||
@@ -11,7 +10,7 @@ if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
|
||||
from llmtuner.hparams import DataArguments
|
||||
from ..hparams import DataArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -26,25 +25,10 @@ class Role(str, Enum):
|
||||
OBSERVATION = "observation"
|
||||
|
||||
|
||||
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
|
||||
if file_sha1 is None:
|
||||
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
|
||||
return
|
||||
|
||||
if len(data_files) != 1:
|
||||
logger.warning("Checksum failed: too many files.")
|
||||
return
|
||||
|
||||
with open(data_files[0], "rb") as f:
|
||||
sha1 = hashlib.sha1(f.read()).hexdigest()
|
||||
if sha1 != file_sha1:
|
||||
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
|
||||
|
||||
|
||||
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
|
||||
max_target_len = int(max_len * (target_len / (source_len + target_len)))
|
||||
max_target_len = max(max_target_len, reserved_label_len)
|
||||
max_source_len = max_len - max_target_len
|
||||
max_source_len = max_len - min(max_target_len, target_len)
|
||||
return max_source_len, max_target_len
|
||||
|
||||
|
||||
@@ -78,9 +62,9 @@ def split_dataset(
|
||||
if training_args.do_train:
|
||||
if data_args.val_size > 1e-6: # Split the dataset
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
val_set = dataset.take(int(data_args.val_size))
|
||||
train_set = dataset.skip(int(data_args.val_size))
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
return {"train_dataset": train_set, "eval_dataset": val_set}
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
@@ -1,21 +1,24 @@
|
||||
import inspect
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Literal, Union
|
||||
import sys
|
||||
from typing import TYPE_CHECKING, Literal, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_dataset, load_from_disk
|
||||
|
||||
from ..extras.constants import FILEEXT2TYPE
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import has_tokenized_data
|
||||
from .aligner import align_dataset
|
||||
from .data_utils import merge_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .preprocess import get_preprocess_and_print_func
|
||||
from .template import get_template_and_fix_tokenizer
|
||||
from .utils import checksum, merge_dataset
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ..hparams import DataArguments, ModelArguments
|
||||
@@ -56,14 +59,12 @@ def load_single_dataset(
|
||||
data_files.append(local_path)
|
||||
data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None)
|
||||
else:
|
||||
raise ValueError("File not found.")
|
||||
raise ValueError("File {} not found.".format(local_path))
|
||||
|
||||
if data_path is None:
|
||||
raise ValueError("File extension must be txt, csv, json or jsonl.")
|
||||
|
||||
checksum(data_files, dataset_attr.file_sha1)
|
||||
raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys())))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from))
|
||||
|
||||
if dataset_attr.load_from == "ms_hub":
|
||||
try:
|
||||
@@ -80,7 +81,9 @@ def load_single_dataset(
|
||||
cache_dir=cache_dir,
|
||||
token=model_args.ms_hub_token,
|
||||
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
||||
).to_hf_dataset()
|
||||
)
|
||||
if isinstance(dataset, MsDataset):
|
||||
dataset = dataset.to_hf_dataset()
|
||||
except ImportError:
|
||||
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
||||
else:
|
||||
@@ -104,30 +107,43 @@ def load_single_dataset(
|
||||
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True
|
||||
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter
|
||||
|
||||
if dataset_attr.num_samples is not None and not data_args.streaming:
|
||||
target_num = dataset_attr.num_samples
|
||||
indexes = np.random.permutation(len(dataset))[:target_num]
|
||||
target_num -= len(indexes)
|
||||
if target_num > 0:
|
||||
expand_indexes = np.random.choice(len(dataset), target_num)
|
||||
indexes = np.concatenate((indexes, expand_indexes), axis=0)
|
||||
|
||||
assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
|
||||
dataset = dataset.select(indexes)
|
||||
logger.info("Sampled {} examples from dataset {}.".format(dataset_attr.num_samples, dataset_attr))
|
||||
|
||||
if data_args.max_samples is not None: # truncate dataset
|
||||
num_samples = min(data_args.max_samples, len(dataset))
|
||||
dataset = dataset.select(range(num_samples))
|
||||
max_samples = min(data_args.max_samples, len(dataset))
|
||||
dataset = dataset.select(range(max_samples))
|
||||
|
||||
return align_dataset(dataset, dataset_attr, data_args)
|
||||
|
||||
|
||||
def get_dataset(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo"],
|
||||
# split: Optional[str] = "train", # TODO: add split
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"] = None,
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
||||
if data_args.train_on_prompt and template.efficient_eos:
|
||||
raise ValueError("Current template does not support `train_on_prompt`.")
|
||||
|
||||
# Load from cache
|
||||
if data_args.cache_path is not None:
|
||||
if os.path.exists(data_args.cache_path):
|
||||
# Load tokenized dataset
|
||||
if data_args.tokenized_path is not None:
|
||||
if has_tokenized_data(data_args.tokenized_path):
|
||||
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
||||
dataset = load_from_disk(data_args.cache_path)
|
||||
dataset = load_from_disk(data_args.tokenized_path)
|
||||
logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path))
|
||||
if data_args.streaming:
|
||||
dataset = dataset.to_iterable_dataset()
|
||||
return dataset
|
||||
@@ -138,12 +154,15 @@ def get_dataset(
|
||||
with training_args.main_process_first(desc="load dataset"):
|
||||
all_datasets = []
|
||||
for dataset_attr in get_dataset_list(data_args):
|
||||
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
|
||||
raise ValueError("The dataset is not applicable in the current training stage.")
|
||||
|
||||
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
|
||||
dataset = merge_dataset(all_datasets, data_args, training_args)
|
||||
|
||||
with training_args.main_process_first(desc="pre-process dataset"):
|
||||
preprocess_func, print_function = get_preprocess_and_print_func(
|
||||
tokenizer, template, data_args, training_args, stage
|
||||
data_args, training_args, stage, template, tokenizer, processor
|
||||
)
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
kwargs = {}
|
||||
@@ -156,15 +175,21 @@ def get_dataset(
|
||||
|
||||
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
|
||||
|
||||
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path):
|
||||
if data_args.tokenized_path is not None:
|
||||
if training_args.should_save:
|
||||
dataset.save_to_disk(data_args.cache_path)
|
||||
logger.info("Dataset cache saved at {}.".format(data_args.cache_path))
|
||||
dataset.save_to_disk(data_args.tokenized_path)
|
||||
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path))
|
||||
logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path))
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
if training_args.should_log:
|
||||
try:
|
||||
print_function(next(iter(dataset)))
|
||||
except StopIteration:
|
||||
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
|
||||
if stage == "pt":
|
||||
raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.")
|
||||
else:
|
||||
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
|
||||
|
||||
return dataset
|
||||
@@ -20,23 +20,28 @@ class DatasetAttr:
|
||||
""" basic configs """
|
||||
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
|
||||
dataset_name: str
|
||||
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
|
||||
ranking: bool = False
|
||||
""" extra configs """
|
||||
file_sha1: Optional[str] = None
|
||||
subset: Optional[str] = None
|
||||
folder: Optional[str] = None
|
||||
ranking: bool = False
|
||||
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
|
||||
""" columns """
|
||||
num_samples: Optional[int] = None
|
||||
""" common columns """
|
||||
system: Optional[str] = None
|
||||
""" columns for the alpaca format """
|
||||
tools: Optional[str] = None
|
||||
images: Optional[str] = None
|
||||
""" rlhf columns """
|
||||
chosen: Optional[str] = None
|
||||
rejected: Optional[str] = None
|
||||
kto_tag: Optional[str] = None
|
||||
""" alpaca columns """
|
||||
prompt: Optional[str] = "instruction"
|
||||
query: Optional[str] = "input"
|
||||
response: Optional[str] = "output"
|
||||
history: Optional[str] = None
|
||||
""" columns for the sharegpt format """
|
||||
""" sharegpt columns """
|
||||
messages: Optional[str] = "conversations"
|
||||
tools: Optional[str] = None
|
||||
""" tags for the sharegpt format """
|
||||
""" sharegpt tags """
|
||||
role_tag: Optional[str] = "from"
|
||||
content_tag: Optional[str] = "value"
|
||||
user_tag: Optional[str] = "human"
|
||||
@@ -53,22 +58,35 @@ class DatasetAttr:
|
||||
|
||||
|
||||
def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")] if data_args.dataset is not None else []
|
||||
try:
|
||||
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f:
|
||||
dataset_info = json.load(f)
|
||||
except Exception as err:
|
||||
if data_args.dataset is not None:
|
||||
raise ValueError(
|
||||
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
|
||||
)
|
||||
if data_args.dataset is not None:
|
||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")]
|
||||
else:
|
||||
dataset_names = []
|
||||
|
||||
if data_args.dataset_dir == "ONLINE":
|
||||
dataset_info = None
|
||||
else:
|
||||
try:
|
||||
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f:
|
||||
dataset_info = json.load(f)
|
||||
except Exception as err:
|
||||
if len(dataset_names) != 0:
|
||||
raise ValueError(
|
||||
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
|
||||
)
|
||||
dataset_info = None
|
||||
|
||||
if data_args.interleave_probs is not None:
|
||||
data_args.interleave_probs = [float(prob.strip()) for prob in data_args.interleave_probs.split(",")]
|
||||
|
||||
dataset_list: List[DatasetAttr] = []
|
||||
for name in dataset_names:
|
||||
if dataset_info is None:
|
||||
load_from = "ms_hub" if use_modelscope() else "hf_hub"
|
||||
dataset_attr = DatasetAttr(load_from, dataset_name=name)
|
||||
dataset_list.append(dataset_attr)
|
||||
continue
|
||||
|
||||
if name not in dataset_info:
|
||||
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
|
||||
|
||||
@@ -85,18 +103,18 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
else:
|
||||
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
|
||||
|
||||
dataset_attr.set_attr("file_sha1", dataset_info[name])
|
||||
dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
|
||||
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
||||
dataset_attr.set_attr("subset", dataset_info[name])
|
||||
dataset_attr.set_attr("folder", dataset_info[name])
|
||||
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
||||
dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
|
||||
dataset_attr.set_attr("num_samples", dataset_info[name])
|
||||
|
||||
if "columns" in dataset_info[name]:
|
||||
column_names = ["system"]
|
||||
column_names = ["system", "tools", "images", "chosen", "rejected", "kto_tag"]
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
column_names.extend(["prompt", "query", "response", "history"])
|
||||
else:
|
||||
column_names.extend(["messages", "tools"])
|
||||
column_names.extend(["messages"])
|
||||
|
||||
for column_name in column_names:
|
||||
dataset_attr.set_attr(column_name, dataset_info[name]["columns"])
|
||||
@@ -0,0 +1,84 @@
|
||||
from functools import partial
|
||||
from typing import TYPE_CHECKING, Callable, Literal, Optional, Tuple
|
||||
|
||||
from .processors.feedback import preprocess_feedback_dataset
|
||||
from .processors.pairwise import preprocess_pairwise_dataset, print_pairwise_dataset_example
|
||||
from .processors.pretrain import preprocess_pretrain_dataset
|
||||
from .processors.supervised import (
|
||||
preprocess_packed_supervised_dataset,
|
||||
preprocess_supervised_dataset,
|
||||
print_supervised_dataset_example,
|
||||
)
|
||||
from .processors.unsupervised import preprocess_unsupervised_dataset, print_unsupervised_dataset_example
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from .template import Template
|
||||
|
||||
|
||||
def get_preprocess_and_print_func(
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Tuple[Callable, Callable]:
|
||||
if stage == "pt":
|
||||
preprocess_func = partial(
|
||||
preprocess_pretrain_dataset,
|
||||
tokenizer=tokenizer,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "sft" and not training_args.predict_with_generate:
|
||||
if data_args.packing:
|
||||
preprocess_func = partial(
|
||||
preprocess_packed_supervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
data_args=data_args,
|
||||
)
|
||||
else:
|
||||
preprocess_func = partial(
|
||||
preprocess_supervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
|
||||
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "rm":
|
||||
preprocess_func = partial(
|
||||
preprocess_pairwise_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "kto":
|
||||
preprocess_func = partial(
|
||||
preprocess_feedback_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
||||
else:
|
||||
preprocess_func = partial(
|
||||
preprocess_unsupervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
|
||||
return preprocess_func, print_function
|
||||
@@ -0,0 +1,126 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _encode_feedback_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
kl_response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
if response[0]["content"]: # desired example
|
||||
kto_tag = True
|
||||
messages = prompt + [response[0]]
|
||||
else: # undesired example
|
||||
kto_tag = False
|
||||
messages = prompt + [response[1]]
|
||||
|
||||
if kl_response[0]["content"]:
|
||||
kl_messages = prompt + [kl_response[0]]
|
||||
else:
|
||||
kl_messages = prompt + [kl_response[1]]
|
||||
|
||||
prompt_ids, response_ids = template.encode_oneturn(
|
||||
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
_, kl_response_ids = template.encode_oneturn(
|
||||
tokenizer, kl_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
response_ids += [tokenizer.eos_token_id]
|
||||
kl_response_ids += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
input_ids = prompt_ids + response_ids
|
||||
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
|
||||
kl_input_ids = prompt_ids + kl_response_ids
|
||||
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
|
||||
|
||||
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
|
||||
|
||||
|
||||
def preprocess_feedback_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
|
||||
kl_response = examples["response"][::-1]
|
||||
model_inputs = {
|
||||
"input_ids": [],
|
||||
"attention_mask": [],
|
||||
"labels": [],
|
||||
"kl_input_ids": [],
|
||||
"kl_attention_mask": [],
|
||||
"kl_labels": [],
|
||||
"kto_tags": [],
|
||||
}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
model_inputs["kl_token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
kl_response=kl_response[i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["kl_input_ids"].append(kl_input_ids)
|
||||
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
|
||||
model_inputs["kl_labels"].append(kl_labels)
|
||||
model_inputs["kto_tags"].append(kto_tag)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor))
|
||||
|
||||
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
||||
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
||||
if desirable_num == 0 or undesirable_num == 0:
|
||||
logger.warning("Your dataset only has one preference type.")
|
||||
|
||||
return model_inputs
|
||||
@@ -0,0 +1,123 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _encode_pairwise_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int], List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
chosen_messages = prompt + [response[0]]
|
||||
rejected_messages = prompt + [response[1]]
|
||||
prompt_ids, chosen_ids = template.encode_oneturn(
|
||||
tokenizer, chosen_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
_, rejected_ids = template.encode_oneturn(
|
||||
tokenizer, rejected_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
chosen_ids += [tokenizer.eos_token_id]
|
||||
rejected_ids += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
chosen_input_ids = prompt_ids + chosen_ids
|
||||
chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids
|
||||
rejected_input_ids = prompt_ids + rejected_ids
|
||||
rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids
|
||||
|
||||
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels
|
||||
|
||||
|
||||
def preprocess_pairwise_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
|
||||
model_inputs = {
|
||||
"chosen_input_ids": [],
|
||||
"chosen_attention_mask": [],
|
||||
"chosen_labels": [],
|
||||
"rejected_input_ids": [],
|
||||
"rejected_attention_mask": [],
|
||||
"rejected_labels": [],
|
||||
}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["chosen_token_type_ids"] = []
|
||||
model_inputs["rejected_token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = _encode_pairwise_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
||||
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
||||
model_inputs["chosen_labels"].append(chosen_labels)
|
||||
model_inputs["rejected_input_ids"].append(rejected_input_ids)
|
||||
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
|
||||
model_inputs["rejected_labels"].append(rejected_labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["chosen_token_type_ids"].append(
|
||||
get_paligemma_token_type_ids(len(chosen_input_ids), processor)
|
||||
)
|
||||
model_inputs["rejected_token_type_ids"].append(
|
||||
get_paligemma_token_type_ids(len(rejected_input_ids), processor)
|
||||
)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"]))
|
||||
valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"]))
|
||||
print("chosen_input_ids:\n{}".format(example["chosen_input_ids"]))
|
||||
print("chosen_inputs:\n{}".format(tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False)))
|
||||
print("chosen_label_ids:\n{}".format(example["chosen_labels"]))
|
||||
print("chosen_labels:\n{}".format(tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)))
|
||||
print("rejected_input_ids:\n{}".format(example["rejected_input_ids"]))
|
||||
print("rejected_inputs:\n{}".format(tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False)))
|
||||
print("rejected_label_ids:\n{}".format(example["rejected_labels"]))
|
||||
print("rejected_labels:\n{}".format(tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)))
|
||||
@@ -0,0 +1,36 @@
|
||||
from itertools import chain
|
||||
from typing import TYPE_CHECKING, Any, Dict, List
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
|
||||
|
||||
def preprocess_pretrain_dataset(
|
||||
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
|
||||
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
|
||||
|
||||
if not data_args.packing:
|
||||
if data_args.template == "gemma":
|
||||
text_examples = [tokenizer.bos_token + example for example in text_examples]
|
||||
|
||||
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len, truncation=True)
|
||||
else:
|
||||
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
|
||||
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
|
||||
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
|
||||
block_size = data_args.cutoff_len
|
||||
total_length = (total_length // block_size) * block_size
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
if data_args.template == "gemma":
|
||||
for i in range(len(result["input_ids"])):
|
||||
result["input_ids"][i][0] = tokenizer.bos_token_id
|
||||
|
||||
return result
|
||||
@@ -0,0 +1,64 @@
|
||||
import bisect
|
||||
from typing import TYPE_CHECKING, List, Sequence
|
||||
|
||||
from ...extras.packages import is_pillow_available
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from PIL.Image import Image as ImageObject
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
|
||||
|
||||
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
|
||||
r"""
|
||||
Finds the index of largest number that fits into the knapsack with the given capacity.
|
||||
"""
|
||||
index = bisect.bisect(numbers, capacity)
|
||||
return -1 if index == 0 else (index - 1)
|
||||
|
||||
|
||||
def greedy_knapsack(numbers: List[int], capacity: int) -> List[List[int]]:
|
||||
r"""
|
||||
An efficient greedy algorithm with binary search for the knapsack problem.
|
||||
"""
|
||||
numbers.sort() # sort numbers in ascending order for binary search
|
||||
knapsacks = []
|
||||
|
||||
while numbers:
|
||||
current_knapsack = []
|
||||
remaining_capacity = capacity
|
||||
|
||||
while True:
|
||||
index = search_for_fit(numbers, remaining_capacity)
|
||||
if index == -1:
|
||||
break # no more numbers fit in this knapsack
|
||||
|
||||
remaining_capacity -= numbers[index] # update the remaining capacity
|
||||
current_knapsack.append(numbers.pop(index)) # add the number to knapsack
|
||||
|
||||
knapsacks.append(current_knapsack)
|
||||
|
||||
return knapsacks
|
||||
|
||||
|
||||
def get_pixel_values(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
|
||||
r"""
|
||||
Processes visual inputs. (currently only supports a single image)
|
||||
"""
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
|
||||
return image_processor(image, return_tensors="pt")["pixel_values"][0] # shape (C, H, W)
|
||||
|
||||
|
||||
def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") -> List[int]:
|
||||
r"""
|
||||
Gets paligemma token type ids for computing loss.
|
||||
"""
|
||||
image_seq_length = getattr(processor, "image_seq_length")
|
||||
return [0] * image_seq_length + [1] * (input_len - image_seq_length)
|
||||
@@ -0,0 +1,169 @@
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _encode_supervised_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
messages = prompt + response
|
||||
input_ids, labels = [], []
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
input_ids += [image_token_id] * getattr(processor, "image_seq_length")
|
||||
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length")
|
||||
|
||||
encoded_pairs = template.encode_multiturn(
|
||||
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_mask + target_ids
|
||||
|
||||
if template.efficient_eos:
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
return input_ids, labels
|
||||
|
||||
|
||||
def preprocess_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
|
||||
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels = _encode_supervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def preprocess_packed_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
|
||||
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
|
||||
valid_num = 0
|
||||
batch_input_ids, batch_labels = [], []
|
||||
lengths = []
|
||||
length2indexes = defaultdict(list)
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels = _encode_supervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=None,
|
||||
data_args=data_args,
|
||||
)
|
||||
length = len(input_ids)
|
||||
if length > data_args.cutoff_len:
|
||||
logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len))
|
||||
else:
|
||||
lengths.append(length)
|
||||
length2indexes[length].append(valid_num)
|
||||
batch_input_ids.append(input_ids)
|
||||
batch_labels.append(labels)
|
||||
valid_num += 1
|
||||
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len)
|
||||
for knapsack in knapsacks:
|
||||
packed_input_ids, packed_labels = [], []
|
||||
for length in knapsack:
|
||||
index = length2indexes[length].pop()
|
||||
packed_input_ids += batch_input_ids[index]
|
||||
packed_labels += batch_labels[index]
|
||||
|
||||
if len(packed_input_ids) < data_args.cutoff_len:
|
||||
pad_length = data_args.cutoff_len - len(packed_input_ids)
|
||||
packed_input_ids += [tokenizer.pad_token_id] * pad_length
|
||||
packed_labels += [IGNORE_INDEX] * pad_length
|
||||
|
||||
if len(packed_input_ids) != data_args.cutoff_len:
|
||||
raise ValueError("The length of packed example should be identical to the cutoff length.")
|
||||
|
||||
model_inputs["input_ids"].append(packed_input_ids)
|
||||
model_inputs["attention_mask"].append([1] * data_args.cutoff_len)
|
||||
model_inputs["labels"].append(packed_labels)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print("label_ids:\n{}".format(example["labels"]))
|
||||
print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False)))
|
||||
@@ -0,0 +1,92 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..data_utils import Role
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _encode_unsupervised_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
if len(response) == 1:
|
||||
messages = prompt + response
|
||||
else:
|
||||
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
|
||||
input_ids, labels = template.encode_oneturn(
|
||||
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
if template.efficient_eos:
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids
|
||||
|
||||
return input_ids, labels
|
||||
|
||||
|
||||
def preprocess_unsupervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X` and labels with format `Y <eos>`
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels = _encode_unsupervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
@@ -2,8 +2,8 @@ from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from .data_utils import Role, infer_max_len
|
||||
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter
|
||||
from .utils import Role, infer_max_len
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -26,6 +26,7 @@ class Template:
|
||||
format_separator: "Formatter"
|
||||
default_system: str
|
||||
stop_words: List[str]
|
||||
image_token: str
|
||||
efficient_eos: bool
|
||||
replace_eos: bool
|
||||
force_system: bool
|
||||
@@ -68,8 +69,8 @@ class Template:
|
||||
self,
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
messages: List[Dict[str, str]],
|
||||
system: str,
|
||||
tools: str,
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
cutoff_len: int,
|
||||
reserved_label_len: int,
|
||||
) -> Sequence[Tuple[List[int], List[int]]]:
|
||||
@@ -195,7 +196,7 @@ class Llama2Template(Template):
|
||||
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len)
|
||||
|
||||
|
||||
templates: Dict[str, Template] = {}
|
||||
TEMPLATES: Dict[str, Template] = {}
|
||||
|
||||
|
||||
def _register_template(
|
||||
@@ -209,6 +210,7 @@ def _register_template(
|
||||
format_separator: Optional["Formatter"] = None,
|
||||
default_system: str = "",
|
||||
stop_words: List[str] = [],
|
||||
image_token: str = "<image>",
|
||||
efficient_eos: bool = False,
|
||||
replace_eos: bool = False,
|
||||
force_system: bool = False,
|
||||
@@ -246,7 +248,7 @@ def _register_template(
|
||||
default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots)
|
||||
default_tool_formatter = ToolFormatter(tool_format="default")
|
||||
default_separator_formatter = EmptyFormatter()
|
||||
templates[name] = template_class(
|
||||
TEMPLATES[name] = template_class(
|
||||
format_user=format_user or default_user_formatter,
|
||||
format_assistant=format_assistant or default_assistant_formatter,
|
||||
format_system=format_system or default_user_formatter,
|
||||
@@ -256,6 +258,7 @@ def _register_template(
|
||||
format_separator=format_separator or default_separator_formatter,
|
||||
default_system=default_system,
|
||||
stop_words=stop_words,
|
||||
image_token=image_token,
|
||||
efficient_eos=efficient_eos,
|
||||
replace_eos=replace_eos,
|
||||
force_system=force_system,
|
||||
@@ -276,7 +279,7 @@ def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str)
|
||||
|
||||
|
||||
def _jinja_escape(content: str) -> str:
|
||||
return content.replace("\n", r"\n").replace("'", r"\'")
|
||||
return content.replace("'", r"\'")
|
||||
|
||||
|
||||
def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str:
|
||||
@@ -290,10 +293,10 @@ def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", pl
|
||||
slot_items.append(placeholder)
|
||||
if slot_pieces[1]:
|
||||
slot_items.append("'" + _jinja_escape(slot_pieces[1]) + "'")
|
||||
elif isinstance(slot, set):
|
||||
if "bos_token" in slot:
|
||||
elif isinstance(slot, set): # do not use {{ eos_token }} since it may be replaced
|
||||
if "bos_token" in slot and tokenizer.bos_token_id is not None:
|
||||
slot_items.append("'" + tokenizer.bos_token + "'")
|
||||
elif "eos_token" in slot: # do not use {{ eos_token }} since it may be replaced
|
||||
elif "eos_token" in slot and tokenizer.eos_token_id is not None:
|
||||
slot_items.append("'" + tokenizer.eos_token + "'")
|
||||
elif isinstance(slot, dict):
|
||||
raise ValueError("Dict is not supported.")
|
||||
@@ -308,7 +311,7 @@ def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer")
|
||||
jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}"
|
||||
|
||||
jinja_template += (
|
||||
"{% if messages[0]['role'] == 'system' %}" "{% set system_message = messages[0]['content'] %}" "{% endif %}"
|
||||
"{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}"
|
||||
)
|
||||
|
||||
system_message = _convert_slots_to_jinja(template.format_system.apply(), tokenizer, placeholder="system_message")
|
||||
@@ -325,9 +328,11 @@ def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer")
|
||||
jinja_template += "{% if loop.index0 == 0 and system_message is defined %}"
|
||||
jinja_template += "{% set content = " + system_message + " + message['content'] %}"
|
||||
jinja_template += "{% endif %}"
|
||||
|
||||
jinja_template += "{% if message['role'] == 'user' %}"
|
||||
user_message = _convert_slots_to_jinja(template.format_user.apply(), tokenizer)
|
||||
jinja_template += "{{ " + user_message + " }}"
|
||||
|
||||
jinja_template += "{% elif message['role'] == 'assistant' %}"
|
||||
assistant_message = _convert_slots_to_jinja(
|
||||
template.format_assistant.apply() + template.format_separator.apply(), tokenizer
|
||||
@@ -343,9 +348,9 @@ def get_template_and_fix_tokenizer(
|
||||
name: Optional[str] = None,
|
||||
) -> Template:
|
||||
if name is None:
|
||||
template = templates["vanilla"] # placeholder
|
||||
template = TEMPLATES["empty"] # placeholder
|
||||
else:
|
||||
template = templates.get(name, None)
|
||||
template = TEMPLATES.get(name, None)
|
||||
if template is None:
|
||||
raise ValueError("Template {} does not exist.".format(name))
|
||||
|
||||
@@ -385,7 +390,8 @@ _register_template(
|
||||
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n\n"]),
|
||||
default_system=(
|
||||
"Below is an instruction that describes a task. " "Write a response that appropriately completes the request."
|
||||
"Below is an instruction that describes a task. "
|
||||
"Write a response that appropriately completes the request.\n\n"
|
||||
),
|
||||
)
|
||||
|
||||
@@ -414,7 +420,7 @@ _register_template(
|
||||
|
||||
_register_template(
|
||||
name="baichuan",
|
||||
format_user=StringFormatter(slots=["<reserved_102>{{content}}<reserved_103>"]),
|
||||
format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
@@ -441,6 +447,18 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="breeze",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
default_system=(
|
||||
"You are a helpful AI assistant built by MediaTek Research. "
|
||||
"The user you are helping speaks Traditional Chinese and comes from Taiwan."
|
||||
),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="chatglm2",
|
||||
format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]),
|
||||
@@ -490,6 +508,7 @@ _register_template(
|
||||
name="chatml",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
stop_words=["<|im_end|>", "<|im_start|>"],
|
||||
replace_eos=True,
|
||||
@@ -500,6 +519,7 @@ _register_template(
|
||||
name="chatml_de",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.",
|
||||
stop_words=["<|im_end|>", "<|im_start|>"],
|
||||
@@ -514,6 +534,26 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="cohere",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"
|
||||
"<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=StringFormatter(
|
||||
slots=[{"bos_token"}, "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"]
|
||||
),
|
||||
default_system=(
|
||||
"You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users "
|
||||
"by providing thorough responses. You are trained by Cohere."
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="cpm",
|
||||
format_user=StringFormatter(slots=["<用户>{{content}}<AI>"]),
|
||||
@@ -522,6 +562,32 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="dbrx",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system=(
|
||||
"You are DBRX, created by Databricks. You were last updated in December 2023. "
|
||||
"You answer questions based on information available up to that point.\n"
|
||||
"YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough "
|
||||
"responses to more complex and open-ended questions.\nYou assist with various tasks, "
|
||||
"from writing to coding (using markdown for code blocks — remember to use ``` with "
|
||||
"code, JSON, and tables).\n(You do not have real-time data access or code execution "
|
||||
"capabilities. You avoid stereotyping and provide balanced perspectives on "
|
||||
"controversial topics. You do not provide song lyrics, poems, or news articles and "
|
||||
"do not divulge details of your training data.)\nThis is your system prompt, "
|
||||
"guiding your responses. Do not reference it, just respond to the user. If you find "
|
||||
"yourself talking about this message, stop. You should be responding appropriately "
|
||||
"and usually that means not mentioning this.\nYOU DO NOT MENTION ANY OF THIS INFORMATION "
|
||||
"ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY."
|
||||
),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="deepseek",
|
||||
format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]),
|
||||
@@ -554,6 +620,16 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="empty",
|
||||
format_user=StringFormatter(slots=["{{content}}"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
efficient_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="falcon",
|
||||
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]),
|
||||
@@ -562,16 +638,39 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="fewshot",
|
||||
format_separator=EmptyFormatter(slots=["\n\n"]),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="gemma",
|
||||
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
format_observation=StringFormatter(
|
||||
slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]
|
||||
),
|
||||
format_separator=EmptyFormatter(slots=["<end_of_turn>\n"]),
|
||||
efficient_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="glm4",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
|
||||
format_assistant=StringFormatter(slots=["\n{{content}}"]),
|
||||
format_system=StringFormatter(slots=["[gMASK]<sop>{{content}}"]),
|
||||
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]),
|
||||
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]),
|
||||
stop_words=["<|user|>", "<|observation|>"],
|
||||
efficient_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="intern",
|
||||
format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]),
|
||||
@@ -601,17 +700,8 @@ _register_template(
|
||||
_register_template(
|
||||
name="llama2",
|
||||
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
|
||||
format_assistant=StringFormatter(slots=[" {{content}} ", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
|
||||
default_system=(
|
||||
"You are a helpful, respectful and honest assistant. "
|
||||
"Always answer as helpfully as possible, while being safe. "
|
||||
"Your answers should not include any harmful, unethical, "
|
||||
"racist, sexist, toxic, dangerous, or illegal content. "
|
||||
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
|
||||
"If a question does not make any sense, or is not factually coherent, "
|
||||
"explain why instead of answering something not correct. "
|
||||
"If you don't know the answer to a question, please don't share false information."
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -623,6 +713,33 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llama3",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=StringFormatter(
|
||||
slots=[{"bos_token"}, "<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]
|
||||
),
|
||||
format_observation=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>tool<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
default_system="You are a helpful assistant.",
|
||||
stop_words=["<|eot_id|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="mistral",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]),
|
||||
@@ -633,8 +750,7 @@ _register_template(
|
||||
|
||||
_register_template(
|
||||
name="olmo",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]),
|
||||
format_system=StringFormatter(slots=[{"eos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
@@ -643,12 +759,28 @@ _register_template(
|
||||
_register_template(
|
||||
name="openchat",
|
||||
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="openchat-3.6",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>GPT4 Correct User<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
stop_words=["<|eot_id|>"],
|
||||
replace_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="orion",
|
||||
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]),
|
||||
@@ -657,10 +789,22 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="phi",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>\n"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "<|system|>\n{{content}}<|end|>\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="You are a helpful AI assistant.",
|
||||
stop_words=["<|end|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="qwen",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="You are a helpful assistant.",
|
||||
stop_words=["<|im_end|>"],
|
||||
@@ -688,7 +832,11 @@ _register_template(
|
||||
|
||||
|
||||
_register_template(
|
||||
name="vanilla",
|
||||
name="telechat",
|
||||
format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
|
||||
format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]),
|
||||
stop_words=["<_end>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
@@ -742,12 +890,29 @@ _register_template(
|
||||
_register_template(
|
||||
name="yi",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="yi_vl",
|
||||
format_user=StringFormatter(slots=["### Human: {{content}}\n### Assistant:"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system=(
|
||||
"This is a chat between an inquisitive human and an AI assistant. "
|
||||
"Assume the role of the AI assistant. Read all the images carefully, "
|
||||
"and respond to the human's questions with informative, helpful, detailed and polite answers. "
|
||||
"这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。"
|
||||
"仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。\n\n"
|
||||
),
|
||||
stop_words=["###"],
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="yuan",
|
||||
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
|
||||
@@ -762,7 +927,7 @@ _register_template(
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]),
|
||||
format_assistant=StringFormatter(slots=["\n{{content}}", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]),
|
||||
default_system="You are a friendly chatbot who always responds in the style of a pirate",
|
||||
default_system="You are Zephyr, a helpful assistant.",
|
||||
)
|
||||
|
||||
|
||||
@@ -14,16 +14,17 @@ from transformers.utils import cached_file
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.constants import CHOICES, SUBJECTS
|
||||
from ..hparams import get_eval_args
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .template import get_eval_template
|
||||
|
||||
|
||||
class Evaluator:
|
||||
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
||||
self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(self.model_args, finetuning_args)
|
||||
self.tokenizer = load_tokenizer(self.model_args)["tokenizer"]
|
||||
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args.template)
|
||||
self.model = load_model(self.tokenizer, self.model_args, finetuning_args)
|
||||
self.eval_template = get_eval_template(self.eval_args.lang)
|
||||
self.choice_inputs = [
|
||||
self.tokenizer.encode(self.eval_template.prefix + ch, add_special_tokens=False)[-1] for ch in CHOICES
|
||||
@@ -117,6 +118,5 @@ class Evaluator:
|
||||
f.write(score_info)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
evaluator = Evaluator()
|
||||
evaluator.eval()
|
||||
def run_eval() -> None:
|
||||
Evaluator().eval()
|
||||
@@ -1,14 +1,10 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, List, Tuple
|
||||
from typing import Dict, List, Sequence, Tuple
|
||||
|
||||
from ..data import Role
|
||||
from ..extras.constants import CHOICES
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset
|
||||
|
||||
|
||||
@dataclass
|
||||
class EvalTemplate:
|
||||
system: str
|
||||
@@ -16,22 +12,29 @@ class EvalTemplate:
|
||||
answer: str
|
||||
prefix: str
|
||||
|
||||
def parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
|
||||
def _parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
|
||||
r"""
|
||||
input: a dict with keys {"question", "A", "B", "C", "D", "answer"}
|
||||
output: a tuple of (prompt, response)
|
||||
"""
|
||||
candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in CHOICES if ch in example]
|
||||
return "".join([example["question"]] + candidates + [self.answer]), example["answer"]
|
||||
|
||||
def format_example(
|
||||
self, target_data: Dict[str, str], support_set: "Dataset", subject_name: str
|
||||
self, target_data: Dict[str, str], support_set: Sequence[Dict[str, str]], subject_name: str
|
||||
) -> List[Dict[str, str]]:
|
||||
r"""
|
||||
Converts dataset examples to messages.
|
||||
"""
|
||||
messages = []
|
||||
for k in range(len(support_set)):
|
||||
prompt, response = self.parse_example(support_set[k])
|
||||
messages.append({"role": Role.USER, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT, "content": response})
|
||||
prompt, response = self._parse_example(support_set[k])
|
||||
messages.append({"role": Role.USER.value, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT.value, "content": response})
|
||||
|
||||
prompt, response = self.parse_example(target_data)
|
||||
messages.append({"role": Role.USER, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT, "content": response})
|
||||
prompt, response = self._parse_example(target_data)
|
||||
messages.append({"role": Role.USER.value, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT.value, "content": response})
|
||||
messages[0]["content"] = self.system.format(subject=subject_name) + messages[0]["content"]
|
||||
return messages
|
||||
|
||||
@@ -39,7 +42,7 @@ class EvalTemplate:
|
||||
eval_templates: Dict[str, "EvalTemplate"] = {}
|
||||
|
||||
|
||||
def register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
|
||||
def _register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
|
||||
eval_templates[name] = EvalTemplate(system=system, choice=choice, answer=answer, prefix=prefix)
|
||||
|
||||
|
||||
@@ -49,7 +52,7 @@ def get_eval_template(name: str) -> "EvalTemplate":
|
||||
return eval_template
|
||||
|
||||
|
||||
register_eval_template(
|
||||
_register_eval_template(
|
||||
name="en",
|
||||
system="The following are multiple choice questions (with answers) about {subject}.\n\n",
|
||||
choice="\n{choice}. {content}",
|
||||
@@ -58,10 +61,10 @@ register_eval_template(
|
||||
)
|
||||
|
||||
|
||||
register_eval_template(
|
||||
_register_eval_template(
|
||||
name="zh",
|
||||
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
|
||||
choice="\n{choice}. {content}",
|
||||
answer="\n答案:",
|
||||
prefix="\n",
|
||||
prefix=" ",
|
||||
)
|
||||
@@ -0,0 +1,217 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import signal
|
||||
import sys
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from datetime import timedelta
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional
|
||||
|
||||
import transformers
|
||||
from transformers import TrainerCallback
|
||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
|
||||
|
||||
from .constants import TRAINER_LOG
|
||||
from .logging import LoggerHandler, get_logger
|
||||
from .misc import fix_valuehead_checkpoint
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import TrainerControl, TrainerState, TrainingArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class FixValueHeadModelCallback(TrainerCallback):
|
||||
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after a checkpoint save.
|
||||
"""
|
||||
if args.should_save:
|
||||
fix_valuehead_checkpoint(
|
||||
model=kwargs.pop("model"),
|
||||
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
|
||||
safe_serialization=args.save_safetensors,
|
||||
)
|
||||
|
||||
|
||||
class LogCallback(TrainerCallback):
|
||||
def __init__(self, output_dir: str) -> None:
|
||||
r"""
|
||||
Initializes a callback for logging training and evaluation status.
|
||||
"""
|
||||
""" Progress """
|
||||
self.start_time = 0
|
||||
self.cur_steps = 0
|
||||
self.max_steps = 0
|
||||
self.elapsed_time = ""
|
||||
self.remaining_time = ""
|
||||
self.thread_pool: Optional["ThreadPoolExecutor"] = None
|
||||
""" Status """
|
||||
self.aborted = False
|
||||
self.do_train = False
|
||||
""" Web UI """
|
||||
self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"]
|
||||
if self.webui_mode:
|
||||
signal.signal(signal.SIGABRT, self._set_abort)
|
||||
self.logger_handler = LoggerHandler(output_dir)
|
||||
logging.root.addHandler(self.logger_handler)
|
||||
transformers.logging.add_handler(self.logger_handler)
|
||||
|
||||
def _set_abort(self, signum, frame) -> None:
|
||||
self.aborted = True
|
||||
|
||||
def _reset(self, max_steps: int = 0) -> None:
|
||||
self.start_time = time.time()
|
||||
self.cur_steps = 0
|
||||
self.max_steps = max_steps
|
||||
self.elapsed_time = ""
|
||||
self.remaining_time = ""
|
||||
|
||||
def _timing(self, cur_steps: int) -> None:
|
||||
cur_time = time.time()
|
||||
elapsed_time = cur_time - self.start_time
|
||||
avg_time_per_step = elapsed_time / cur_steps if cur_steps != 0 else 0
|
||||
remaining_time = (self.max_steps - cur_steps) * avg_time_per_step
|
||||
self.cur_steps = cur_steps
|
||||
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
|
||||
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
|
||||
|
||||
def _write_log(self, output_dir: str, logs: Dict[str, Any]) -> None:
|
||||
with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
|
||||
f.write(json.dumps(logs) + "\n")
|
||||
|
||||
def _create_thread_pool(self, output_dir: str) -> None:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
self.thread_pool = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
def _close_thread_pool(self) -> None:
|
||||
if self.thread_pool is not None:
|
||||
self.thread_pool.shutdown(wait=True)
|
||||
self.thread_pool = None
|
||||
|
||||
def on_init_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of the initialization of the `Trainer`.
|
||||
"""
|
||||
if (
|
||||
args.should_save
|
||||
and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG))
|
||||
and args.overwrite_output_dir
|
||||
):
|
||||
logger.warning("Previous trainer log in this folder will be deleted.")
|
||||
os.remove(os.path.join(args.output_dir, TRAINER_LOG))
|
||||
|
||||
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the beginning of training.
|
||||
"""
|
||||
if args.should_save:
|
||||
self.do_train = True
|
||||
self._reset(max_steps=state.max_steps)
|
||||
self._create_thread_pool(output_dir=args.output_dir)
|
||||
|
||||
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of training.
|
||||
"""
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of an substep during gradient accumulation.
|
||||
"""
|
||||
if self.aborted:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
|
||||
def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of a training step.
|
||||
"""
|
||||
if self.aborted:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
|
||||
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after an evaluation phase.
|
||||
"""
|
||||
if not self.do_train:
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after a successful prediction.
|
||||
"""
|
||||
if not self.do_train:
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after logging the last logs.
|
||||
"""
|
||||
if not args.should_save:
|
||||
return
|
||||
|
||||
self._timing(cur_steps=state.global_step)
|
||||
logs = dict(
|
||||
current_steps=self.cur_steps,
|
||||
total_steps=self.max_steps,
|
||||
loss=state.log_history[-1].get("loss", None),
|
||||
eval_loss=state.log_history[-1].get("eval_loss", None),
|
||||
predict_loss=state.log_history[-1].get("predict_loss", None),
|
||||
reward=state.log_history[-1].get("reward", None),
|
||||
accuracy=state.log_history[-1].get("rewards/accuracies", None),
|
||||
learning_rate=state.log_history[-1].get("learning_rate", None),
|
||||
epoch=state.log_history[-1].get("epoch", None),
|
||||
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
|
||||
elapsed_time=self.elapsed_time,
|
||||
remaining_time=self.remaining_time,
|
||||
throughput="{:.2f}".format(state.num_input_tokens_seen / (time.time() - self.start_time)),
|
||||
total_tokens=state.num_input_tokens_seen,
|
||||
)
|
||||
logs = {k: v for k, v in logs.items() if v is not None}
|
||||
if self.webui_mode and all(key in logs for key in ["loss", "learning_rate", "epoch"]):
|
||||
logger.info(
|
||||
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}, 'throughput': {}}}".format(
|
||||
logs["loss"], logs["learning_rate"], logs["epoch"], logs["throughput"]
|
||||
)
|
||||
)
|
||||
|
||||
if self.thread_pool is not None:
|
||||
self.thread_pool.submit(self._write_log, args.output_dir, logs)
|
||||
|
||||
def on_prediction_step(
|
||||
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
|
||||
):
|
||||
r"""
|
||||
Event called after a prediction step.
|
||||
"""
|
||||
if self.do_train:
|
||||
return
|
||||
|
||||
if self.aborted:
|
||||
sys.exit(0)
|
||||
|
||||
if not args.should_save:
|
||||
return
|
||||
|
||||
eval_dataloader = kwargs.pop("eval_dataloader", None)
|
||||
if has_length(eval_dataloader):
|
||||
if self.max_steps == 0:
|
||||
self._reset(max_steps=len(eval_dataloader))
|
||||
self._create_thread_pool(output_dir=args.output_dir)
|
||||
|
||||
self._timing(cur_steps=self.cur_steps + 1)
|
||||
if self.cur_steps % 5 == 0 and self.thread_pool is not None:
|
||||
logs = dict(
|
||||
current_steps=self.cur_steps,
|
||||
total_steps=self.max_steps,
|
||||
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
|
||||
elapsed_time=self.elapsed_time,
|
||||
remaining_time=self.remaining_time,
|
||||
)
|
||||
self.thread_pool.submit(self._write_log, args.output_dir, logs)
|
||||
@@ -2,13 +2,24 @@ from collections import OrderedDict, defaultdict
|
||||
from enum import Enum
|
||||
from typing import Dict, Optional
|
||||
|
||||
from peft.utils import SAFETENSORS_WEIGHTS_NAME as SAFE_ADAPTER_WEIGHTS_NAME
|
||||
from peft.utils import WEIGHTS_NAME as ADAPTER_WEIGHTS_NAME
|
||||
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
||||
|
||||
|
||||
CHECKPOINT_NAMES = {
|
||||
SAFE_ADAPTER_WEIGHTS_NAME,
|
||||
ADAPTER_WEIGHTS_NAME,
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFE_WEIGHTS_NAME,
|
||||
WEIGHTS_INDEX_NAME,
|
||||
WEIGHTS_NAME,
|
||||
}
|
||||
|
||||
CHOICES = ["A", "B", "C", "D"]
|
||||
|
||||
DATA_CONFIG = "dataset_info.json"
|
||||
|
||||
DEFAULT_MODULE = defaultdict(str)
|
||||
|
||||
DEFAULT_TEMPLATE = defaultdict(str)
|
||||
|
||||
FILEEXT2TYPE = {
|
||||
@@ -24,28 +35,43 @@ IGNORE_INDEX = -100
|
||||
|
||||
LAYERNORM_NAMES = {"norm", "ln"}
|
||||
|
||||
LOG_FILE_NAME = "trainer_log.jsonl"
|
||||
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
|
||||
|
||||
METHODS = ["full", "freeze", "lora"]
|
||||
|
||||
PEFT_METHODS = ["lora"]
|
||||
MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}
|
||||
|
||||
PEFT_METHODS = {"lora"}
|
||||
|
||||
RUNNING_LOG = "running_log.txt"
|
||||
|
||||
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
|
||||
|
||||
SUPPORTED_MODELS = OrderedDict()
|
||||
|
||||
TRAINER_LOG = "trainer_log.jsonl"
|
||||
|
||||
TRAINING_ARGS = "training_args.yaml"
|
||||
|
||||
TRAINING_STAGES = {
|
||||
"Supervised Fine-Tuning": "sft",
|
||||
"Reward Modeling": "rm",
|
||||
"PPO": "ppo",
|
||||
"DPO": "dpo",
|
||||
"KTO": "kto",
|
||||
"Pre-Training": "pt",
|
||||
}
|
||||
|
||||
STAGES_USE_PAIR_DATA = {"rm", "dpo"}
|
||||
|
||||
SUPPORTED_CLASS_FOR_S2ATTN = {"llama"}
|
||||
|
||||
V_HEAD_WEIGHTS_NAME = "value_head.bin"
|
||||
|
||||
V_HEAD_SAFE_WEIGHTS_NAME = "value_head.safetensors"
|
||||
|
||||
VISION_MODELS = set()
|
||||
|
||||
|
||||
class DownloadSource(str, Enum):
|
||||
DEFAULT = "hf"
|
||||
@@ -54,8 +80,8 @@ class DownloadSource(str, Enum):
|
||||
|
||||
def register_model_group(
|
||||
models: Dict[str, Dict[DownloadSource, str]],
|
||||
module: Optional[str] = None,
|
||||
template: Optional[str] = None,
|
||||
vision: bool = False,
|
||||
) -> None:
|
||||
prefix = None
|
||||
for name, path in models.items():
|
||||
@@ -64,10 +90,23 @@ def register_model_group(
|
||||
else:
|
||||
assert prefix == name.split("-")[0], "prefix should be identical."
|
||||
SUPPORTED_MODELS[name] = path
|
||||
if module is not None:
|
||||
DEFAULT_MODULE[prefix] = module
|
||||
if template is not None:
|
||||
DEFAULT_TEMPLATE[prefix] = template
|
||||
if vision:
|
||||
VISION_MODELS.add(prefix)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Aya-23-8B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/aya-23-8B",
|
||||
},
|
||||
"Aya-23-35B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/aya-23-35B",
|
||||
},
|
||||
},
|
||||
template="cohere",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
@@ -85,7 +124,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Chat",
|
||||
},
|
||||
},
|
||||
module="W_pack",
|
||||
template="baichuan",
|
||||
)
|
||||
|
||||
@@ -109,7 +147,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Chat",
|
||||
},
|
||||
},
|
||||
module="W_pack",
|
||||
template="baichuan2",
|
||||
)
|
||||
|
||||
@@ -129,7 +166,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-7b1",
|
||||
},
|
||||
},
|
||||
module="query_key_value",
|
||||
)
|
||||
|
||||
|
||||
@@ -148,7 +184,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-7b1-mt",
|
||||
},
|
||||
},
|
||||
module="query_key_value",
|
||||
)
|
||||
|
||||
|
||||
@@ -167,6 +202,19 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Breeze-7B": {
|
||||
DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Base-v1_0",
|
||||
},
|
||||
"Breeze-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Instruct-v1_0",
|
||||
},
|
||||
},
|
||||
template="breeze",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"ChatGLM2-6B-Chat": {
|
||||
@@ -174,7 +222,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm2-6b",
|
||||
}
|
||||
},
|
||||
module="query_key_value",
|
||||
template="chatglm2",
|
||||
)
|
||||
|
||||
@@ -190,7 +237,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b",
|
||||
},
|
||||
},
|
||||
module="query_key_value",
|
||||
template="chatglm3",
|
||||
)
|
||||
|
||||
@@ -226,6 +272,73 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"CodeGemma-7B": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-7b",
|
||||
},
|
||||
"CodeGemma-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-7b-it",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/codegemma-7b-it",
|
||||
},
|
||||
"CodeGemma-1.1-2B": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-1.1-2b",
|
||||
},
|
||||
"CodeGemma-1.1-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-1.1-7b-it",
|
||||
},
|
||||
},
|
||||
template="gemma",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Codestral-22B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Codestral-22B-v0.1",
|
||||
},
|
||||
},
|
||||
template="mistral",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"CommandR-35B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-v01",
|
||||
},
|
||||
"CommandR-Plus-104B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-plus",
|
||||
},
|
||||
"CommandR-35B-4bit-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01-4bit",
|
||||
DownloadSource.MODELSCOPE: "mirror013/c4ai-command-r-v01-4bit",
|
||||
},
|
||||
"CommandR-Plus-104B-4bit-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus-4bit",
|
||||
},
|
||||
},
|
||||
template="cohere",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DBRX-132B-Base": {
|
||||
DownloadSource.DEFAULT: "databricks/dbrx-base",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-base",
|
||||
},
|
||||
"DBRX-132B-Chat": {
|
||||
DownloadSource.DEFAULT: "databricks/dbrx-instruct",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-instruct",
|
||||
},
|
||||
},
|
||||
template="dbrx",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DeepSeek-LLM-7B-Base": {
|
||||
@@ -246,18 +359,36 @@ register_model_group(
|
||||
},
|
||||
"DeepSeek-Math-7B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-base",
|
||||
},
|
||||
"DeepSeek-Math-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-instruct",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-instruct",
|
||||
},
|
||||
"DeepSeek-MoE-16B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-base",
|
||||
},
|
||||
"DeepSeek-MoE-16B-v2-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Lite",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Lite",
|
||||
},
|
||||
"DeepSeek-MoE-236B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2",
|
||||
},
|
||||
"DeepSeek-MoE-16B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-chat",
|
||||
},
|
||||
"DeepSeek-MoE-16B-v2-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Lite-Chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Lite-Chat",
|
||||
},
|
||||
"DeepSeek-MoE-236B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Chat",
|
||||
},
|
||||
},
|
||||
template="deepseek",
|
||||
)
|
||||
@@ -298,6 +429,9 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "tiiuae/falcon-7b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b",
|
||||
},
|
||||
"Falcon-11B": {
|
||||
DownloadSource.DEFAULT: "tiiuae/falcon-11B",
|
||||
},
|
||||
"Falcon-40B": {
|
||||
DownloadSource.DEFAULT: "tiiuae/falcon-40b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b",
|
||||
@@ -319,7 +453,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "modelscope/falcon-180B-chat",
|
||||
},
|
||||
},
|
||||
module="query_key_value",
|
||||
template="falcon",
|
||||
)
|
||||
|
||||
@@ -342,11 +475,36 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "google/gemma-7b-it",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b-it",
|
||||
},
|
||||
"Gemma-1.1-2B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/gemma-1.1-2b-it",
|
||||
},
|
||||
"Gemma-1.1-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/gemma-1.1-7b-it",
|
||||
},
|
||||
},
|
||||
template="gemma",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"GLM-4-9B": {
|
||||
DownloadSource.DEFAULT: "THUDM/glm-4-9b",
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b",
|
||||
},
|
||||
"GLM-4-9B-Chat": {
|
||||
DownloadSource.DEFAULT: "THUDM/glm-4-9b-chat",
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b-chat",
|
||||
},
|
||||
"GLM-4-9B-1M-Chat": {
|
||||
DownloadSource.DEFAULT: "THUDM/glm-4-9b-chat-1m",
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b-chat-1m",
|
||||
},
|
||||
},
|
||||
template="glm4",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"InternLM-7B": {
|
||||
@@ -389,11 +547,20 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-20b",
|
||||
},
|
||||
},
|
||||
module="wqkv",
|
||||
template="intern2",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Jambda-v0.1": {
|
||||
DownloadSource.DEFAULT: "ai21labs/Jamba-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Jamba-v0.1",
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LingoWhale-8B": {
|
||||
@@ -401,7 +568,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "DeepLang/LingoWhale-8B",
|
||||
}
|
||||
},
|
||||
module="qkv_proj",
|
||||
)
|
||||
|
||||
|
||||
@@ -460,18 +626,72 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mistral-7B": {
|
||||
"LLaMA3-8B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B",
|
||||
},
|
||||
"LLaMA3-70B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B",
|
||||
},
|
||||
"LLaMA3-8B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B-Instruct",
|
||||
},
|
||||
"LLaMA3-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B-Instruct",
|
||||
},
|
||||
"LLaMA3-8B-Chinese-Chat": {
|
||||
DownloadSource.DEFAULT: "shenzhi-wang/Llama3-8B-Chinese-Chat",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Llama3-8B-Chinese-Chat",
|
||||
},
|
||||
"LLaMA3-70B-Chinese-Chat": {
|
||||
DownloadSource.DEFAULT: "shenzhi-wang/Llama3-70B-Chinese-Chat",
|
||||
},
|
||||
},
|
||||
template="llama3",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA1.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-1.5-7b-hf",
|
||||
},
|
||||
"LLaVA1.5-13B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-1.5-13b-hf",
|
||||
},
|
||||
},
|
||||
template="vicuna",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mistral-7B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.1",
|
||||
},
|
||||
"Mistral-7B-Chat": {
|
||||
"Mistral-7B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1",
|
||||
},
|
||||
"Mistral-7B-v0.2": {
|
||||
DownloadSource.DEFAULT: "alpindale/Mistral-7B-v0.2-hf",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.2-hf",
|
||||
},
|
||||
"Mistral-7B-v0.2-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.2",
|
||||
},
|
||||
"Mistral-7B-v0.3": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.3",
|
||||
},
|
||||
"Mistral-7B-v0.3-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.3",
|
||||
},
|
||||
},
|
||||
template="mistral",
|
||||
)
|
||||
@@ -479,14 +699,22 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mixtral-8x7B": {
|
||||
"Mixtral-8x7B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-v0.1",
|
||||
},
|
||||
"Mixtral-8x7B-Chat": {
|
||||
"Mixtral-8x7B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1",
|
||||
},
|
||||
"Mixtral-8x22B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x22B-v0.1",
|
||||
},
|
||||
"Mixtral-8x22B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-Instruct-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x22B-Instruct-v0.1",
|
||||
},
|
||||
},
|
||||
template="mistral",
|
||||
)
|
||||
@@ -495,18 +723,18 @@ register_model_group(
|
||||
register_model_group(
|
||||
models={
|
||||
"OLMo-1B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-1B",
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-1B-hf",
|
||||
},
|
||||
"OLMo-7B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-7B",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/OLMo-7B",
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-7B-hf",
|
||||
},
|
||||
"OLMo-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-7B-Instruct",
|
||||
DownloadSource.DEFAULT: "ssec-uw/OLMo-7B-Instruct-hf",
|
||||
},
|
||||
"OLMo-1.7-7B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-1.7-7B-hf",
|
||||
},
|
||||
},
|
||||
module="att_proj",
|
||||
template="olmo",
|
||||
)
|
||||
|
||||
|
||||
@@ -514,13 +742,23 @@ register_model_group(
|
||||
models={
|
||||
"OpenChat3.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "openchat/openchat-3.5-0106",
|
||||
DownloadSource.MODELSCOPE: "myxiongmodel/openchat_3.5",
|
||||
DownloadSource.MODELSCOPE: "xcwzxcwz/openchat-3.5-0106",
|
||||
}
|
||||
},
|
||||
template="openchat",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"OpenChat3.6-8B-Chat": {
|
||||
DownloadSource.DEFAULT: "openchat/openchat-3.6-8b-20240522",
|
||||
}
|
||||
},
|
||||
template="openchat-3.6",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Orion-14B-Base": {
|
||||
@@ -548,6 +786,33 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"PaliGemma-3B-pt-224": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-pt-224",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-pt-224",
|
||||
},
|
||||
"PaliGemma-3B-pt-448": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-pt-448",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-pt-448",
|
||||
},
|
||||
"PaliGemma-3B-pt-896": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-pt-896",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-pt-896",
|
||||
},
|
||||
"PaliGemma-3B-mix-224": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-mix-224",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-mix-224",
|
||||
},
|
||||
"PaliGemma-3B-mix-448": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-mix-448",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-mix-448",
|
||||
},
|
||||
},
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Phi-1.5-1.3B": {
|
||||
@@ -562,6 +827,37 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Phi3-4B-4k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-4k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-4k-instruct",
|
||||
},
|
||||
"Phi3-4B-128k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-128k-instruct",
|
||||
},
|
||||
"Phi3-7B-8k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-small-8k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-small-8k-instruct",
|
||||
},
|
||||
"Phi3-7B-128k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-small-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-small-128k-instruct",
|
||||
},
|
||||
"Phi3-14B-8k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-medium-4k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-medium-4k-instruct",
|
||||
},
|
||||
"Phi3-14B-128k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-medium-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-medium-128k-instruct",
|
||||
},
|
||||
},
|
||||
template="phi",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen-1.8B": {
|
||||
@@ -629,7 +925,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int4",
|
||||
},
|
||||
},
|
||||
module="c_attn",
|
||||
template="qwen",
|
||||
)
|
||||
|
||||
@@ -656,10 +951,26 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B",
|
||||
},
|
||||
"Qwen1.5-32B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B",
|
||||
},
|
||||
"Qwen1.5-72B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B",
|
||||
},
|
||||
"Qwen1.5-110B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B",
|
||||
},
|
||||
"Qwen1.5-Code-7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B",
|
||||
},
|
||||
"Qwen1.5-0.5B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat",
|
||||
@@ -680,10 +991,26 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat",
|
||||
},
|
||||
"Qwen1.5-32B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat",
|
||||
},
|
||||
"Qwen1.5-72B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat",
|
||||
},
|
||||
"Qwen1.5-110B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat",
|
||||
},
|
||||
"Qwen1.5-Code-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat",
|
||||
},
|
||||
"Qwen1.5-0.5B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
|
||||
@@ -724,6 +1051,10 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-32B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-72B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
|
||||
@@ -732,6 +1063,101 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-110B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"Qwen1.5-Code-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat-AWQ",
|
||||
},
|
||||
},
|
||||
template="qwen",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen2-0.5B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-0.5B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-0.5B",
|
||||
},
|
||||
"Qwen2-1.5B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-1.5B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-1.5B",
|
||||
},
|
||||
"Qwen2-7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-7B",
|
||||
},
|
||||
"Qwen2-72B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-72B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-72B",
|
||||
},
|
||||
"Qwen2-MoE-57B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-57B-A14B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-57B-A14B",
|
||||
},
|
||||
"Qwen2-0.5B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-0.5B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-0.5B-Instruct",
|
||||
},
|
||||
"Qwen2-1.5B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-1.5B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-1.5B-Instruct",
|
||||
},
|
||||
"Qwen2-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-7B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-7B-Instruct",
|
||||
},
|
||||
"Qwen2-72B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-72B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-72B-Instruct",
|
||||
},
|
||||
"Qwen2-MoE-57B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-57B-A14B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-57B-A14B-Instruct",
|
||||
},
|
||||
"Qwen2-0.5B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-0.5B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-0.5B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2-0.5B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-0.5B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-0.5B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2-1.5B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-1.5B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-1.5B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2-1.5B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-1.5B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-1.5B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2-7B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-7B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-7B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-7B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-7B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2-72B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-72B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-72B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2-72B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-72B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-72B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2-MoE-57B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-57B-A14B-Instruct-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-57B-A14B-Instruct-GPTQ-Int4",
|
||||
},
|
||||
},
|
||||
template="qwen",
|
||||
)
|
||||
@@ -765,17 +1191,39 @@ register_model_group(
|
||||
models={
|
||||
"StarCoder2-3B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-3b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-3b",
|
||||
},
|
||||
"StarCoder2-7B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-7b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-7b",
|
||||
},
|
||||
"StarCoder2-15B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-15b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-15b",
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"TeleChat-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Tele-AI/telechat-7B",
|
||||
DownloadSource.MODELSCOPE: "TeleAI/telechat-7B",
|
||||
},
|
||||
"TeleChat-12B-Chat": {
|
||||
DownloadSource.DEFAULT: "Tele-AI/TeleChat-12B",
|
||||
DownloadSource.MODELSCOPE: "TeleAI/TeleChat-12B",
|
||||
},
|
||||
"TeleChat-12B-v2-Chat": {
|
||||
DownloadSource.DEFAULT: "Tele-AI/TeleChat-12B-v2",
|
||||
DownloadSource.MODELSCOPE: "TeleAI/TeleChat-12B-v2",
|
||||
},
|
||||
},
|
||||
template="telechat",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Vicuna1.5-7B-Chat": {
|
||||
@@ -793,17 +1241,53 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"XuanYuan-6B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B",
|
||||
},
|
||||
"XuanYuan-70B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B",
|
||||
},
|
||||
"XuanYuan-2-70B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B",
|
||||
},
|
||||
"XuanYuan-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat",
|
||||
},
|
||||
"XuanYuan-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat",
|
||||
},
|
||||
"XuanYuan-2-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat",
|
||||
},
|
||||
"XuanYuan-6B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-6B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
|
||||
},
|
||||
"XuanYuan-70B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-70B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
|
||||
},
|
||||
"XuanYuan-2-70B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-2-70B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
|
||||
},
|
||||
},
|
||||
template="xuanyuan",
|
||||
@@ -840,6 +1324,30 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat",
|
||||
},
|
||||
"XVERSE-MoE-A4.2B": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-MoE-A4.2B",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-MoE-A4.2B",
|
||||
},
|
||||
"XVERSE-7B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"XVERSE-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"XVERSE-13B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"XVERSE-13B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"XVERSE-65B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat-GPTQ-Int4",
|
||||
},
|
||||
},
|
||||
template="xverse",
|
||||
)
|
||||
@@ -898,11 +1406,49 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-4bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-4bits",
|
||||
},
|
||||
"Yi-1.5-6B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-6B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-6B",
|
||||
},
|
||||
"Yi-1.5-9B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-9B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-9B",
|
||||
},
|
||||
"Yi-1.5-34B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-34B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-34B",
|
||||
},
|
||||
"Yi-1.5-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-6B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-6B-Chat",
|
||||
},
|
||||
"Yi-1.5-9B-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-9B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-9B-Chat",
|
||||
},
|
||||
"Yi-1.5-34B-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-34B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-34B-Chat",
|
||||
},
|
||||
},
|
||||
template="yi",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"YiVL-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-6B-hf",
|
||||
},
|
||||
"YiVL-34B-Chat": {
|
||||
DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-34B-hf",
|
||||
},
|
||||
},
|
||||
template="yi_vl",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Yuan2-2B-Chat": {
|
||||
@@ -932,21 +1478,9 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-beta",
|
||||
DownloadSource.MODELSCOPE: "modelscope/zephyr-7b-beta",
|
||||
},
|
||||
"Zephyr-141B-ORPO-Chat": {
|
||||
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
|
||||
},
|
||||
},
|
||||
template="zephyr",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Atom-7B": {
|
||||
DownloadSource.DEFAULT: "FlagAlpha/Atom-7B",
|
||||
DownloadSource.MODELSCOPE: "FlagAlpha/Atom-7B",
|
||||
},
|
||||
"Atom-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "FlagAlpha/Atom-7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "FlagAlpha/Atom-7B-Chat",
|
||||
},
|
||||
},
|
||||
template="atom",
|
||||
)
|
||||
@@ -0,0 +1,55 @@
|
||||
import platform
|
||||
|
||||
import accelerate
|
||||
import datasets
|
||||
import peft
|
||||
import torch
|
||||
import transformers
|
||||
import trl
|
||||
from transformers.integrations import is_deepspeed_available
|
||||
from transformers.utils import is_bitsandbytes_available, is_torch_cuda_available, is_torch_npu_available
|
||||
|
||||
from .packages import is_vllm_available
|
||||
|
||||
|
||||
VERSION = "0.8.0"
|
||||
|
||||
|
||||
def print_env() -> None:
|
||||
info = {
|
||||
"`llamafactory` version": VERSION,
|
||||
"Platform": platform.platform(),
|
||||
"Python version": platform.python_version(),
|
||||
"PyTorch version": torch.__version__,
|
||||
"Transformers version": transformers.__version__,
|
||||
"Datasets version": datasets.__version__,
|
||||
"Accelerate version": accelerate.__version__,
|
||||
"PEFT version": peft.__version__,
|
||||
"TRL version": trl.__version__,
|
||||
}
|
||||
|
||||
if is_torch_cuda_available():
|
||||
info["PyTorch version"] += " (GPU)"
|
||||
info["GPU type"] = torch.cuda.get_device_name()
|
||||
|
||||
if is_torch_npu_available():
|
||||
info["PyTorch version"] += " (NPU)"
|
||||
info["NPU type"] = torch.npu.get_device_name()
|
||||
info["CANN version"] = torch.version.cann
|
||||
|
||||
if is_deepspeed_available():
|
||||
import deepspeed # type: ignore
|
||||
|
||||
info["DeepSpeed version"] = deepspeed.__version__
|
||||
|
||||
if is_bitsandbytes_available():
|
||||
import bitsandbytes
|
||||
|
||||
info["Bitsandbytes version"] = bitsandbytes.__version__
|
||||
|
||||
if is_vllm_available():
|
||||
import vllm
|
||||
|
||||
info["vLLM version"] = vllm.__version__
|
||||
|
||||
print("\n" + "\n".join(["- {}: {}".format(key, value) for key, value in info.items()]) + "\n")
|
||||
@@ -0,0 +1,68 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
from .constants import RUNNING_LOG
|
||||
|
||||
|
||||
class LoggerHandler(logging.Handler):
|
||||
r"""
|
||||
Logger handler used in Web UI.
|
||||
"""
|
||||
|
||||
def __init__(self, output_dir: str) -> None:
|
||||
super().__init__()
|
||||
formatter = logging.Formatter(
|
||||
fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
|
||||
)
|
||||
self.setLevel(logging.INFO)
|
||||
self.setFormatter(formatter)
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
self.running_log = os.path.join(output_dir, RUNNING_LOG)
|
||||
if os.path.exists(self.running_log):
|
||||
os.remove(self.running_log)
|
||||
|
||||
self.thread_pool = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
def _write_log(self, log_entry: str) -> None:
|
||||
with open(self.running_log, "a", encoding="utf-8") as f:
|
||||
f.write(log_entry + "\n\n")
|
||||
|
||||
def emit(self, record) -> None:
|
||||
if record.name == "httpx":
|
||||
return
|
||||
|
||||
log_entry = self.format(record)
|
||||
self.thread_pool.submit(self._write_log, log_entry)
|
||||
|
||||
def close(self) -> None:
|
||||
self.thread_pool.shutdown(wait=True)
|
||||
return super().close()
|
||||
|
||||
|
||||
def get_logger(name: str) -> logging.Logger:
|
||||
r"""
|
||||
Gets a standard logger with a stream hander to stdout.
|
||||
"""
|
||||
formatter = logging.Formatter(
|
||||
fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
|
||||
)
|
||||
handler = logging.StreamHandler(sys.stdout)
|
||||
handler.setFormatter(formatter)
|
||||
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(logging.INFO)
|
||||
logger.addHandler(handler)
|
||||
|
||||
return logger
|
||||
|
||||
|
||||
def reset_logging() -> None:
|
||||
r"""
|
||||
Removes basic config of root logger. (unused in script)
|
||||
"""
|
||||
root = logging.getLogger()
|
||||
list(map(root.removeHandler, root.handlers))
|
||||
list(map(root.removeFilter, root.filters))
|
||||
@@ -30,7 +30,7 @@ except Exception:
|
||||
if TYPE_CHECKING:
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from llmtuner.hparams import ModelArguments
|
||||
from ..hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -58,14 +58,14 @@ class AverageMeter:
|
||||
|
||||
|
||||
def check_dependencies() -> None:
|
||||
if int(os.environ.get("DISABLE_VERSION_CHECK", "0")):
|
||||
if os.environ.get("DISABLE_VERSION_CHECK", "0").lower() in ["true", "1"]:
|
||||
logger.warning("Version checking has been disabled, may lead to unexpected behaviors.")
|
||||
else:
|
||||
require_version("transformers>=4.37.2", "To fix: pip install transformers>=4.37.2")
|
||||
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
|
||||
require_version("accelerate>=0.27.2", "To fix: pip install accelerate>=0.27.2")
|
||||
require_version("peft>=0.9.0", "To fix: pip install peft>=0.9.0")
|
||||
require_version("trl>=0.7.11", "To fix: pip install trl>=0.7.11")
|
||||
require_version("transformers>=4.41.2", "To fix: pip install transformers>=4.41.2")
|
||||
require_version("datasets>=2.16.0", "To fix: pip install datasets>=2.16.0")
|
||||
require_version("accelerate>=0.30.1", "To fix: pip install accelerate>=0.30.1")
|
||||
require_version("peft>=0.11.1", "To fix: pip install peft>=0.11.1")
|
||||
require_version("trl>=0.8.6", "To fix: pip install trl>=0.8.6")
|
||||
|
||||
|
||||
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
@@ -81,7 +81,14 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
|
||||
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2
|
||||
if param.__class__.__name__ == "Params4bit":
|
||||
num_params = num_params * 2
|
||||
if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"):
|
||||
num_bytes = param.quant_storage.itemsize
|
||||
elif hasattr(param, "element_size"): # for older pytorch version
|
||||
num_bytes = param.element_size()
|
||||
else:
|
||||
num_bytes = 1
|
||||
|
||||
num_params = num_params * 2 * num_bytes
|
||||
|
||||
all_param += num_params
|
||||
if param.requires_grad:
|
||||
@@ -158,13 +165,15 @@ def get_current_device() -> torch.device:
|
||||
|
||||
def get_device_count() -> int:
|
||||
r"""
|
||||
Gets the number of available GPU devices.
|
||||
Gets the number of available GPU or NPU devices.
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
if is_torch_npu_available():
|
||||
return torch.npu.device_count()
|
||||
elif is_torch_cuda_available():
|
||||
return torch.cuda.device_count()
|
||||
else:
|
||||
return 0
|
||||
|
||||
return torch.cuda.device_count()
|
||||
|
||||
|
||||
def get_logits_processor() -> "LogitsProcessorList":
|
||||
r"""
|
||||
@@ -187,30 +196,47 @@ def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
|
||||
return torch.float32
|
||||
|
||||
|
||||
def is_gpu_or_npu_available() -> bool:
|
||||
r"""
|
||||
Checks if the GPU or NPU is available.
|
||||
"""
|
||||
return is_torch_npu_available() or is_torch_cuda_available()
|
||||
|
||||
|
||||
def has_tokenized_data(path: os.PathLike) -> bool:
|
||||
r"""
|
||||
Checks if the path has a tokenized dataset.
|
||||
"""
|
||||
return os.path.isdir(path) and len(os.listdir(path)) > 0
|
||||
|
||||
|
||||
def torch_gc() -> None:
|
||||
r"""
|
||||
Collects GPU memory.
|
||||
Collects GPU or NPU memory.
|
||||
"""
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
if is_torch_xpu_available():
|
||||
torch.xpu.empty_cache()
|
||||
elif is_torch_npu_available():
|
||||
torch.npu.empty_cache()
|
||||
elif is_torch_mps_available():
|
||||
torch.mps.empty_cache()
|
||||
elif is_torch_cuda_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
def try_download_model_from_ms(model_args: "ModelArguments") -> None:
|
||||
def try_download_model_from_ms(model_args: "ModelArguments") -> str:
|
||||
if not use_modelscope() or os.path.exists(model_args.model_name_or_path):
|
||||
return
|
||||
return model_args.model_name_or_path
|
||||
|
||||
try:
|
||||
from modelscope import snapshot_download
|
||||
|
||||
revision = "master" if model_args.model_revision == "main" else model_args.model_revision
|
||||
model_args.model_name_or_path = snapshot_download(
|
||||
model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir
|
||||
)
|
||||
return snapshot_download(model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir)
|
||||
except ImportError:
|
||||
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
||||
|
||||
|
||||
def use_modelscope() -> bool:
|
||||
return bool(int(os.environ.get("USE_MODELSCOPE_HUB", "0")))
|
||||
return os.environ.get("USE_MODELSCOPE_HUB", "0").lower() in ["true", "1"]
|
||||
@@ -1,30 +1,41 @@
|
||||
import importlib.metadata
|
||||
import importlib.util
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from packaging.version import Version
|
||||
|
||||
|
||||
def _is_package_available(name: str) -> bool:
|
||||
return importlib.util.find_spec(name) is not None
|
||||
|
||||
|
||||
def _get_package_version(name: str) -> str:
|
||||
def _get_package_version(name: str) -> "Version":
|
||||
try:
|
||||
return importlib.metadata.version(name)
|
||||
return version.parse(importlib.metadata.version(name))
|
||||
except Exception:
|
||||
return "0.0.0"
|
||||
return version.parse("0.0.0")
|
||||
|
||||
|
||||
def is_fastapi_availble():
|
||||
def is_fastapi_available():
|
||||
return _is_package_available("fastapi")
|
||||
|
||||
|
||||
def is_flash_attn2_available():
|
||||
return _is_package_available("flash_attn") and _get_package_version("flash_attn").startswith("2")
|
||||
return _is_package_available("flash_attn") and _get_package_version("flash_attn") > version.parse("2.0.0")
|
||||
|
||||
|
||||
def is_galore_available():
|
||||
return _is_package_available("galore_torch")
|
||||
|
||||
|
||||
def is_gradio_available():
|
||||
return _is_package_available("gradio")
|
||||
|
||||
|
||||
def is_jieba_available():
|
||||
return _is_package_available("jieba")
|
||||
|
||||
@@ -37,6 +48,10 @@ def is_nltk_available():
|
||||
return _is_package_available("nltk")
|
||||
|
||||
|
||||
def is_pillow_available():
|
||||
return _is_package_available("PIL")
|
||||
|
||||
|
||||
def is_requests_available():
|
||||
return _is_package_available("requests")
|
||||
|
||||
@@ -45,14 +60,14 @@ def is_rouge_available():
|
||||
return _is_package_available("rouge_chinese")
|
||||
|
||||
|
||||
def is_sdpa_available():
|
||||
return _get_package_version("torch") > version.parse("2.1.1")
|
||||
|
||||
|
||||
def is_starlette_available():
|
||||
return _is_package_available("sse_starlette")
|
||||
|
||||
|
||||
def is_unsloth_available():
|
||||
return _is_package_available("unsloth")
|
||||
|
||||
|
||||
def is_uvicorn_available():
|
||||
return _is_package_available("uvicorn")
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
from typing import List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from transformers.trainer import TRAINER_STATE_NAME
|
||||
|
||||
@@ -10,6 +10,7 @@ from .packages import is_matplotlib_available
|
||||
|
||||
|
||||
if is_matplotlib_available():
|
||||
import matplotlib.figure
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
@@ -20,8 +21,11 @@ def smooth(scalars: List[float]) -> List[float]:
|
||||
r"""
|
||||
EMA implementation according to TensorBoard.
|
||||
"""
|
||||
if len(scalars) == 0:
|
||||
return []
|
||||
|
||||
last = scalars[0]
|
||||
smoothed = list()
|
||||
smoothed = []
|
||||
weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function
|
||||
for next_val in scalars:
|
||||
smoothed_val = last * weight + (1 - weight) * next_val
|
||||
@@ -30,7 +34,33 @@ def smooth(scalars: List[float]) -> List[float]:
|
||||
return smoothed
|
||||
|
||||
|
||||
def gen_loss_plot(trainer_log: List[Dict[str, Any]]) -> "matplotlib.figure.Figure":
|
||||
r"""
|
||||
Plots loss curves in LlamaBoard.
|
||||
"""
|
||||
plt.close("all")
|
||||
plt.switch_backend("agg")
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
steps, losses = [], []
|
||||
for log in trainer_log:
|
||||
if log.get("loss", None):
|
||||
steps.append(log["current_steps"])
|
||||
losses.append(log["loss"])
|
||||
|
||||
ax.plot(steps, losses, color="#1f77b4", alpha=0.4, label="original")
|
||||
ax.plot(steps, smooth(losses), color="#1f77b4", label="smoothed")
|
||||
ax.legend()
|
||||
ax.set_xlabel("step")
|
||||
ax.set_ylabel("loss")
|
||||
return fig
|
||||
|
||||
|
||||
def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None:
|
||||
r"""
|
||||
Plots loss curves and saves the image.
|
||||
"""
|
||||
plt.switch_backend("agg")
|
||||
with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
|
||||
data = json.load(f)
|
||||
|
||||
@@ -52,6 +82,6 @@ def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None:
|
||||
plt.xlabel("step")
|
||||
plt.ylabel(key)
|
||||
plt.legend()
|
||||
figure_path = os.path.join(save_dictionary, "training_{}.png".format(key.replace(os.path.sep, "_")))
|
||||
figure_path = os.path.join(save_dictionary, "training_{}.png".format(key.replace("/", "_")))
|
||||
plt.savefig(figure_path, format="png", dpi=100)
|
||||
print("Figure saved at:", figure_path)
|
||||
@@ -26,11 +26,11 @@ class DataArguments:
|
||||
)
|
||||
cutoff_len: int = field(
|
||||
default=1024,
|
||||
metadata={"help": "The cutoff length of the model inputs after tokenization."},
|
||||
metadata={"help": "The cutoff length of the tokenized inputs in the dataset."},
|
||||
)
|
||||
reserved_label_len: int = field(
|
||||
default=1,
|
||||
metadata={"help": "The minimum cutoff length reserved for label after tokenization."},
|
||||
metadata={"help": "The minimum cutoff length reserved for the tokenized labels in the dataset."},
|
||||
)
|
||||
train_on_prompt: bool = field(
|
||||
default=False,
|
||||
@@ -84,9 +84,9 @@ class DataArguments:
|
||||
"help": "Whether or not to pack the sequences in training. Will automatically enable in pre-training."
|
||||
},
|
||||
)
|
||||
cache_path: Optional[str] = field(
|
||||
tokenized_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to save or load the pre-processed datasets."},
|
||||
metadata={"help": "Path to save or load the tokenized datasets."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
@@ -1,5 +1,4 @@
|
||||
import json
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Literal, Optional
|
||||
|
||||
|
||||
@@ -9,22 +8,35 @@ class FreezeArguments:
|
||||
Arguments pertaining to the freeze (partial-parameter) training.
|
||||
"""
|
||||
|
||||
name_module_trainable: str = field(
|
||||
default="all",
|
||||
freeze_trainable_layers: int = field(
|
||||
default=2,
|
||||
metadata={
|
||||
"help": """Name of trainable modules for partial-parameter (freeze) fine-tuning. \
|
||||
Use commas to separate multiple modules. \
|
||||
Use "all" to specify all the available modules. \
|
||||
LLaMA choices: ["mlp", "self_attn"], \
|
||||
BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \
|
||||
Qwen choices: ["mlp", "attn"], \
|
||||
InternLM2 choices: ["feed_forward", "attention"], \
|
||||
Others choices: the same as LLaMA."""
|
||||
"help": (
|
||||
"The number of trainable layers for freeze (partial-parameter) fine-tuning. "
|
||||
"Positive numbers mean the last n layers are set as trainable, "
|
||||
"negative numbers mean the first n layers are set as trainable."
|
||||
)
|
||||
},
|
||||
)
|
||||
num_layer_trainable: int = field(
|
||||
default=2,
|
||||
metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."},
|
||||
freeze_trainable_modules: str = field(
|
||||
default="all",
|
||||
metadata={
|
||||
"help": (
|
||||
"Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. "
|
||||
"Use commas to separate multiple modules. "
|
||||
"Use `all` to specify all the available modules."
|
||||
)
|
||||
},
|
||||
)
|
||||
freeze_extra_modules: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Name(s) of modules apart from hidden layers to be set as trainable "
|
||||
"for freeze (partial-parameter) fine-tuning. "
|
||||
"Use commas to separate multiple modules."
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@@ -37,7 +49,11 @@ class LoraArguments:
|
||||
additional_target: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."
|
||||
"help": (
|
||||
"Name(s) of modules apart from LoRA layers to be set as trainable "
|
||||
"and saved in the final checkpoint. "
|
||||
"Use commas to separate multiple modules."
|
||||
)
|
||||
},
|
||||
)
|
||||
lora_alpha: Optional[int] = field(
|
||||
@@ -55,17 +71,21 @@ class LoraArguments:
|
||||
lora_target: str = field(
|
||||
default="all",
|
||||
metadata={
|
||||
"help": """Name(s) of target modules to apply LoRA. \
|
||||
Use commas to separate multiple modules. \
|
||||
Use "all" to specify all the available modules. \
|
||||
LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \
|
||||
BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \
|
||||
Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \
|
||||
Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \
|
||||
InternLM2 choices: ["wqkv", "wo", "w1", "w2", "w3"], \
|
||||
Others choices: the same as LLaMA."""
|
||||
"help": (
|
||||
"Name(s) of target modules to apply LoRA. "
|
||||
"Use commas to separate multiple modules. "
|
||||
"Use `all` to specify all the linear modules."
|
||||
)
|
||||
},
|
||||
)
|
||||
loraplus_lr_ratio: Optional[float] = field(
|
||||
default=None,
|
||||
metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."},
|
||||
)
|
||||
loraplus_lr_embedding: float = field(
|
||||
default=1e-6,
|
||||
metadata={"help": "LoRA plus learning rate for lora embedding layers."},
|
||||
)
|
||||
use_rslora: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."},
|
||||
@@ -83,20 +103,36 @@ class LoraArguments:
|
||||
@dataclass
|
||||
class RLHFArguments:
|
||||
r"""
|
||||
Arguments pertaining to the PPO and DPO training.
|
||||
Arguments pertaining to the PPO, DPO and KTO training.
|
||||
"""
|
||||
|
||||
dpo_beta: float = field(
|
||||
pref_beta: float = field(
|
||||
default=0.1,
|
||||
metadata={"help": "The beta parameter for the DPO loss."},
|
||||
metadata={"help": "The beta parameter in the preference loss."},
|
||||
)
|
||||
dpo_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair"] = field(
|
||||
pref_ftx: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
|
||||
)
|
||||
pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field(
|
||||
default="sigmoid",
|
||||
metadata={"help": "The type of DPO loss to use."},
|
||||
)
|
||||
dpo_ftx: float = field(
|
||||
dpo_label_smoothing: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
|
||||
metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."},
|
||||
)
|
||||
kto_chosen_weight: float = field(
|
||||
default=1.0,
|
||||
metadata={"help": "The weight factor of the desirable losses in KTO training."},
|
||||
)
|
||||
kto_rejected_weight: float = field(
|
||||
default=1.0,
|
||||
metadata={"help": "The weight factor of the undesirable losses in KTO training."},
|
||||
)
|
||||
simpo_gamma: float = field(
|
||||
default=0.5,
|
||||
metadata={"help": "The target reward margin term in SimPO loss."},
|
||||
)
|
||||
ppo_buffer_size: int = field(
|
||||
default=1,
|
||||
@@ -106,10 +142,6 @@ class RLHFArguments:
|
||||
default=4,
|
||||
metadata={"help": "The number of epochs to perform in a PPO optimization step."},
|
||||
)
|
||||
ppo_logger: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": 'Log with either "wandb" or "tensorboard" in PPO training.'},
|
||||
)
|
||||
ppo_score_norm: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Use score normalization in PPO training."},
|
||||
@@ -160,11 +192,16 @@ class GaloreArguments:
|
||||
|
||||
use_galore: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use gradient low-Rank projection."},
|
||||
metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."},
|
||||
)
|
||||
galore_target: str = field(
|
||||
default="mlp,attn",
|
||||
metadata={"help": "Name(s) of modules to apply GaLore. Use commas to separate multiple modules."},
|
||||
default="all",
|
||||
metadata={
|
||||
"help": (
|
||||
"Name(s) of modules to apply GaLore. Use commas to separate multiple modules. "
|
||||
"Use `all` to specify all the linear modules."
|
||||
)
|
||||
},
|
||||
)
|
||||
galore_rank: int = field(
|
||||
default=16,
|
||||
@@ -189,7 +226,60 @@ class GaloreArguments:
|
||||
|
||||
|
||||
@dataclass
|
||||
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments):
|
||||
class BAdamArgument:
|
||||
r"""
|
||||
Arguments pertaining to the BAdam optimizer.
|
||||
"""
|
||||
|
||||
use_badam: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the BAdam optimizer."},
|
||||
)
|
||||
badam_mode: Literal["layer", "ratio"] = field(
|
||||
default="layer",
|
||||
metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."},
|
||||
)
|
||||
badam_start_block: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The starting block index for layer-wise BAdam."},
|
||||
)
|
||||
badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field(
|
||||
default="ascending",
|
||||
metadata={"help": "the strategy of picking block to update for layer-wise BAdam."},
|
||||
)
|
||||
badam_switch_interval: Optional[int] = field(
|
||||
default=50,
|
||||
metadata={
|
||||
"help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update."
|
||||
},
|
||||
)
|
||||
badam_update_ratio: float = field(
|
||||
default=0.05,
|
||||
metadata={"help": "The ratio of the update for ratio-wise BAdam."},
|
||||
)
|
||||
badam_mask_mode: Literal["adjacent", "scatter"] = field(
|
||||
default="adjacent",
|
||||
metadata={
|
||||
"help": (
|
||||
"The mode of the mask for BAdam optimizer. "
|
||||
"`adjacent` means that the trainable parameters are adjacent to each other, "
|
||||
"`scatter` means that trainable parameters are randomly choosed from the weight."
|
||||
)
|
||||
},
|
||||
)
|
||||
badam_verbose: int = field(
|
||||
default=0,
|
||||
metadata={
|
||||
"help": (
|
||||
"The verbosity level of BAdam optimizer. "
|
||||
"0 for no print, 1 for print the block prefix, 2 for print trainable parameters."
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, BAdamArgument):
|
||||
r"""
|
||||
Arguments pertaining to which techniques we are going to fine-tuning with.
|
||||
"""
|
||||
@@ -198,7 +288,7 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
|
||||
)
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "dpo"] = field(
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field(
|
||||
default="sft",
|
||||
metadata={"help": "Which stage will be performed in training."},
|
||||
)
|
||||
@@ -210,6 +300,14 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
|
||||
)
|
||||
freeze_vision_tower: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether ot not to freeze vision tower in MLLM training."},
|
||||
)
|
||||
train_mm_proj_only: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to train the multimodal projector for MLLM only."},
|
||||
)
|
||||
plot_loss: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to save the training loss curves."},
|
||||
@@ -221,37 +319,40 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
||||
return [item.strip() for item in arg.split(",")]
|
||||
return arg
|
||||
|
||||
self.name_module_trainable = split_arg(self.name_module_trainable)
|
||||
self.freeze_trainable_modules = split_arg(self.freeze_trainable_modules)
|
||||
self.freeze_extra_modules = split_arg(self.freeze_extra_modules)
|
||||
self.lora_alpha = self.lora_alpha or self.lora_rank * 2
|
||||
self.lora_target = split_arg(self.lora_target)
|
||||
self.additional_target = split_arg(self.additional_target)
|
||||
self.galore_target = split_arg(self.galore_target)
|
||||
self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
|
||||
|
||||
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
|
||||
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
|
||||
self.use_ref_model = self.pref_loss not in ["orpo", "simpo"]
|
||||
|
||||
if self.stage == "ppo" and self.reward_model is None:
|
||||
raise ValueError("`reward_model` is necessary for PPO training.")
|
||||
|
||||
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
|
||||
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")
|
||||
|
||||
if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
|
||||
raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")
|
||||
|
||||
if self.use_llama_pro and self.finetuning_type == "full":
|
||||
raise ValueError("`use_llama_pro` is only valid for the Freeze or LoRA method.")
|
||||
raise ValueError("`use_llama_pro` is only valid for Freeze or LoRA training.")
|
||||
|
||||
if self.use_galore and self.finetuning_type == "lora":
|
||||
raise ValueError("Cannot use LoRA with GaLore together.")
|
||||
if self.finetuning_type == "lora" and (self.use_galore or self.use_badam):
|
||||
raise ValueError("Cannot use LoRA with GaLore or BAdam together.")
|
||||
|
||||
def save_to_json(self, json_path: str):
|
||||
r"""Saves the content of this instance in JSON format inside `json_path`."""
|
||||
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"
|
||||
with open(json_path, "w", encoding="utf-8") as f:
|
||||
f.write(json_string)
|
||||
if self.use_galore and self.use_badam:
|
||||
raise ValueError("Cannot use GaLore with BAdam together.")
|
||||
|
||||
@classmethod
|
||||
def load_from_json(cls, json_path: str):
|
||||
r"""Creates an instance from the content of `json_path`."""
|
||||
with open(json_path, "r", encoding="utf-8") as f:
|
||||
text = f.read()
|
||||
if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora":
|
||||
raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.")
|
||||
|
||||
return cls(**json.loads(text))
|
||||
if self.train_mm_proj_only and self.finetuning_type != "full":
|
||||
raise ValueError("`train_mm_proj_only` is only valid for full training.")
|
||||
@@ -1,5 +1,5 @@
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from typing import Any, Dict
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -31,11 +31,11 @@ class GeneratingArguments:
|
||||
metadata={"help": "Number of beams for beam search. 1 means no beam search."},
|
||||
)
|
||||
max_length: int = field(
|
||||
default=512,
|
||||
default=1024,
|
||||
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."},
|
||||
)
|
||||
max_new_tokens: int = field(
|
||||
default=512,
|
||||
default=1024,
|
||||
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."},
|
||||
)
|
||||
repetition_penalty: float = field(
|
||||
@@ -46,6 +46,10 @@ class GeneratingArguments:
|
||||
default=1.0,
|
||||
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."},
|
||||
)
|
||||
default_system: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Default system message to use in chat completion."},
|
||||
)
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
args = asdict(self)
|
||||
@@ -15,14 +15,19 @@ class ModelArguments:
|
||||
)
|
||||
adapter_name_or_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."},
|
||||
metadata={
|
||||
"help": (
|
||||
"Path to the adapter weight or identifier from huggingface.co/models. "
|
||||
"Use commas to separate multiple adapters."
|
||||
)
|
||||
},
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
|
||||
)
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=False,
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
|
||||
)
|
||||
resize_vocab: bool = field(
|
||||
@@ -33,6 +38,10 @@ class ModelArguments:
|
||||
default=False,
|
||||
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
|
||||
)
|
||||
new_special_tokens: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
@@ -53,22 +62,38 @@ class ModelArguments:
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use double quantization in int4 training."},
|
||||
)
|
||||
quantization_device_map: Optional[Literal["auto"]] = field(
|
||||
default=None,
|
||||
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
|
||||
)
|
||||
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
|
||||
default=None,
|
||||
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
|
||||
)
|
||||
flash_attn: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable FlashAttention-2 for faster training."},
|
||||
flash_attn: Literal["off", "sdpa", "fa2", "auto"] = field(
|
||||
default="auto",
|
||||
metadata={"help": "Enable FlashAttention for faster training and inference."},
|
||||
)
|
||||
shift_attn: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
|
||||
)
|
||||
mixture_of_depths: Optional[Literal["convert", "load"]] = field(
|
||||
default=None,
|
||||
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
|
||||
)
|
||||
use_unsloth: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
|
||||
)
|
||||
visual_inputs: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whethor or not to use multimodal LLM that accepts visual inputs."},
|
||||
)
|
||||
moe_aux_loss_coef: Optional[float] = field(
|
||||
default=None,
|
||||
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
|
||||
)
|
||||
disable_gradient_checkpointing: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to disable gradient checkpointing."},
|
||||
@@ -81,13 +106,17 @@ class ModelArguments:
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
|
||||
)
|
||||
train_from_scratch: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to randomly initialize the model weights."},
|
||||
)
|
||||
infer_backend: Literal["huggingface", "vllm"] = field(
|
||||
default="huggingface",
|
||||
metadata={"help": "Backend engine used at inference."},
|
||||
)
|
||||
vllm_maxlen: int = field(
|
||||
default=2048,
|
||||
metadata={"help": "Maximum input length of the vLLM engine."},
|
||||
metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
|
||||
)
|
||||
vllm_gpu_util: float = field(
|
||||
default=0.9,
|
||||
@@ -97,6 +126,14 @@ class ModelArguments:
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
|
||||
)
|
||||
vllm_max_lora_rank: int = field(
|
||||
default=8,
|
||||
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
|
||||
)
|
||||
vllm_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
|
||||
default="auto",
|
||||
metadata={"help": "Data type for model weights and activations in the vLLM engine."},
|
||||
)
|
||||
offload_folder: str = field(
|
||||
default="offload",
|
||||
metadata={"help": "Path to offload model weights."},
|
||||
@@ -121,6 +158,10 @@ class ModelArguments:
|
||||
default=1,
|
||||
metadata={"help": "The file shard size (in GB) of the exported model."},
|
||||
)
|
||||
export_device: Literal["cpu", "auto"] = field(
|
||||
default="cpu",
|
||||
metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
|
||||
)
|
||||
export_quantization_bit: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the exported model."},
|
||||
@@ -158,9 +199,15 @@ class ModelArguments:
|
||||
if self.split_special_tokens and self.use_fast_tokenizer:
|
||||
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
|
||||
|
||||
if self.visual_inputs and self.use_unsloth:
|
||||
raise ValueError("Unsloth does not support MLLM yet. Stay tuned.")
|
||||
|
||||
if self.adapter_name_or_path is not None: # support merging multiple lora weights
|
||||
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
|
||||
|
||||
if self.new_special_tokens is not None: # support multiple special tokens
|
||||
self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]
|
||||
|
||||
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization."
|
||||
|
||||
@@ -6,13 +6,14 @@ from typing import Any, Dict, Optional, Tuple
|
||||
import torch
|
||||
import transformers
|
||||
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
from transformers.utils import is_torch_bf16_gpu_available
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
from ..extras.constants import CHECKPOINT_NAMES
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import check_dependencies
|
||||
from ..extras.packages import is_unsloth_available
|
||||
from ..extras.misc import check_dependencies, get_current_device
|
||||
from .data_args import DataArguments
|
||||
from .evaluation_args import EvaluationArguments
|
||||
from .finetuning_args import FinetuningArguments
|
||||
@@ -64,10 +65,16 @@ def _verify_model_args(model_args: "ModelArguments", finetuning_args: "Finetunin
|
||||
if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Adapter is only valid for the LoRA method.")
|
||||
|
||||
if model_args.use_unsloth and is_deepspeed_zero3_enabled():
|
||||
raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Quantization is only compatible with the LoRA method.")
|
||||
|
||||
if model_args.resize_vocab:
|
||||
raise ValueError("Cannot resize embedding layers of a quantized model.")
|
||||
|
||||
if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter:
|
||||
raise ValueError("Cannot create new adapter upon a quantized model.")
|
||||
|
||||
@@ -75,6 +82,35 @@ def _verify_model_args(model_args: "ModelArguments", finetuning_args: "Finetunin
|
||||
raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
|
||||
|
||||
|
||||
def _check_extra_dependencies(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
training_args: Optional["Seq2SeqTrainingArguments"] = None,
|
||||
) -> None:
|
||||
if model_args.use_unsloth:
|
||||
require_version("unsloth", "Please install unsloth: https://github.com/unslothai/unsloth")
|
||||
|
||||
if model_args.mixture_of_depths is not None:
|
||||
require_version("mixture-of-depth>=1.1.6", "To fix: pip install mixture-of-depth>=1.1.6")
|
||||
|
||||
if model_args.infer_backend == "vllm":
|
||||
require_version("vllm>=0.4.3", "To fix: pip install vllm>=0.4.3")
|
||||
|
||||
if finetuning_args.use_galore:
|
||||
require_version("galore_torch", "To fix: pip install galore_torch")
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
require_version("badam", "To fix: pip install badam")
|
||||
|
||||
if finetuning_args.plot_loss:
|
||||
require_version("matplotlib", "To fix: pip install matplotlib")
|
||||
|
||||
if training_args is not None and training_args.predict_with_generate:
|
||||
require_version("jieba", "To fix: pip install jieba")
|
||||
require_version("nltk", "To fix: pip install nltk")
|
||||
require_version("rouge_chinese", "To fix: pip install rouge-chinese")
|
||||
|
||||
|
||||
def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
parser = HfArgumentParser(_TRAIN_ARGS)
|
||||
return _parse_args(parser, args)
|
||||
@@ -119,21 +155,24 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
if finetuning_args.stage == "ppo" and finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
|
||||
raise ValueError("Unsloth does not support lora reward model.")
|
||||
|
||||
if (
|
||||
finetuning_args.stage == "ppo"
|
||||
and training_args.report_to
|
||||
and training_args.report_to[0] not in ["wandb", "tensorboard"]
|
||||
):
|
||||
raise ValueError("PPO only accepts wandb or tensorboard logger.")
|
||||
|
||||
if training_args.max_steps == -1 and data_args.streaming:
|
||||
raise ValueError("Please specify `max_steps` in streaming mode.")
|
||||
|
||||
if training_args.do_train and training_args.predict_with_generate:
|
||||
raise ValueError("`predict_with_generate` cannot be set as True while training.")
|
||||
|
||||
if training_args.do_train and model_args.use_unsloth and not is_unsloth_available():
|
||||
raise ValueError("Unsloth was not installed: https://github.com/unslothai/unsloth")
|
||||
if training_args.do_train and model_args.quantization_device_map == "auto":
|
||||
raise ValueError("Cannot use device map for quantized models in training.")
|
||||
|
||||
if finetuning_args.use_dora:
|
||||
if model_args.quantization_bit is not None:
|
||||
require_version("peft>=0.9.1.dev0", "To fix: pip install git+https://github.com/huggingface/peft.git")
|
||||
|
||||
if model_args.use_unsloth:
|
||||
raise ValueError("Unsloth does not support DoRA.")
|
||||
if finetuning_args.use_dora and model_args.use_unsloth:
|
||||
raise ValueError("Unsloth does not support DoRA.")
|
||||
|
||||
if finetuning_args.pure_bf16:
|
||||
if not is_torch_bf16_gpu_available():
|
||||
@@ -149,18 +188,33 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
):
|
||||
raise ValueError("Distributed training does not support layer-wise GaLore.")
|
||||
|
||||
if (
|
||||
finetuning_args.use_badam
|
||||
and finetuning_args.badam_mode == "layer"
|
||||
and training_args.parallel_mode.value == "distributed"
|
||||
):
|
||||
raise ValueError("Layer-wise BAdam does not yet support distributed training, use ratio-wise BAdam.")
|
||||
|
||||
if (finetuning_args.use_galore or finetuning_args.use_badam) and training_args.deepspeed is not None:
|
||||
raise ValueError("GaLore and BAdam are incompatible with DeepSpeed yet.")
|
||||
|
||||
if model_args.infer_backend == "vllm":
|
||||
raise ValueError("vLLM backend is only available for API, CLI and Web.")
|
||||
|
||||
if model_args.visual_inputs and data_args.packing:
|
||||
raise ValueError("Cannot use packing in MLLM fine-tuning.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
_check_extra_dependencies(model_args, finetuning_args, training_args)
|
||||
|
||||
if (
|
||||
training_args.do_train
|
||||
and finetuning_args.finetuning_type == "lora"
|
||||
and model_args.quantization_bit is None
|
||||
and model_args.resize_vocab
|
||||
and finetuning_args.additional_target is None
|
||||
):
|
||||
logger.warning("Add token embeddings to `additional_target` to make the added tokens trainable.")
|
||||
logger.warning("Remember to add embedding layers to `additional_target` to make the added tokens trainable.")
|
||||
|
||||
if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
|
||||
logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
|
||||
@@ -202,16 +256,15 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
and can_resume_from_checkpoint
|
||||
):
|
||||
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
||||
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
||||
if last_checkpoint is None and any(
|
||||
os.path.isfile(os.path.join(training_args.output_dir, name)) for name in CHECKPOINT_NAMES
|
||||
):
|
||||
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
|
||||
|
||||
if last_checkpoint is not None:
|
||||
training_args.resume_from_checkpoint = last_checkpoint
|
||||
logger.info(
|
||||
"Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format(
|
||||
training_args.resume_from_checkpoint
|
||||
)
|
||||
)
|
||||
logger.info("Resuming training from {}.".format(training_args.resume_from_checkpoint))
|
||||
logger.info("Change `output_dir` or use `overwrite_output_dir` to avoid.")
|
||||
|
||||
if (
|
||||
finetuning_args.stage in ["rm", "ppo"]
|
||||
@@ -230,10 +283,11 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
elif training_args.fp16:
|
||||
model_args.compute_dtype = torch.float16
|
||||
|
||||
model_args.device_map = {"": get_current_device()}
|
||||
model_args.model_max_length = data_args.cutoff_len
|
||||
data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt"
|
||||
|
||||
# Log on each process the small summary:
|
||||
# Log on each process the small summary
|
||||
logger.info(
|
||||
"Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format(
|
||||
training_args.local_rank,
|
||||
@@ -261,18 +315,25 @@ def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
|
||||
if finetuning_args.stage != "sft":
|
||||
raise ValueError("vLLM engine only supports auto-regressive models.")
|
||||
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
raise ValueError("vLLM engine does not support LoRA adapters. Merge them first.")
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
raise ValueError("vLLM engine does not support quantization.")
|
||||
raise ValueError("vLLM engine does not support bnb quantization (GPTQ and AWQ are supported).")
|
||||
|
||||
if model_args.rope_scaling is not None:
|
||||
raise ValueError("vLLM engine does not support RoPE scaling.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
|
||||
raise ValueError("vLLM only accepts a single adapter. Merge them first.")
|
||||
|
||||
model_args.device_map = "auto"
|
||||
if finetuning_args.stage == "rm" and model_args.visual_inputs:
|
||||
raise ValueError("Reward server does not support MLLM yet. Stay tuned.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
_check_extra_dependencies(model_args, finetuning_args)
|
||||
|
||||
if model_args.export_dir is not None and model_args.export_device == "cpu":
|
||||
model_args.device_map = {"": torch.device("cpu")}
|
||||
else:
|
||||
model_args.device_map = "auto"
|
||||
|
||||
return model_args, data_args, finetuning_args, generating_args
|
||||
|
||||
@@ -289,6 +350,7 @@ def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
|
||||
raise ValueError("vLLM backend is only available for API, CLI and Web.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
_check_extra_dependencies(model_args, finetuning_args)
|
||||
|
||||
model_args.device_map = "auto"
|
||||
|
||||
@@ -0,0 +1,9 @@
|
||||
from llamafactory.train.tuner import run_exp
|
||||
|
||||
|
||||
def launch():
|
||||
run_exp()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
launch()
|
||||
@@ -0,0 +1,12 @@
|
||||
from .loader import load_config, load_model, load_tokenizer
|
||||
from .model_utils.misc import find_all_linear_modules
|
||||
from .model_utils.valuehead import load_valuehead_params
|
||||
|
||||
|
||||
__all__ = [
|
||||
"load_config",
|
||||
"load_model",
|
||||
"load_tokenizer",
|
||||
"find_all_linear_modules",
|
||||
"load_valuehead_params",
|
||||
]
|
||||
@@ -0,0 +1,275 @@
|
||||
import re
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import torch
|
||||
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.modeling_utils import is_fsdp_enabled
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from .model_utils.misc import find_all_linear_modules, find_expanded_modules
|
||||
from .model_utils.quantization import QuantizationMethod
|
||||
from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _setup_full_tuning(
|
||||
model: "PreTrainedModel",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
cast_trainable_params_to_fp32: bool,
|
||||
) -> None:
|
||||
logger.info("Fine-tuning method: Full")
|
||||
forbidden_modules = set()
|
||||
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
|
||||
forbidden_modules.add("vision_tower")
|
||||
|
||||
if model_args.visual_inputs and finetuning_args.train_mm_proj_only:
|
||||
forbidden_modules.add("language_model")
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if not any(forbidden_module in name for forbidden_module in forbidden_modules):
|
||||
if cast_trainable_params_to_fp32:
|
||||
param.data = param.data.to(torch.float32)
|
||||
else:
|
||||
param.requires_grad_(False)
|
||||
|
||||
|
||||
def _setup_freeze_tuning(
|
||||
model: "PreTrainedModel",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
cast_trainable_params_to_fp32: bool,
|
||||
) -> None:
|
||||
logger.info("Fine-tuning method: Freeze")
|
||||
if model_args.visual_inputs:
|
||||
config = model.config.text_config
|
||||
else:
|
||||
config = model.config
|
||||
|
||||
num_layers = (
|
||||
getattr(config, "num_hidden_layers", None)
|
||||
or getattr(config, "num_layers", None)
|
||||
or getattr(config, "n_layer", None)
|
||||
)
|
||||
if not num_layers:
|
||||
raise ValueError("Current model does not support freeze tuning.")
|
||||
|
||||
if finetuning_args.use_llama_pro:
|
||||
if num_layers % finetuning_args.freeze_trainable_layers != 0:
|
||||
raise ValueError(
|
||||
"`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(
|
||||
num_layers, finetuning_args.freeze_trainable_layers
|
||||
)
|
||||
)
|
||||
|
||||
stride = num_layers // finetuning_args.freeze_trainable_layers
|
||||
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
|
||||
elif finetuning_args.freeze_trainable_layers > 0: # fine-tuning the last n layers if num_layer_trainable > 0
|
||||
trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers)
|
||||
else: # fine-tuning the first n layers if num_layer_trainable < 0
|
||||
trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers))
|
||||
|
||||
hidden_modules = set()
|
||||
non_hidden_modules = set()
|
||||
for name, _ in model.named_parameters():
|
||||
if ".0." in name:
|
||||
hidden_modules.add(name.split(".0.")[-1].split(".")[0])
|
||||
elif ".1." in name: # MoD starts from layer 1
|
||||
hidden_modules.add(name.split(".1.")[-1].split(".")[0])
|
||||
|
||||
if re.search(r"\.\d+\.", name) is None:
|
||||
non_hidden_modules.add(name.split(".")[-2])
|
||||
|
||||
trainable_layers = []
|
||||
for module_name in finetuning_args.freeze_trainable_modules:
|
||||
if module_name != "all" and module_name not in hidden_modules:
|
||||
raise ValueError(
|
||||
"Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules))
|
||||
)
|
||||
|
||||
for idx in trainable_layer_ids:
|
||||
trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))
|
||||
|
||||
if finetuning_args.freeze_extra_modules:
|
||||
for module_name in finetuning_args.freeze_extra_modules:
|
||||
if module_name not in non_hidden_modules:
|
||||
raise ValueError(
|
||||
"Module {} is not found, please choose from {}".format(module_name, ", ".join(non_hidden_modules))
|
||||
)
|
||||
|
||||
trainable_layers.append(module_name)
|
||||
|
||||
forbidden_modules = set()
|
||||
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
|
||||
forbidden_modules.add("vision_tower")
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if any(trainable_layer in name for trainable_layer in trainable_layers) and not any(
|
||||
forbidden_module in name for forbidden_module in forbidden_modules
|
||||
):
|
||||
if cast_trainable_params_to_fp32:
|
||||
param.data = param.data.to(torch.float32)
|
||||
else:
|
||||
param.requires_grad_(False)
|
||||
|
||||
logger.info("Set trainable layers: {}".format(",".join(trainable_layers)))
|
||||
|
||||
|
||||
def _setup_lora_tuning(
|
||||
config: "PretrainedConfig",
|
||||
model: "PreTrainedModel",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool,
|
||||
cast_trainable_params_to_fp32: bool,
|
||||
) -> "PeftModel":
|
||||
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
|
||||
adapter_to_resume = None
|
||||
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
is_mergeable = True
|
||||
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
|
||||
is_mergeable = False
|
||||
|
||||
if is_deepspeed_zero3_enabled():
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
|
||||
is_mergeable = False
|
||||
|
||||
if model_args.use_unsloth:
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter."
|
||||
is_mergeable = False
|
||||
|
||||
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
|
||||
adapter_to_merge = model_args.adapter_name_or_path[:-1]
|
||||
adapter_to_resume = model_args.adapter_name_or_path[-1]
|
||||
else:
|
||||
adapter_to_merge = model_args.adapter_name_or_path
|
||||
|
||||
for adapter in adapter_to_merge:
|
||||
model: "LoraModel" = PeftModel.from_pretrained(model, adapter, offload_folder=model_args.offload_folder)
|
||||
model = model.merge_and_unload()
|
||||
|
||||
if len(adapter_to_merge) > 0:
|
||||
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
|
||||
|
||||
if adapter_to_resume is not None: # resume lora training
|
||||
if model_args.use_unsloth:
|
||||
model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable)
|
||||
else:
|
||||
model = PeftModel.from_pretrained(
|
||||
model,
|
||||
adapter_to_resume,
|
||||
is_trainable=is_trainable,
|
||||
offload_folder=model_args.offload_folder,
|
||||
)
|
||||
|
||||
if is_trainable and adapter_to_resume is None: # create new lora weights while training
|
||||
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
|
||||
target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
|
||||
else:
|
||||
target_modules = finetuning_args.lora_target
|
||||
|
||||
if finetuning_args.use_llama_pro:
|
||||
target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers)
|
||||
|
||||
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
|
||||
target_modules = "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
|
||||
|
||||
if (
|
||||
finetuning_args.use_dora
|
||||
and getattr(model, "quantization_method", None) is not None
|
||||
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
|
||||
):
|
||||
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
|
||||
|
||||
if model_args.resize_vocab and finetuning_args.additional_target is None:
|
||||
input_embeddings = model.get_input_embeddings()
|
||||
output_embeddings = model.get_output_embeddings()
|
||||
module_names = set()
|
||||
for name, module in model.named_modules():
|
||||
if module in [input_embeddings, output_embeddings]:
|
||||
module_names.add(name.split(".")[-1])
|
||||
|
||||
finetuning_args.additional_target = module_names
|
||||
logger.warning("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))
|
||||
|
||||
peft_kwargs = {
|
||||
"r": finetuning_args.lora_rank,
|
||||
"target_modules": target_modules,
|
||||
"lora_alpha": finetuning_args.lora_alpha,
|
||||
"lora_dropout": finetuning_args.lora_dropout,
|
||||
"use_rslora": finetuning_args.use_rslora,
|
||||
"modules_to_save": finetuning_args.additional_target,
|
||||
}
|
||||
|
||||
if model_args.use_unsloth:
|
||||
model = get_unsloth_peft_model(model, model_args, peft_kwargs)
|
||||
else:
|
||||
lora_config = LoraConfig(
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=False,
|
||||
use_dora=finetuning_args.use_dora,
|
||||
**peft_kwargs,
|
||||
)
|
||||
model = get_peft_model(model, lora_config)
|
||||
|
||||
if is_trainable and cast_trainable_params_to_fp32:
|
||||
for param in filter(lambda p: p.requires_grad, model.parameters()):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def init_adapter(
|
||||
config: "PretrainedConfig",
|
||||
model: "PreTrainedModel",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool,
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Initializes the adapters.
|
||||
|
||||
Support full-parameter, freeze and LoRA training.
|
||||
|
||||
Note that the trainable parameters must be cast to float32.
|
||||
"""
|
||||
if (not is_trainable) and model_args.adapter_name_or_path is None:
|
||||
logger.info("Adapter is not found at evaluation, load the base model.")
|
||||
return model
|
||||
|
||||
if finetuning_args.finetuning_type != "lora" and getattr(model, "quantization_method", None):
|
||||
raise ValueError("You can only use lora for quantized models.")
|
||||
|
||||
if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or finetuning_args.pure_bf16 or finetuning_args.use_badam:
|
||||
logger.info("ZeRO3/FSDP/PureBF16/BAdam detected, remaining trainable params as their original precision.")
|
||||
cast_trainable_params_to_fp32 = False
|
||||
else:
|
||||
logger.info("Upcasting trainable params to float32.")
|
||||
cast_trainable_params_to_fp32 = True
|
||||
|
||||
if is_trainable and finetuning_args.finetuning_type == "full":
|
||||
_setup_full_tuning(model, model_args, finetuning_args, cast_trainable_params_to_fp32)
|
||||
|
||||
if is_trainable and finetuning_args.finetuning_type == "freeze":
|
||||
_setup_freeze_tuning(model, model_args, finetuning_args, cast_trainable_params_to_fp32)
|
||||
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
model = _setup_lora_tuning(
|
||||
config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
|
||||
)
|
||||
|
||||
return model
|
||||
186
src/AntSK.LLamaFactory/llamafactory/llamafactory/model/loader.py
Normal file
186
src/AntSK.LLamaFactory/llamafactory/llamafactory/model/loader.py
Normal file
@@ -0,0 +1,186 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, TypedDict
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import count_parameters, try_download_model_from_ms
|
||||
from .adapter import init_adapter
|
||||
from .model_utils.misc import register_autoclass
|
||||
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
|
||||
from .model_utils.unsloth import load_unsloth_pretrained_model
|
||||
from .model_utils.valuehead import load_valuehead_params
|
||||
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class TokenizerModule(TypedDict):
|
||||
tokenizer: "PreTrainedTokenizer"
|
||||
processor: Optional["ProcessorMixin"]
|
||||
|
||||
|
||||
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
||||
r"""
|
||||
Gets arguments to load config/tokenizer/model.
|
||||
|
||||
Note: including inplace operation of model_args.
|
||||
"""
|
||||
model_args.model_name_or_path = try_download_model_from_ms(model_args)
|
||||
return {
|
||||
"trust_remote_code": True,
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"token": model_args.hf_hub_token,
|
||||
}
|
||||
|
||||
|
||||
def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
|
||||
r"""
|
||||
Loads pretrained tokenizer.
|
||||
|
||||
Note: including inplace operation of model_args.
|
||||
"""
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
split_special_tokens=model_args.split_special_tokens,
|
||||
padding_side="right",
|
||||
**init_kwargs,
|
||||
)
|
||||
except ValueError: # try the fast one
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
use_fast=True,
|
||||
padding_side="right",
|
||||
**init_kwargs,
|
||||
)
|
||||
|
||||
if model_args.new_special_tokens is not None:
|
||||
num_added_tokens = tokenizer.add_special_tokens(
|
||||
dict(additional_special_tokens=model_args.new_special_tokens),
|
||||
replace_additional_special_tokens=False,
|
||||
)
|
||||
logger.info("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
|
||||
if num_added_tokens > 0 and not model_args.resize_vocab:
|
||||
model_args.resize_vocab = True
|
||||
logger.warning("New tokens have been added, changed `resize_vocab` to True.")
|
||||
|
||||
patch_tokenizer(tokenizer)
|
||||
|
||||
if model_args.visual_inputs:
|
||||
try:
|
||||
processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||
setattr(processor, "tokenizer", tokenizer)
|
||||
except Exception:
|
||||
raise ValueError(
|
||||
"This multimodal LLM is not supported.\n"
|
||||
"Download LLaVA-1.5 models from: https://huggingface.co/llava-hf\n"
|
||||
"Download Yi-VL models from: https://huggingface.co/BUAADreamer"
|
||||
)
|
||||
else:
|
||||
processor = None
|
||||
|
||||
return {"tokenizer": tokenizer, "processor": processor}
|
||||
|
||||
|
||||
def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
|
||||
r"""
|
||||
Loads model config.
|
||||
"""
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||
|
||||
|
||||
def load_model(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Loads pretrained model.
|
||||
"""
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
config = load_config(model_args)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||
|
||||
model = None
|
||||
lazy_load = False
|
||||
if model_args.use_unsloth:
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
lazy_load = True
|
||||
elif is_trainable:
|
||||
model = load_unsloth_pretrained_model(config, model_args)
|
||||
|
||||
if model is None and not lazy_load:
|
||||
init_kwargs["config"] = config
|
||||
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path
|
||||
|
||||
if model_args.mixture_of_depths == "load":
|
||||
model = load_mod_pretrained_model(**init_kwargs)
|
||||
elif model_args.visual_inputs:
|
||||
model = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
|
||||
elif model_args.train_from_scratch:
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
|
||||
|
||||
if model_args.mixture_of_depths == "convert":
|
||||
model = convert_pretrained_model_to_mod(model, config, model_args)
|
||||
|
||||
if not lazy_load:
|
||||
patch_model(model, tokenizer, model_args, is_trainable, add_valuehead)
|
||||
register_autoclass(config, model, tokenizer)
|
||||
|
||||
model = init_adapter(config, model, model_args, finetuning_args, is_trainable)
|
||||
|
||||
if add_valuehead:
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
||||
patch_valuehead_model(model)
|
||||
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
vhead_path = model_args.adapter_name_or_path[-1]
|
||||
else:
|
||||
vhead_path = model_args.model_name_or_path
|
||||
|
||||
vhead_params = load_valuehead_params(vhead_path, model_args)
|
||||
if vhead_params is not None:
|
||||
model.load_state_dict(vhead_params, strict=False)
|
||||
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))
|
||||
|
||||
if not is_trainable:
|
||||
model.requires_grad_(False)
|
||||
model.eval()
|
||||
else:
|
||||
model.train()
|
||||
|
||||
trainable_params, all_param = count_parameters(model)
|
||||
if is_trainable:
|
||||
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
)
|
||||
else:
|
||||
param_stats = "all params: {:d}".format(all_param)
|
||||
|
||||
logger.info(param_stats)
|
||||
|
||||
if model_args.print_param_status:
|
||||
for name, param in model.named_parameters():
|
||||
print(
|
||||
"name: {}, dtype: {}, device: {}, trainable: {}".format(
|
||||
name, param.dtype, param.device, param.requires_grad
|
||||
)
|
||||
)
|
||||
|
||||
return model
|
||||
@@ -0,0 +1,55 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ...extras.packages import is_flash_attn2_available, is_sdpa_available
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def configure_attn_implementation(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
|
||||
if model_args.flash_attn == "auto":
|
||||
return
|
||||
|
||||
elif model_args.flash_attn == "off":
|
||||
requested_attn_implementation = "eager"
|
||||
|
||||
elif model_args.flash_attn == "sdpa":
|
||||
if not is_sdpa_available():
|
||||
logger.warning("torch>=2.1.1 is required for SDPA attention.")
|
||||
return
|
||||
|
||||
requested_attn_implementation = "sdpa"
|
||||
elif model_args.flash_attn == "fa2":
|
||||
if not is_flash_attn2_available():
|
||||
logger.warning("FlashAttention-2 is not installed.")
|
||||
return
|
||||
|
||||
requested_attn_implementation = "flash_attention_2"
|
||||
else:
|
||||
raise NotImplementedError("Unknown attention type: {}".format(model_args.flash_attn))
|
||||
|
||||
if getattr(config, "model_type", None) == "internlm2": # special case for custom models
|
||||
setattr(config, "attn_implementation", requested_attn_implementation)
|
||||
else:
|
||||
setattr(config, "_attn_implementation", requested_attn_implementation)
|
||||
|
||||
|
||||
def print_attn_implementation(config: "PretrainedConfig") -> None:
|
||||
if getattr(config, "model_type", None) == "internlm2": # special case for custom models
|
||||
attn_implementation = getattr(config, "attn_implementation", None)
|
||||
else:
|
||||
attn_implementation = getattr(config, "_attn_implementation", None)
|
||||
|
||||
if attn_implementation == "flash_attention_2":
|
||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||
elif attn_implementation == "sdpa":
|
||||
logger.info("Using torch SDPA for faster training and inference.")
|
||||
else:
|
||||
logger.info("Using vanilla attention implementation.")
|
||||
@@ -0,0 +1,94 @@
|
||||
import inspect
|
||||
from functools import partial
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from ...extras.constants import LAYERNORM_NAMES
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _gradient_checkpointing_enable(
|
||||
self: "PreTrainedModel", gradient_checkpointing_kwargs: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
r"""
|
||||
Activates gradient checkpointing for the current model.
|
||||
|
||||
Modification of the original method to enable gradient checkpointing for block-wise optimizer.
|
||||
"""
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
if not self.supports_gradient_checkpointing:
|
||||
raise ValueError("{} does not support gradient checkpointing.".format(self.__class__.__name__))
|
||||
|
||||
if gradient_checkpointing_kwargs is None:
|
||||
gradient_checkpointing_kwargs = {"use_reentrant": True}
|
||||
|
||||
gradient_checkpointing_func = partial(checkpoint, **gradient_checkpointing_kwargs)
|
||||
|
||||
def custom_gradient_checkpointing_func(func, *args, **kwargs):
|
||||
module: "torch.nn.Module" = func.__self__
|
||||
|
||||
if any(param.requires_grad for param in module.parameters()):
|
||||
for arg in args:
|
||||
if torch.is_tensor(arg) and torch.is_floating_point(arg):
|
||||
arg.requires_grad_(True)
|
||||
|
||||
return gradient_checkpointing_func(func, *args, **kwargs)
|
||||
|
||||
if "value" in inspect.signature(self._set_gradient_checkpointing).parameters: # old GC format
|
||||
self.apply(partial(self._set_gradient_checkpointing, value=True))
|
||||
self.enable_input_require_grads()
|
||||
logger.warning("You are using the old GC format, some features (e.g. BAdam) will be invalid.")
|
||||
else: # have already enabled input require gradients
|
||||
self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=custom_gradient_checkpointing_func)
|
||||
|
||||
|
||||
def _fp32_forward_post_hook(
|
||||
module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
|
||||
) -> "torch.Tensor":
|
||||
return output.to(torch.float32)
|
||||
|
||||
|
||||
def prepare_model_for_training(
|
||||
model: "PreTrainedModel", model_args: "ModelArguments", output_layer_name: str = "lm_head"
|
||||
) -> None:
|
||||
r"""
|
||||
Includes:
|
||||
(1) cast the layernorm in fp32
|
||||
(2) make output embedding layer require grads
|
||||
(3) add the upcasting of the lm_head in fp32
|
||||
Inspired by: https://github.com/huggingface/peft/blob/v0.7.1/src/peft/utils/other.py#L72
|
||||
"""
|
||||
if model_args.upcast_layernorm:
|
||||
logger.info("Upcasting layernorm weights in float32.")
|
||||
for name, param in model.named_parameters():
|
||||
if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
if not model_args.disable_gradient_checkpointing:
|
||||
if not getattr(model, "supports_gradient_checkpointing", False):
|
||||
logger.warning("Current model does not support gradient checkpointing.")
|
||||
else:
|
||||
# use_reentrant=False might increase VRAM usage (have not been empirically verified yet)
|
||||
# According to: https://github.com/huggingface/transformers/issues/28339
|
||||
model.gradient_checkpointing_enable = MethodType(_gradient_checkpointing_enable, model)
|
||||
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": True})
|
||||
setattr(model.config, "use_cache", False) # turn off when gradient checkpointing is enabled
|
||||
logger.info("Gradient checkpointing enabled.")
|
||||
|
||||
if hasattr(model, output_layer_name) and model_args.upcast_lmhead_output:
|
||||
logger.info("Upcasting lm_head outputs in float32.")
|
||||
output_layer = getattr(model, output_layer_name)
|
||||
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
|
||||
output_layer.register_forward_hook(_fp32_forward_post_hook)
|
||||
@@ -0,0 +1,58 @@
|
||||
import math
|
||||
from contextlib import nullcontext
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import torch
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _noisy_mean_initialization(embed_weight: "torch.Tensor", num_new_tokens: int) -> None:
|
||||
embedding_dim = embed_weight.size(1)
|
||||
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True)
|
||||
noise_weight = torch.empty_like(embed_weight[-num_new_tokens:])
|
||||
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim)))
|
||||
embed_weight[-num_new_tokens:] = avg_weight + noise_weight
|
||||
|
||||
|
||||
def resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None:
|
||||
r"""
|
||||
Resize token embeddings.
|
||||
"""
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed # type: ignore
|
||||
|
||||
params = [model.get_input_embeddings().weight]
|
||||
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings:
|
||||
params.append(model.get_output_embeddings().weight)
|
||||
|
||||
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
|
||||
else:
|
||||
context_maybe_zero3 = nullcontext()
|
||||
|
||||
with context_maybe_zero3:
|
||||
current_embedding_size = model.get_input_embeddings().weight.size(0)
|
||||
|
||||
if len(tokenizer) > current_embedding_size:
|
||||
if getattr(model, "quantization_method", None):
|
||||
raise ValueError("Cannot resize embedding layers of a quantized model.")
|
||||
|
||||
if not isinstance(model.get_output_embeddings(), torch.nn.Linear):
|
||||
raise ValueError("Current model does not support resizing embedding layers.")
|
||||
|
||||
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
|
||||
with context_maybe_zero3:
|
||||
new_embedding_size = model.get_input_embeddings().weight.size(0)
|
||||
num_new_tokens = new_embedding_size - current_embedding_size
|
||||
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
|
||||
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens)
|
||||
|
||||
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))
|
||||
@@ -0,0 +1,323 @@
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers.models.llama.modeling_llama import (
|
||||
Cache,
|
||||
LlamaAttention,
|
||||
LlamaFlashAttention2,
|
||||
LlamaSdpaAttention,
|
||||
apply_rotary_pos_emb,
|
||||
repeat_kv,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
from ...extras.constants import SUPPORTED_CLASS_FOR_S2ATTN
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
# Modified from:
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
|
||||
def llama_attention_forward(
|
||||
self: "LlamaAttention",
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional["Cache"] = None,
|
||||
output_attentions: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states: "torch.Tensor" = self.q_proj(hidden_states)
|
||||
key_states: "torch.Tensor" = self.k_proj(hidden_states)
|
||||
value_states: "torch.Tensor" = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||||
|
||||
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||||
|
||||
if past_key_value is not None:
|
||||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
|
||||
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
|
||||
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
|
||||
num_groups = q_len // groupsz
|
||||
|
||||
def shift(state: torch.Tensor) -> torch.Tensor:
|
||||
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
|
||||
state = torch.cat(
|
||||
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
|
||||
dim=2,
|
||||
)
|
||||
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
|
||||
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||
attn_weights = attn_weights + causal_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz * n_group, :, groupsz, :)
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
|
||||
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
||||
attn_output = torch.cat(
|
||||
(
|
||||
attn_output[:, :, : self.num_heads // 2],
|
||||
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
|
||||
)
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
# Modified from:
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
|
||||
def llama_flash_attention_2_forward(
|
||||
self: "LlamaFlashAttention2",
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional["Cache"] = None,
|
||||
output_attentions: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
# LlamaFlashAttention2 attention does not support output_attentions
|
||||
output_attentions = False
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states: "torch.Tensor" = self.q_proj(hidden_states)
|
||||
key_states: "torch.Tensor" = self.k_proj(hidden_states)
|
||||
value_states: "torch.Tensor" = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||||
|
||||
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||||
|
||||
if past_key_value is not None:
|
||||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
dropout_rate = self.attention_dropout if self.training else 0.0
|
||||
|
||||
input_dtype = query_states.dtype
|
||||
if input_dtype == torch.float32:
|
||||
if torch.is_autocast_enabled():
|
||||
target_dtype = torch.get_autocast_gpu_dtype()
|
||||
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||||
target_dtype = self.config._pre_quantization_dtype
|
||||
else:
|
||||
target_dtype = self.q_proj.weight.dtype
|
||||
|
||||
logger.warning_once("The input hidden states seems to be silently casted in float32.")
|
||||
query_states = query_states.to(target_dtype)
|
||||
key_states = key_states.to(target_dtype)
|
||||
value_states = value_states.to(target_dtype)
|
||||
|
||||
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
|
||||
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
|
||||
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
|
||||
num_groups = q_len // groupsz
|
||||
|
||||
def shift(state: torch.Tensor) -> torch.Tensor:
|
||||
state = torch.cat(
|
||||
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
|
||||
dim=2,
|
||||
)
|
||||
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)
|
||||
|
||||
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask[:, :groupsz].repeat(num_groups, 1)
|
||||
else:
|
||||
groupsz = q_len
|
||||
|
||||
attn_output: torch.Tensor = self._flash_attention_forward(
|
||||
query_states, key_states, value_states, attention_mask, groupsz, dropout=dropout_rate
|
||||
)
|
||||
|
||||
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
|
||||
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
||||
attn_output = torch.cat(
|
||||
(
|
||||
attn_output[:, :, : self.num_heads // 2],
|
||||
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
|
||||
)
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
# Modified from:
|
||||
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
|
||||
def llama_sdpa_attention_forward(
|
||||
self: "LlamaSdpaAttention",
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional["Cache"] = None,
|
||||
output_attentions: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if output_attentions:
|
||||
logger.warning_once("SDPA does not support `output_attentions=True`. Falling back to the vanilla attention")
|
||||
return llama_attention_forward(
|
||||
self,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states: "torch.Tensor" = self.q_proj(hidden_states)
|
||||
key_states: "torch.Tensor" = self.k_proj(hidden_states)
|
||||
value_states: "torch.Tensor" = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||||
|
||||
if past_key_value is not None:
|
||||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
|
||||
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
|
||||
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
|
||||
num_groups = q_len // groupsz
|
||||
|
||||
def shift(state: torch.Tensor) -> torch.Tensor:
|
||||
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
|
||||
state = torch.cat(
|
||||
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
|
||||
dim=2,
|
||||
)
|
||||
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
|
||||
|
||||
causal_mask = attention_mask
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
||||
|
||||
if query_states.device.type == "cuda" and causal_mask is not None:
|
||||
query_states = query_states.contiguous()
|
||||
key_states = key_states.contiguous()
|
||||
value_states = value_states.contiguous()
|
||||
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_mask=causal_mask,
|
||||
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||
is_causal=causal_mask is None and q_len > 1,
|
||||
)
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
|
||||
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
||||
attn_output = torch.cat(
|
||||
(
|
||||
attn_output[:, :, : self.num_heads // 2],
|
||||
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
|
||||
)
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
return attn_output, None, past_key_value
|
||||
|
||||
|
||||
def _apply_llama_patch() -> None:
|
||||
require_version("transformers==4.40.2", "To fix: pip install transformers==4.40.2")
|
||||
LlamaAttention.forward = llama_attention_forward
|
||||
LlamaFlashAttention2.forward = llama_flash_attention_2_forward
|
||||
LlamaSdpaAttention.forward = llama_sdpa_attention_forward
|
||||
|
||||
|
||||
def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||
if not is_trainable or not model_args.shift_attn:
|
||||
return
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
|
||||
setattr(config, "group_size_ratio", 0.25)
|
||||
_apply_llama_patch()
|
||||
logger.info("Using shift short attention with group_size_ratio=1/4.")
|
||||
else:
|
||||
logger.warning("Current model does not support shift short attention.")
|
||||
@@ -0,0 +1,74 @@
|
||||
from typing import TYPE_CHECKING, List
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool) -> List[str]:
|
||||
r"""
|
||||
Finds all available modules to apply lora or galore.
|
||||
"""
|
||||
forbidden_modules = {"lm_head"}
|
||||
|
||||
if model.config.model_type == "chatglm":
|
||||
forbidden_modules.add("output_layer")
|
||||
elif model.config.model_type == "internlm2":
|
||||
forbidden_modules.add("output")
|
||||
elif model.config.model_type in ["llava", "paligemma"]:
|
||||
forbidden_modules.add("multi_modal_projector")
|
||||
|
||||
if freeze_vision_tower:
|
||||
forbidden_modules.add("vision_tower")
|
||||
|
||||
module_names = set()
|
||||
for name, module in model.named_modules():
|
||||
if any(forbidden_module in name for forbidden_module in forbidden_modules):
|
||||
continue
|
||||
|
||||
if "Linear" in module.__class__.__name__ and "Embedding" not in module.__class__.__name__:
|
||||
module_names.add(name.split(".")[-1])
|
||||
|
||||
logger.info("Found linear modules: {}".format(",".join(module_names)))
|
||||
return list(module_names)
|
||||
|
||||
|
||||
def find_expanded_modules(model: "PreTrainedModel", target_modules: List[str], num_layer_trainable: int) -> List[str]:
|
||||
r"""
|
||||
Finds the modules in the expanded blocks to apply lora.
|
||||
"""
|
||||
num_layers = getattr(model.config, "num_hidden_layers", None)
|
||||
if not num_layers:
|
||||
raise ValueError("Model was not supported.")
|
||||
|
||||
if num_layers % num_layer_trainable != 0:
|
||||
raise ValueError(
|
||||
"`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(num_layers, num_layer_trainable)
|
||||
)
|
||||
|
||||
stride = num_layers // num_layer_trainable
|
||||
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
|
||||
trainable_layers = [".{:d}.".format(idx) for idx in trainable_layer_ids]
|
||||
module_names = []
|
||||
for name, _ in model.named_modules():
|
||||
if any(target_module in name for target_module in target_modules) and any(
|
||||
trainable_layer in name for trainable_layer in trainable_layers
|
||||
):
|
||||
module_names.append(name)
|
||||
|
||||
logger.info("Apply lora to layers: {}".format(",".join(map(str, trainable_layer_ids))))
|
||||
return module_names
|
||||
|
||||
|
||||
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
|
||||
if "AutoConfig" in getattr(config, "auto_map", {}):
|
||||
config.__class__.register_for_auto_class()
|
||||
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
|
||||
model.__class__.register_for_auto_class()
|
||||
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
|
||||
tokenizer.__class__.register_for_auto_class()
|
||||
@@ -0,0 +1,28 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...extras.constants import MOD_SUPPORTED_MODELS
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
def load_mod_pretrained_model(**init_kwargs) -> "PreTrainedModel":
|
||||
from MoD import AutoMoDModelForCausalLM
|
||||
|
||||
return AutoMoDModelForCausalLM.from_pretrained(**init_kwargs)
|
||||
|
||||
|
||||
def convert_pretrained_model_to_mod(
|
||||
model: "PreTrainedModel", config: "PretrainedConfig", model_args: "ModelArguments"
|
||||
) -> "PreTrainedModel":
|
||||
from MoD import apply_mod_to_hf
|
||||
|
||||
if getattr(config, "model_type", None) not in MOD_SUPPORTED_MODELS:
|
||||
raise ValueError("Current model is not supported by mixture-of-depth.")
|
||||
|
||||
model = apply_mod_to_hf(model)
|
||||
model = model.to(model_args.compute_dtype)
|
||||
return model
|
||||
@@ -0,0 +1,61 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
def add_z3_leaf_module(model: "PreTrainedModel") -> None:
|
||||
r"""
|
||||
Sets module as a leaf module to skip partitioning in deepspeed zero3.
|
||||
"""
|
||||
if not is_deepspeed_zero3_enabled():
|
||||
return
|
||||
|
||||
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0")
|
||||
from deepspeed.utils import set_z3_leaf_modules # type: ignore
|
||||
|
||||
if getattr(model.config, "model_type", None) == "dbrx":
|
||||
from transformers.models.dbrx.modeling_dbrx import DbrxFFN
|
||||
|
||||
set_z3_leaf_modules(model, [DbrxFFN])
|
||||
|
||||
if getattr(model.config, "model_type", None) == "jamba":
|
||||
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
|
||||
|
||||
set_z3_leaf_modules(model, [JambaSparseMoeBlock])
|
||||
|
||||
if getattr(model.config, "model_type", None) == "jetmoe":
|
||||
from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE
|
||||
|
||||
set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE])
|
||||
|
||||
if getattr(model.config, "model_type", None) == "mixtral":
|
||||
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
|
||||
|
||||
set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
|
||||
|
||||
if getattr(model.config, "model_type", None) == "qwen2moe":
|
||||
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
|
||||
|
||||
set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock])
|
||||
|
||||
|
||||
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||
if model_args.moe_aux_loss_coef is not None:
|
||||
if getattr(config, "model_type", None) in ["jamba", "mixtral", "qwen2_moe"]:
|
||||
setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
|
||||
|
||||
elif getattr(config, "model_type", None) == "deepseek":
|
||||
setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef)
|
||||
|
||||
elif getattr(config, "model_type", None) == "jetmoe":
|
||||
setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef)
|
||||
|
||||
if getattr(config, "model_type", None) in ["dbrx", "jamba", "jetmoe", "mixtral", "qwen2_moe"]:
|
||||
setattr(config, "output_router_logits", is_trainable)
|
||||
@@ -0,0 +1,150 @@
|
||||
import os
|
||||
import random
|
||||
from enum import Enum, unique
|
||||
from typing import TYPE_CHECKING, Any, Dict, List
|
||||
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from transformers import BitsAndBytesConfig, GPTQConfig
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.modeling_utils import is_fsdp_enabled
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
from ...extras.constants import FILEEXT2TYPE
|
||||
from ...extras.logging import get_logger
|
||||
from ...extras.misc import get_current_device
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedTokenizer
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
@unique
|
||||
class QuantizationMethod(str, Enum):
|
||||
r"""
|
||||
Borrowed from `transformers.utils.quantization_config.QuantizationMethod`.
|
||||
"""
|
||||
|
||||
BITS_AND_BYTES = "bitsandbytes"
|
||||
GPTQ = "gptq"
|
||||
AWQ = "awq"
|
||||
AQLM = "aqlm"
|
||||
QUANTO = "quanto"
|
||||
EETQ = "eetq"
|
||||
HQQ = "hqq"
|
||||
|
||||
|
||||
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]:
|
||||
r"""
|
||||
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133
|
||||
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600
|
||||
"""
|
||||
if os.path.isfile(model_args.export_quantization_dataset):
|
||||
data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None)
|
||||
data_files = model_args.export_quantization_dataset
|
||||
else:
|
||||
data_path = model_args.export_quantization_dataset
|
||||
data_files = None
|
||||
|
||||
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir)
|
||||
maxlen = model_args.export_quantization_maxlen
|
||||
|
||||
samples = []
|
||||
for _ in range(model_args.export_quantization_nsamples):
|
||||
while True:
|
||||
sample_idx = random.randint(0, len(dataset) - 1)
|
||||
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
|
||||
if sample["input_ids"].size(1) >= maxlen:
|
||||
break # TODO: fix large maxlen
|
||||
|
||||
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
|
||||
input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen]
|
||||
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True))
|
||||
|
||||
return samples
|
||||
|
||||
|
||||
def configure_quantization(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
init_kwargs: Dict[str, Any],
|
||||
) -> None:
|
||||
r"""
|
||||
Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
|
||||
"""
|
||||
if getattr(config, "quantization_config", None): # ptq
|
||||
if is_deepspeed_zero3_enabled():
|
||||
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantized models.")
|
||||
|
||||
if model_args.quantization_device_map != "auto":
|
||||
init_kwargs["device_map"] = {"": get_current_device()}
|
||||
|
||||
quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None)
|
||||
quant_method = quantization_config.get("quant_method", "")
|
||||
|
||||
if quant_method == QuantizationMethod.GPTQ:
|
||||
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
|
||||
quantization_config.pop("disable_exllama", None) # remove deprecated args
|
||||
quantization_config["use_exllama"] = False # disable exllama
|
||||
|
||||
if quant_method == QuantizationMethod.AWQ:
|
||||
require_version("autoawq", "To fix: pip install autoawq")
|
||||
|
||||
if quant_method == QuantizationMethod.AQLM:
|
||||
require_version("transformers>=4.39.0", "To fix: pip install transformers>=4.39.0")
|
||||
require_version("aqlm>=1.1.0", "To fix: pip install aqlm[gpu]>=1.1.0")
|
||||
quantization_config["bits"] = 2
|
||||
|
||||
quant_bits = quantization_config.get("bits", "?")
|
||||
logger.info("Loading {}-bit {}-quantized model.".format(quant_bits, quant_method.upper()))
|
||||
|
||||
elif model_args.export_quantization_bit is not None: # auto-gptq
|
||||
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
|
||||
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
|
||||
from accelerate.utils import get_max_memory
|
||||
|
||||
if getattr(config, "model_type", None) == "chatglm":
|
||||
raise ValueError("ChatGLM model is not supported.")
|
||||
|
||||
init_kwargs["quantization_config"] = GPTQConfig(
|
||||
bits=model_args.export_quantization_bit,
|
||||
tokenizer=tokenizer,
|
||||
dataset=_get_quantization_dataset(tokenizer, model_args),
|
||||
)
|
||||
init_kwargs["device_map"] = "auto"
|
||||
init_kwargs["max_memory"] = get_max_memory()
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
|
||||
|
||||
elif model_args.quantization_bit is not None: # bnb
|
||||
if model_args.quantization_bit == 8:
|
||||
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
||||
init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
elif model_args.quantization_bit == 4:
|
||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||
init_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
||||
bnb_4bit_use_double_quant=model_args.double_quantization,
|
||||
bnb_4bit_quant_type=model_args.quantization_type,
|
||||
bnb_4bit_quant_storage=model_args.compute_dtype, # crucial for fsdp+qlora
|
||||
)
|
||||
|
||||
if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or model_args.quantization_device_map == "auto":
|
||||
if model_args.quantization_bit != 4:
|
||||
raise ValueError("Only 4-bit quantized model can use auto device map.")
|
||||
|
||||
require_version("transformers>=4.39.0", "To fix: pip install transformers>=4.39.0")
|
||||
require_version("accelerate>=0.28.0", "To fix: pip install accelerate>=0.28.0")
|
||||
require_version("bitsandbytes>=0.43.0", "To fix: pip install bitsandbytes>=0.43.0")
|
||||
init_kwargs["torch_dtype"] = model_args.compute_dtype # fsdp+qlora requires same dtype
|
||||
else:
|
||||
init_kwargs["device_map"] = {"": get_current_device()}
|
||||
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
||||
@@ -0,0 +1,47 @@
|
||||
import math
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||
if model_args.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not hasattr(config, "rope_scaling"):
|
||||
logger.warning("Current model does not support RoPE scaling.")
|
||||
return
|
||||
|
||||
if is_trainable:
|
||||
if model_args.rope_scaling == "dynamic":
|
||||
logger.warning(
|
||||
"Dynamic NTK scaling may not work well with fine-tuning. "
|
||||
"See: https://github.com/huggingface/transformers/pull/24653"
|
||||
)
|
||||
|
||||
current_max_length = getattr(config, "max_position_embeddings", None)
|
||||
if current_max_length and model_args.model_max_length > current_max_length:
|
||||
logger.info(
|
||||
"Enlarge max model length from {} to {}.".format(current_max_length, model_args.model_max_length)
|
||||
)
|
||||
setattr(config, "max_position_embeddings", model_args.model_max_length)
|
||||
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
|
||||
else:
|
||||
logger.warning("Input length is smaller than max length. Consider increase input length.")
|
||||
scaling_factor = 1.0
|
||||
else:
|
||||
scaling_factor = 2.0
|
||||
|
||||
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
|
||||
logger.info(
|
||||
"Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor)
|
||||
)
|
||||
@@ -0,0 +1,88 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ...extras.misc import get_current_device
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _get_unsloth_kwargs(
|
||||
config: "PretrainedConfig", model_name_or_path: str, model_args: "ModelArguments"
|
||||
) -> Dict[str, Any]:
|
||||
return {
|
||||
"model_name": model_name_or_path,
|
||||
"max_seq_length": model_args.model_max_length or 4096,
|
||||
"dtype": model_args.compute_dtype,
|
||||
"load_in_4bit": model_args.quantization_bit == 4,
|
||||
"token": model_args.hf_hub_token,
|
||||
"device_map": {"": get_current_device()},
|
||||
"rope_scaling": getattr(config, "rope_scaling", None),
|
||||
"fix_tokenizer": False,
|
||||
"trust_remote_code": True,
|
||||
"use_gradient_checkpointing": "unsloth",
|
||||
}
|
||||
|
||||
|
||||
def load_unsloth_pretrained_model(
|
||||
config: "PretrainedConfig", model_args: "ModelArguments"
|
||||
) -> Optional["PreTrainedModel"]:
|
||||
r"""
|
||||
Optionally loads pretrained model with unsloth. Used in training.
|
||||
"""
|
||||
from unsloth import FastLanguageModel
|
||||
|
||||
unsloth_kwargs = _get_unsloth_kwargs(config, model_args.model_name_or_path, model_args)
|
||||
try:
|
||||
model, _ = FastLanguageModel.from_pretrained(**unsloth_kwargs)
|
||||
except NotImplementedError:
|
||||
logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
|
||||
model = None
|
||||
model_args.use_unsloth = False
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def get_unsloth_peft_model(
|
||||
model: "PreTrainedModel", model_args: "ModelArguments", peft_kwargs: Dict[str, Any]
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Gets the peft model for the pretrained model with unsloth. Used in training.
|
||||
"""
|
||||
from unsloth import FastLanguageModel
|
||||
|
||||
unsloth_peft_kwargs = {
|
||||
"model": model,
|
||||
"max_seq_length": model_args.model_max_length,
|
||||
"use_gradient_checkpointing": "unsloth",
|
||||
}
|
||||
return FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
|
||||
|
||||
|
||||
def load_unsloth_peft_model(
|
||||
config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Loads peft model with unsloth. Used in both training and inference.
|
||||
"""
|
||||
from unsloth import FastLanguageModel
|
||||
|
||||
unsloth_kwargs = _get_unsloth_kwargs(config, model_args.adapter_name_or_path[0], model_args)
|
||||
try:
|
||||
if not is_trainable:
|
||||
unsloth_kwargs["use_gradient_checkpointing"] = False
|
||||
|
||||
model, _ = FastLanguageModel.from_pretrained(**unsloth_kwargs)
|
||||
except NotImplementedError:
|
||||
raise ValueError("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
|
||||
|
||||
if not is_trainable:
|
||||
FastLanguageModel.for_inference(model)
|
||||
|
||||
return model
|
||||
@@ -0,0 +1,59 @@
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
|
||||
import torch
|
||||
from transformers.utils import cached_file
|
||||
|
||||
from ...extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Loads value head parameters from Hugging Face Hub or local disk.
|
||||
|
||||
Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
|
||||
"""
|
||||
kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token}
|
||||
err_text = ""
|
||||
|
||||
try:
|
||||
from safetensors import safe_open
|
||||
|
||||
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
|
||||
with safe_open(vhead_file, framework="pt", device="cpu") as f:
|
||||
return {key: f.get_tensor(key) for key in f.keys()}
|
||||
except Exception as err:
|
||||
err_text = str(err)
|
||||
|
||||
try:
|
||||
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
|
||||
return torch.load(vhead_file, map_location="cpu")
|
||||
except Exception as err:
|
||||
err_text = str(err)
|
||||
|
||||
logger.info("Provided path ({}) does not contain value head weights: {}.".format(path_or_repo_id, err_text))
|
||||
logger.info("Ignore the above message if you are not resuming the training of a value head model.")
|
||||
return None
|
||||
|
||||
|
||||
def prepare_valuehead_model(model: "PreTrainedModel") -> None:
|
||||
if getattr(model.config, "model_type", None) == "llava":
|
||||
setattr(model, "lm_head", model.language_model.get_output_embeddings())
|
||||
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
|
||||
|
||||
if getattr(model.config, "model_type", None) == "chatglm":
|
||||
setattr(model, "lm_head", model.transformer.output_layer)
|
||||
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
|
||||
|
||||
if getattr(model.config, "model_type", None) == "internlm2":
|
||||
setattr(model, "lm_head", model.output)
|
||||
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
|
||||
@@ -0,0 +1,84 @@
|
||||
from typing import TYPE_CHECKING, Tuple
|
||||
|
||||
import torch
|
||||
import transformers.models
|
||||
from transformers.activations import ACT2FN
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
|
||||
def __init__(self, config: "LlavaConfig") -> None:
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
if config is None:
|
||||
return
|
||||
|
||||
self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
||||
self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
||||
self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
||||
self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
||||
self.act = ACT2FN[config.projector_hidden_act]
|
||||
|
||||
def forward(self, image_features: "torch.Tensor") -> "torch.Tensor":
|
||||
hidden_states = self.linear_1(image_features)
|
||||
hidden_states = self.linear_2(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.linear_3(hidden_states)
|
||||
hidden_states = self.linear_4(hidden_states)
|
||||
if hidden_states.dtype == torch.float32:
|
||||
if torch.is_autocast_enabled():
|
||||
target_dtype = torch.get_autocast_gpu_dtype()
|
||||
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||||
target_dtype = self.config._pre_quantization_dtype
|
||||
else:
|
||||
target_dtype = self.linear_1.weight.dtype
|
||||
|
||||
logger.warning_once("The hidden states seems to be silently casted in float32.")
|
||||
hidden_states = hidden_states.to(target_dtype)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL):
|
||||
def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None:
|
||||
super().__init__(config=None)
|
||||
|
||||
self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True)
|
||||
self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True)
|
||||
self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True)
|
||||
self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True)
|
||||
self.act = ACT2FN[projector_hidden_act]
|
||||
|
||||
|
||||
def autocast_projector_dtype(
|
||||
model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector"
|
||||
) -> None:
|
||||
def _mm_projector_forward_post_hook(
|
||||
module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
|
||||
) -> "torch.Tensor":
|
||||
return output.to(model_args.compute_dtype)
|
||||
|
||||
if hasattr(model, mm_projector_name) and getattr(model, "quantization_method", None):
|
||||
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
|
||||
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
|
||||
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
|
||||
|
||||
|
||||
def configure_visual_model(config: "PretrainedConfig") -> None:
|
||||
if getattr(config, "model_type", None) == "llava": # required for ds zero3 and valuehead models
|
||||
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
|
||||
|
||||
if getattr(config, "is_yi_vl_derived_model", None):
|
||||
logger.info("Detected Yi-VL model, applying projector patch.")
|
||||
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL
|
||||
@@ -0,0 +1,143 @@
|
||||
import os
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Any, Dict
|
||||
|
||||
import torch
|
||||
from peft import PeftModel
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizerBase, is_torch_npu_available
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.modeling_utils import is_fsdp_enabled
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import infer_optim_dtype
|
||||
from .model_utils.attention import configure_attn_implementation, print_attn_implementation
|
||||
from .model_utils.checkpointing import prepare_model_for_training
|
||||
from .model_utils.embedding import resize_embedding_layer
|
||||
from .model_utils.longlora import configure_longlora
|
||||
from .model_utils.moe import add_z3_leaf_module, configure_moe
|
||||
from .model_utils.quantization import configure_quantization
|
||||
from .model_utils.rope import configure_rope
|
||||
from .model_utils.valuehead import prepare_valuehead_model
|
||||
from .model_utils.visual import autocast_projector_dtype, configure_visual_model
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedTokenizer
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
|
||||
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||
|
||||
|
||||
def patch_config(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
init_kwargs: Dict[str, Any],
|
||||
is_trainable: bool,
|
||||
) -> None:
|
||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||
|
||||
if is_torch_npu_available():
|
||||
use_jit_compile = os.environ.get("JIT_COMPILE", "0").lower() in ["true", "1"]
|
||||
torch.npu.set_compile_mode(jit_compile=use_jit_compile)
|
||||
|
||||
configure_attn_implementation(config, model_args)
|
||||
configure_rope(config, model_args, is_trainable)
|
||||
configure_longlora(config, model_args, is_trainable)
|
||||
configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||
configure_moe(config, model_args, is_trainable)
|
||||
configure_visual_model(config)
|
||||
|
||||
if model_args.use_cache and not is_trainable:
|
||||
setattr(config, "use_cache", True)
|
||||
logger.info("Using KV cache for faster generation.")
|
||||
|
||||
if getattr(config, "model_type", None) == "qwen":
|
||||
setattr(config, "use_flash_attn", model_args.flash_attn == "fa2")
|
||||
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
||||
setattr(config, dtype_name, model_args.compute_dtype == dtype)
|
||||
|
||||
if getattr(config, "model_type", None) == "qwen2" and is_trainable and model_args.flash_attn == "fa2":
|
||||
setattr(config, "use_cache", False) # qwen2 does not support use_cache when using flash attn
|
||||
|
||||
# deepspeed zero3 is not compatible with low_cpu_mem_usage
|
||||
init_kwargs["low_cpu_mem_usage"] = model_args.low_cpu_mem_usage and (not is_deepspeed_zero3_enabled())
|
||||
|
||||
if not is_deepspeed_zero3_enabled() and not is_fsdp_enabled(): # cast dtype and device if not use zero3 or fsdp
|
||||
init_kwargs["torch_dtype"] = model_args.compute_dtype
|
||||
|
||||
if init_kwargs["low_cpu_mem_usage"]: # device map requires low_cpu_mem_usage=True
|
||||
if "device_map" not in init_kwargs and model_args.device_map:
|
||||
init_kwargs["device_map"] = model_args.device_map
|
||||
|
||||
if init_kwargs["device_map"] == "auto":
|
||||
init_kwargs["offload_folder"] = model_args.offload_folder
|
||||
|
||||
|
||||
def patch_model(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
is_trainable: bool,
|
||||
add_valuehead: bool,
|
||||
) -> None:
|
||||
gen_config = model.generation_config # check and fix generation config
|
||||
if not gen_config.do_sample and (
|
||||
(gen_config.temperature is not None and gen_config.temperature != 1.0)
|
||||
or (gen_config.top_p is not None and gen_config.top_p != 1.0)
|
||||
or (gen_config.typical_p is not None and gen_config.typical_p != 1.0)
|
||||
):
|
||||
gen_config.do_sample = True
|
||||
|
||||
if "GenerationMixin" not in str(model.generate.__func__):
|
||||
model.generate = MethodType(PreTrainedModel.generate, model)
|
||||
|
||||
if add_valuehead:
|
||||
prepare_valuehead_model(model)
|
||||
|
||||
if model_args.resize_vocab:
|
||||
resize_embedding_layer(model, tokenizer)
|
||||
|
||||
if model_args.visual_inputs:
|
||||
autocast_projector_dtype(model, model_args)
|
||||
|
||||
if is_trainable:
|
||||
prepare_model_for_training(model, model_args)
|
||||
add_z3_leaf_module(model)
|
||||
|
||||
if not model_args.use_unsloth:
|
||||
print_attn_implementation(model.config)
|
||||
|
||||
try:
|
||||
model.add_model_tags(["llama-factory"])
|
||||
except Exception:
|
||||
logger.warning("Cannot properly tag the model.")
|
||||
|
||||
|
||||
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None:
|
||||
def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None:
|
||||
if isinstance(self.pretrained_model, PreTrainedModel):
|
||||
self.pretrained_model.tie_weights()
|
||||
|
||||
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
|
||||
if isinstance(self.pretrained_model, PreTrainedModel):
|
||||
return self.pretrained_model.get_input_embeddings()
|
||||
|
||||
def create_or_update_model_card(self: "AutoModelForCausalLMWithValueHead", output_dir: str) -> None:
|
||||
if isinstance(self.pretrained_model, PeftModel):
|
||||
self.pretrained_model.create_or_update_model_card(output_dir)
|
||||
|
||||
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
|
||||
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
|
||||
setattr(model, "tie_weights", MethodType(tie_weights, model))
|
||||
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
|
||||
setattr(model, "create_or_update_model_card", MethodType(create_or_update_model_card, model))
|
||||
@@ -0,0 +1,233 @@
|
||||
from collections import defaultdict
|
||||
from contextlib import nullcontext
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import Trainer
|
||||
from trl import DPOTrainer
|
||||
from trl.trainer import disable_dropout_in_model
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps, get_ref_context
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
class CustomDPOTrainer(DPOTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
model: Union["PreTrainedModel", torch.nn.Module],
|
||||
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
|
||||
finetuning_args: "FinetuningArguments",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
disable_dropout: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if disable_dropout:
|
||||
disable_dropout_in_model(model)
|
||||
if ref_model is not None:
|
||||
disable_dropout_in_model(ref_model)
|
||||
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
self.reference_free = False
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
self.label_pad_token_id = IGNORE_INDEX
|
||||
self.padding_value = 0
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.precompute_ref_log_probs = False
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
self._peft_has_been_casted_to_bf16 = False
|
||||
|
||||
self.ref_model = ref_model
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
# dpo hyperparams
|
||||
self.beta = finetuning_args.pref_beta
|
||||
self.loss_type = finetuning_args.pref_loss
|
||||
self.ftx_gamma = finetuning_args.pref_ftx
|
||||
self.label_smoothing = finetuning_args.dpo_label_smoothing
|
||||
self.simpo_gamma = finetuning_args.simpo_gamma
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if not hasattr(self, "accelerator"):
|
||||
raise AttributeError("Please update `transformers`.")
|
||||
|
||||
if ref_model is not None:
|
||||
if self.is_deepspeed_enabled:
|
||||
if not (
|
||||
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
|
||||
): # quantized models are already set on the correct device
|
||||
self.ref_model = self._prepare_deepspeed(self.ref_model)
|
||||
else:
|
||||
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
||||
self.ref_model.eval()
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.
|
||||
"""
|
||||
log_odds = (chosen_logps - rejected_logps) - (
|
||||
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
|
||||
)
|
||||
sft_loss = -chosen_logps
|
||||
odds_ratio_loss = -F.logsigmoid(log_odds)
|
||||
orpo_loss = sft_loss + self.beta * odds_ratio_loss
|
||||
return orpo_loss
|
||||
|
||||
def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes SimPO loss for batched log probabilities of the policy model.
|
||||
"""
|
||||
pi_logratios = chosen_logps - rejected_logps
|
||||
gamma_logratios = self.simpo_gamma / self.beta
|
||||
logits = pi_logratios - gamma_logratios
|
||||
simpo_loss = -F.logsigmoid(self.beta * logits)
|
||||
return simpo_loss
|
||||
|
||||
def compute_preference_loss(
|
||||
self,
|
||||
policy_chosen_logps: "torch.Tensor",
|
||||
policy_rejected_logps: "torch.Tensor",
|
||||
reference_chosen_logps: Optional["torch.Tensor"],
|
||||
reference_rejected_logps: Optional["torch.Tensor"],
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes loss for preference learning.
|
||||
"""
|
||||
if not self.finetuning_args.use_ref_model:
|
||||
if self.loss_type == "orpo":
|
||||
losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps)
|
||||
elif self.loss_type == "simpo":
|
||||
losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps)
|
||||
else:
|
||||
raise NotImplementedError("Unknown loss type: {}.".format(self.loss_type))
|
||||
|
||||
chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach()
|
||||
rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach()
|
||||
else:
|
||||
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
|
||||
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
|
||||
)
|
||||
|
||||
return losses, chosen_rewards, rejected_rewards
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO.
|
||||
|
||||
Otherwise the average log probabilities.
|
||||
"""
|
||||
if self.finetuning_args.use_ref_model:
|
||||
batch = {k: v.detach().clone() for k, v in batch.items()} # avoid error
|
||||
|
||||
all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
|
||||
|
||||
all_logps, valid_length = get_batch_logps(logits=all_logits, labels=batch["labels"])
|
||||
if self.loss_type in ["ipo", "orpo", "simpo"]:
|
||||
all_logps = all_logps / valid_length
|
||||
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
||||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||
chosen_length, _ = valid_length.split(batch_size, dim=0)
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length
|
||||
|
||||
def compute_reference_log_probs(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]:
|
||||
r"""
|
||||
Computes log probabilities of the reference model.
|
||||
"""
|
||||
if not self.finetuning_args.use_ref_model:
|
||||
return None, None
|
||||
|
||||
if self.ref_model is None:
|
||||
ref_model = model
|
||||
ref_context = get_ref_context(self.accelerator, model)
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
|
||||
with torch.no_grad(), ref_context:
|
||||
reference_chosen_logps, reference_rejected_logps, *_ = self.concatenated_forward(ref_model, batch)
|
||||
|
||||
return reference_chosen_logps, reference_rejected_logps
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, "torch.Tensor"],
|
||||
train_eval: Literal["train", "eval"] = "train",
|
||||
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
||||
r"""
|
||||
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
|
||||
"""
|
||||
metrics = {}
|
||||
(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
policy_chosen_logits,
|
||||
policy_rejected_logits,
|
||||
policy_chosen_logps_avg,
|
||||
) = self.concatenated_forward(model, batch)
|
||||
|
||||
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch)
|
||||
losses, chosen_rewards, rejected_rewards = self.compute_preference_loss(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
)
|
||||
sft_loss = -policy_chosen_logps_avg
|
||||
if self.ftx_gamma > 1e-6:
|
||||
losses += self.ftx_gamma * sft_loss
|
||||
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
|
||||
prefix = "eval_" if train_eval == "eval" else ""
|
||||
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu()
|
||||
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu()
|
||||
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu()
|
||||
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu()
|
||||
metrics["{}logps/rejected".format(prefix)] = policy_rejected_logps.detach().mean().cpu()
|
||||
metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().mean().cpu()
|
||||
metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().mean().cpu()
|
||||
metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().mean().cpu()
|
||||
if self.loss_type == "orpo":
|
||||
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu()
|
||||
metrics["{}odds_ratio_loss".format(prefix)] = ((losses - sft_loss) / self.beta).detach().mean().cpu()
|
||||
|
||||
return losses.mean(), metrics
|
||||
@@ -0,0 +1,83 @@
|
||||
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..trainer_utils import create_modelcard_and_push, create_ref_model
|
||||
from .trainer import CustomDPOTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments
|
||||
|
||||
|
||||
def run_dpo(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
)
|
||||
|
||||
# Create reference model
|
||||
if finetuning_args.use_ref_model:
|
||||
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself
|
||||
ref_model = model
|
||||
else:
|
||||
ref_model = create_ref_model(model_args, finetuning_args)
|
||||
else:
|
||||
ref_model = None
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomDPOTrainer(
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "rewards/accuracies"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
if id(model) == id(ref_model): # unable to compute rewards if reference model is the model itself
|
||||
remove_keys = [key for key in metrics.keys() if "rewards" in key]
|
||||
for key in remove_keys:
|
||||
metrics.pop(key)
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
@@ -0,0 +1,4 @@
|
||||
from .workflow import run_kto
|
||||
|
||||
|
||||
__all__ = ["run_kto"]
|
||||
@@ -0,0 +1,205 @@
|
||||
from collections import defaultdict
|
||||
from contextlib import nullcontext
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
from trl import KTOTrainer
|
||||
from trl.trainer import disable_dropout_in_model
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps, get_ref_context
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch.utils.data
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
class CustomKTOTrainer(KTOTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
model: Union["PreTrainedModel", torch.nn.Module],
|
||||
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
|
||||
finetuning_args: "FinetuningArguments",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
disable_dropout: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if disable_dropout:
|
||||
disable_dropout_in_model(model)
|
||||
if ref_model is not None:
|
||||
disable_dropout_in_model(ref_model)
|
||||
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
self.reference_free = False
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
self.label_pad_token_id = IGNORE_INDEX
|
||||
self.padding_value = 0
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.precompute_ref_log_probs = False
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
self._peft_has_been_casted_to_bf16 = False
|
||||
|
||||
self.ref_model = ref_model
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
# kto hyperparams
|
||||
self.beta = finetuning_args.pref_beta
|
||||
self.desirable_weight = finetuning_args.kto_chosen_weight
|
||||
self.undesirable_weight = finetuning_args.kto_rejected_weight
|
||||
self.ftx_gamma = finetuning_args.pref_ftx
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if not hasattr(self, "accelerator"):
|
||||
raise AttributeError("Please update `transformers`.")
|
||||
|
||||
if ref_model is not None:
|
||||
if self.is_deepspeed_enabled:
|
||||
if not (
|
||||
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
|
||||
): # quantized models are already set on the correct device
|
||||
self.ref_model = self._prepare_deepspeed(self.ref_model)
|
||||
else:
|
||||
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
||||
self.ref_model.eval()
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
|
||||
r"""
|
||||
Replaces the sequential sampler of KTO Trainer created by trl with the random sampler.
|
||||
"""
|
||||
return Trainer._get_train_sampler(self)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Runs forward pass and computes the log probabilities.
|
||||
"""
|
||||
batch = {k: v.detach().clone() for k, v in batch.items()} # avoid error
|
||||
model_inputs = {
|
||||
"input_ids": batch["{}input_ids".format(prefix)],
|
||||
"attention_mask": batch["{}attention_mask".format(prefix)],
|
||||
}
|
||||
if "pixel_values" in batch:
|
||||
model_inputs["pixel_values"] = batch["pixel_values"]
|
||||
|
||||
if "{}token_type_ids".format(prefix) in batch:
|
||||
model_inputs["token_type_ids"] = batch["{}token_type_ids".format(prefix)]
|
||||
|
||||
logits = model(**model_inputs, return_dict=True, use_cache=False).logits.to(torch.float32)
|
||||
|
||||
logps, valid_length = get_batch_logps(logits=logits, labels=batch["{}labels".format(prefix)])
|
||||
return logps, logps / valid_length
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
target_logps, target_logps_avg = self.forward(model, batch)
|
||||
with torch.no_grad():
|
||||
kl_logps, _ = self.forward(model, batch, prefix="kl_")
|
||||
|
||||
if len(target_logps) != len(batch["kto_tags"]):
|
||||
raise ValueError("Mismatched shape of inputs and labels.")
|
||||
|
||||
chosen_logps = target_logps[batch["kto_tags"]]
|
||||
rejected_logps = target_logps[~batch["kto_tags"]]
|
||||
chosen_logps_avg = target_logps_avg[batch["kto_tags"]]
|
||||
return chosen_logps, rejected_logps, kl_logps, chosen_logps_avg
|
||||
|
||||
def compute_reference_log_probs(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes log probabilities of the reference model.
|
||||
"""
|
||||
if self.ref_model is None:
|
||||
ref_model = model
|
||||
ref_context = get_ref_context(self.accelerator, model)
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
|
||||
with torch.no_grad(), ref_context:
|
||||
reference_chosen_logps, reference_rejected_logps, reference_kl_logps, _ = self.concatenated_forward(
|
||||
ref_model, batch
|
||||
)
|
||||
|
||||
return reference_chosen_logps, reference_rejected_logps, reference_kl_logps
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, "torch.Tensor"],
|
||||
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
||||
r"""
|
||||
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
|
||||
"""
|
||||
metrics = {}
|
||||
policy_chosen_logps, policy_rejected_logps, policy_kl_logps, policy_chosen_logps_avg = (
|
||||
self.concatenated_forward(model, batch)
|
||||
)
|
||||
reference_chosen_logps, reference_rejected_logps, reference_kl_logps = self.compute_reference_log_probs(
|
||||
model, batch
|
||||
)
|
||||
losses, chosen_rewards, rejected_rewards, kl = self.kto_loss(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
policy_kl_logps,
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
reference_kl_logps,
|
||||
)
|
||||
losses = losses.nanmean()
|
||||
|
||||
if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0: # remember to rescale
|
||||
sft_loss = -policy_chosen_logps_avg
|
||||
losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logps) * len(batch["labels"])
|
||||
|
||||
num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device)
|
||||
num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device)
|
||||
|
||||
all_num_chosen = self.accelerator.gather(num_chosen).sum().item()
|
||||
all_num_rejected = self.accelerator.gather(num_rejected).sum().item()
|
||||
|
||||
if all_num_chosen > 0:
|
||||
metrics["rewards/chosen_sum"] = self.accelerator.gather(chosen_rewards.nansum()).nansum().item()
|
||||
metrics["logps/chosen_sum"] = self.accelerator.gather(policy_chosen_logps.nansum()).nansum().item()
|
||||
metrics["count/chosen"] = all_num_chosen
|
||||
|
||||
if all_num_rejected > 0:
|
||||
metrics["rewards/rejected_sum"] = self.accelerator.gather(rejected_rewards.nansum()).nansum().item()
|
||||
metrics["logps/rejected_sum"] = self.accelerator.gather(policy_rejected_logps.nansum()).nansum().item()
|
||||
metrics["count/rejected"] = all_num_rejected
|
||||
|
||||
metrics["kl"] = kl.item()
|
||||
|
||||
return losses, metrics
|
||||
@@ -1,15 +1,12 @@
|
||||
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import get_dataset, split_dataset
|
||||
from ...data import KTODataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_custom_optimzer, create_modelcard_and_push, create_ref_model
|
||||
from .collator import DPODataCollatorWithPadding
|
||||
from .trainer import CustomDPOTrainer
|
||||
from ..trainer_utils import create_modelcard_and_push, create_ref_model
|
||||
from .trainer import CustomKTOTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -18,17 +15,19 @@ if TYPE_CHECKING:
|
||||
from ...hparams import DataArguments, FinetuningArguments
|
||||
|
||||
|
||||
def run_dpo(
|
||||
def run_kto(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="kto", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
data_collator = DPODataCollatorWithPadding(
|
||||
|
||||
data_collator = KTODataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
@@ -44,18 +43,14 @@ def run_dpo(
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
|
||||
trainer = CustomDPOTrainer(
|
||||
beta=finetuning_args.dpo_beta,
|
||||
loss_type=finetuning_args.dpo_loss,
|
||||
ftx_gamma=finetuning_args.dpo_ftx,
|
||||
trainer = CustomKTOTrainer(
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
optimizers=(optimizer, None),
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
@@ -67,7 +62,7 @@ def run_dpo(
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "train/rewards/chosen"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
@@ -8,15 +8,19 @@ from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from ...extras.packages import is_requests_available
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
if is_requests_available():
|
||||
import requests
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
|
||||
def get_rewards_from_server(server_url: str, messages: List[str]) -> List[torch.Tensor]:
|
||||
r"""
|
||||
Gets reward scores from the API server.
|
||||
"""
|
||||
headers = {"Content-Type": "application/json"}
|
||||
payload = {"model": "model", "messages": messages}
|
||||
response = requests.post(server_url, json=payload, headers=headers)
|
||||
@@ -25,25 +29,33 @@ def get_rewards_from_server(server_url: str, messages: List[str]) -> List[torch.
|
||||
|
||||
|
||||
def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None:
|
||||
r"""
|
||||
Replaces the default/reward modules in the model. The model is already unwrapped.
|
||||
"""
|
||||
v_head_layer = model.v_head.summary
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed # type: ignore
|
||||
|
||||
params = [model.v_head.summary.weight, model.v_head.summary.bias]
|
||||
params = [v_head_layer.weight, v_head_layer.bias]
|
||||
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
|
||||
else:
|
||||
context_maybe_zero3 = nullcontext()
|
||||
|
||||
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
|
||||
with context_maybe_zero3:
|
||||
if target == "reward": # save default head temporarily
|
||||
setattr(model, "default_head_weight", model.v_head.summary.weight.data.detach().clone())
|
||||
setattr(model, "default_head_bias", model.v_head.summary.bias.data.detach().clone())
|
||||
setattr(model, "default_head_weight", v_head_layer.weight.data.detach().clone())
|
||||
setattr(model, "default_head_bias", v_head_layer.bias.data.detach().clone())
|
||||
|
||||
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
|
||||
model.v_head.summary.weight.data = model.get_buffer("{}_head_weight".format(target)).detach().clone()
|
||||
model.v_head.summary.bias.data = model.get_buffer("{}_head_bias".format(target)).detach().clone()
|
||||
device = v_head_layer.weight.device
|
||||
v_head_layer.weight.data = model.get_buffer("{}_head_weight".format(target)).detach().clone().to(device)
|
||||
v_head_layer.bias.data = model.get_buffer("{}_head_bias".format(target)).detach().clone().to(device)
|
||||
|
||||
|
||||
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Dumps the layernorm parameters in the model. The model is already unwrapped (and gathered).
|
||||
"""
|
||||
layer_norm_params = {}
|
||||
for name, param in model.named_parameters():
|
||||
if param.data.dtype == torch.float32:
|
||||
@@ -54,6 +66,9 @@ def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
|
||||
|
||||
|
||||
def restore_layernorm(model: "PreTrainedModel", layernorm_params: Optional[Dict[str, torch.Tensor]] = None) -> None:
|
||||
r"""
|
||||
Restores the layernorm parameters in the model. The model is already unwrapped (and gathered).
|
||||
"""
|
||||
for name, param in model.named_parameters():
|
||||
if name in layernorm_params:
|
||||
param.data = layernorm_params[name]
|
||||
@@ -1,25 +1,37 @@
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from accelerate.utils import DistributedDataParallelKwargs
|
||||
from tqdm import tqdm
|
||||
from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState
|
||||
from transformers.optimization import get_scheduler
|
||||
from transformers.trainer_pt_utils import remove_dummy_checkpoint
|
||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
||||
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
|
||||
from trl import PPOTrainer
|
||||
from trl import PPOConfig, PPOTrainer
|
||||
from trl.core import PPODecorators, logprobs_from_logits
|
||||
from trl.models.utils import unwrap_model_for_generation
|
||||
|
||||
from ...extras.callbacks import FixValueHeadModelCallback, LogCallback
|
||||
from ...extras.logging import get_logger
|
||||
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
|
||||
from .utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
||||
from .ppo_utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
from datasets import Dataset
|
||||
from transformers import (
|
||||
DataCollatorWithPadding,
|
||||
PreTrainedTokenizer,
|
||||
ProcessorMixin,
|
||||
Seq2SeqTrainingArguments,
|
||||
TrainerCallback,
|
||||
)
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
@@ -40,16 +52,68 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: List["TrainerCallback"],
|
||||
reward_model: "AutoModelForCausalLMWithValueHead",
|
||||
**kwargs,
|
||||
model: "AutoModelForCausalLMWithValueHead",
|
||||
reward_model: Optional["AutoModelForCausalLMWithValueHead"],
|
||||
ref_model: Optional["AutoModelForCausalLMWithValueHead"],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
dataset: "Dataset",
|
||||
data_collator: "DataCollatorWithPadding",
|
||||
):
|
||||
PPOTrainer.__init__(self, **kwargs)
|
||||
backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
|
||||
ppo_config = PPOConfig(
|
||||
model_name=model_args.model_name_or_path,
|
||||
learning_rate=training_args.learning_rate,
|
||||
mini_batch_size=training_args.per_device_train_batch_size,
|
||||
batch_size=backward_batch_size * finetuning_args.ppo_buffer_size,
|
||||
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
||||
ppo_epochs=finetuning_args.ppo_epochs,
|
||||
max_grad_norm=training_args.max_grad_norm,
|
||||
seed=training_args.seed,
|
||||
optimize_device_cache=True,
|
||||
target=finetuning_args.ppo_target,
|
||||
use_score_scaling=finetuning_args.ppo_score_norm,
|
||||
use_score_norm=finetuning_args.ppo_score_norm,
|
||||
whiten_rewards=finetuning_args.ppo_whiten_rewards,
|
||||
accelerator_kwargs={"step_scheduler_with_optimizer": False},
|
||||
log_with=training_args.report_to[0] if training_args.report_to else None,
|
||||
project_kwargs={"logging_dir": training_args.logging_dir},
|
||||
)
|
||||
|
||||
# Add deepspeed config
|
||||
ppo_config.accelerator_kwargs["kwargs_handlers"] = [
|
||||
DistributedDataParallelKwargs(find_unused_parameters=training_args.ddp_find_unused_parameters)
|
||||
]
|
||||
if training_args.deepspeed_plugin is not None:
|
||||
ppo_config.accelerator_kwargs["deepspeed_plugin"] = training_args.deepspeed_plugin
|
||||
|
||||
# Create optimizer and scheduler
|
||||
if training_args.max_steps > 0:
|
||||
num_training_steps = training_args.max_steps
|
||||
else:
|
||||
total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size
|
||||
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
|
||||
|
||||
optimizer = self.create_optimizer(model, training_args, finetuning_args)
|
||||
scheduler = self.create_scheduler(training_args, num_training_steps, optimizer)
|
||||
|
||||
PPOTrainer.__init__(
|
||||
self,
|
||||
config=ppo_config,
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
tokenizer=tokenizer,
|
||||
dataset=dataset,
|
||||
data_collator=data_collator,
|
||||
lr_scheduler=scheduler,
|
||||
)
|
||||
|
||||
self.args = training_args
|
||||
self.model_args = model_args
|
||||
self.finetuning_args = finetuning_args
|
||||
self.reward_model = reward_model
|
||||
self.current_device = get_current_device() # patch for deepspeed training
|
||||
self.processor = processor
|
||||
|
||||
self.generation_config = GenerationConfig(
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
@@ -59,15 +123,20 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
|
||||
self.state = TrainerState()
|
||||
self.control = TrainerControl()
|
||||
self.is_deepspeed_enabled = self.accelerator.distributed_type == "DEEPSPEED" and hasattr(
|
||||
self.accelerator.state, "deepspeed_plugin"
|
||||
)
|
||||
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
|
||||
self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
|
||||
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
|
||||
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
|
||||
|
||||
if self.args.max_steps > 0:
|
||||
logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
self.is_chatglm_model = getattr(unwrapped_model.config, "model_type", None) == "chatglm"
|
||||
|
||||
device_type = unwrapped_model.pretrained_model.device.type
|
||||
self.amp_context = torch.autocast(device_type, dtype=model_args.compute_dtype)
|
||||
|
||||
if finetuning_args.reward_model_type == "full":
|
||||
if self.is_deepspeed_enabled:
|
||||
if not (
|
||||
@@ -78,6 +147,11 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
else:
|
||||
self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
|
||||
r"""
|
||||
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
|
||||
@@ -123,7 +197,6 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
logger.info(" Total training steps = {}".format(max_steps))
|
||||
logger.info(" Number of trainable parameters = {}".format(count_parameters(self.model)[0]))
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
dataiter = iter(self.dataloader)
|
||||
loss_meter = AverageMeter()
|
||||
reward_meter = AverageMeter()
|
||||
@@ -136,29 +209,21 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
dataiter = iter(self.dataloader)
|
||||
batch = next(dataiter)
|
||||
|
||||
# Cast to inference mode
|
||||
unwrapped_model.gradient_checkpointing_disable()
|
||||
unwrapped_model.config.use_cache = True
|
||||
self.model.eval()
|
||||
|
||||
# Get inputs
|
||||
self.model.eval()
|
||||
self.tokenizer.padding_side = "right" # change padding side
|
||||
queries, responses, rewards = [], [], []
|
||||
for idx in range(0, self.config.batch_size, self.config.mini_batch_size):
|
||||
mini_batch_queries, mini_batch_responses = self.get_inputs(
|
||||
batch[idx : idx + self.config.mini_batch_size]
|
||||
)
|
||||
mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses, unwrapped_model)
|
||||
mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses)
|
||||
queries.extend(mini_batch_queries)
|
||||
responses.extend(mini_batch_responses)
|
||||
rewards.extend(mini_batch_rewards)
|
||||
|
||||
# Cast to training mode
|
||||
unwrapped_model.gradient_checkpointing_enable()
|
||||
unwrapped_model.config.use_cache = False
|
||||
self.model.train()
|
||||
|
||||
# Run PPO step
|
||||
self.model.train()
|
||||
stats = self.step(queries, responses, rewards)
|
||||
self.tokenizer.padding_side = "left" # restore padding side
|
||||
loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards))
|
||||
@@ -205,26 +270,64 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
|
||||
)
|
||||
|
||||
def create_optimizer(
|
||||
self,
|
||||
model: "AutoModelForCausalLMWithValueHead",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
optimizer = create_custom_optimzer(model, training_args, finetuning_args)
|
||||
if optimizer is None:
|
||||
decay_params, nodecay_params = [], []
|
||||
decay_param_names = self.get_decay_parameter_names(model)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
if name in decay_param_names:
|
||||
decay_params.append(param)
|
||||
else:
|
||||
nodecay_params.append(param)
|
||||
|
||||
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
param_groups = [
|
||||
dict(params=nodecay_params),
|
||||
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
||||
]
|
||||
optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
|
||||
return optimizer
|
||||
|
||||
def create_scheduler(
|
||||
self, training_args: "Seq2SeqTrainingArguments", num_training_steps: int, optimizer: "torch.optim.Optimizer"
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(training_args, num_training_steps, optimizer)
|
||||
lr_scheduler = get_scheduler(
|
||||
training_args.lr_scheduler_type,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
|
||||
num_training_steps=num_training_steps,
|
||||
)
|
||||
return lr_scheduler
|
||||
|
||||
@torch.no_grad()
|
||||
def get_inputs(self, batch: Dict[str, torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
|
||||
def get_inputs(self, batch: Dict[str, "torch.Tensor"]) -> Tuple[List["torch.Tensor"], List["torch.Tensor"]]:
|
||||
r"""
|
||||
Generates model's responses given queries.
|
||||
"""
|
||||
if self.model_args.upcast_layernorm:
|
||||
layernorm_params = dump_layernorm(self.model)
|
||||
|
||||
if batch["input_ids"].size(0) == 1: # handle llama2 ppo with gradient accumulation > 1
|
||||
start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item()
|
||||
for k, v in batch.items():
|
||||
batch[k] = v[:, start_index:]
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
generate_output: torch.Tensor = unwrapped_model.generate(
|
||||
generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch
|
||||
)
|
||||
with unwrap_model_for_generation(self.model, self.accelerator) as unwrapped_model:
|
||||
unwrapped_model = self.accelerator.unwrap_model(self.model) # issue in trl v0.8.6
|
||||
if self.model_args.upcast_layernorm:
|
||||
layernorm_params = dump_layernorm(unwrapped_model)
|
||||
|
||||
if self.model_args.upcast_layernorm:
|
||||
restore_layernorm(self.model, layernorm_params)
|
||||
generate_output: torch.Tensor = unwrapped_model.generate(
|
||||
generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch
|
||||
)
|
||||
if self.model_args.upcast_layernorm:
|
||||
restore_layernorm(unwrapped_model, layernorm_params)
|
||||
|
||||
query = batch["input_ids"].detach().cpu()
|
||||
response = generate_output[:, batch["input_ids"].size(-1) :].detach().cpu()
|
||||
@@ -246,10 +349,9 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
@torch.no_grad()
|
||||
def get_rewards(
|
||||
self,
|
||||
queries: List[torch.Tensor],
|
||||
responses: List[torch.Tensor],
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead",
|
||||
) -> List[torch.Tensor]:
|
||||
queries: List["torch.Tensor"],
|
||||
responses: List["torch.Tensor"],
|
||||
) -> List["torch.Tensor"]:
|
||||
r"""
|
||||
Computes scores using given reward model.
|
||||
|
||||
@@ -260,18 +362,22 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True)
|
||||
return get_rewards_from_server(self.reward_model, messages)
|
||||
|
||||
batch = self.prepare_model_inputs(queries, responses)
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
|
||||
if self.finetuning_args.reward_model_type == "lora":
|
||||
replace_model(unwrapped_model, target="reward")
|
||||
reward_model = self.model
|
||||
else:
|
||||
reward_model = self.reward_model
|
||||
|
||||
batch = self.prepare_model_inputs(queries, responses)
|
||||
with unwrap_model_for_generation(reward_model, self.accelerator), self.amp_context: # support bf16
|
||||
_, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True, use_cache=False)
|
||||
|
||||
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
|
||||
_, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True)
|
||||
if self.finetuning_args.reward_model_type == "lora":
|
||||
replace_model(unwrapped_model, target="default")
|
||||
|
||||
if getattr(unwrapped_model.config, "model_type", None) == "chatglm": # assume same architecture
|
||||
if self.is_chatglm_model: # assume same architecture
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
rewards = []
|
||||
@@ -280,21 +386,18 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
end_index = end_indexes[-1].item() if len(end_indexes) else 0
|
||||
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
|
||||
|
||||
if self.finetuning_args.reward_model_type == "lora":
|
||||
replace_model(unwrapped_model, target="default")
|
||||
|
||||
return rewards
|
||||
|
||||
@PPODecorators.empty_device_cache()
|
||||
def batched_forward_pass(
|
||||
self,
|
||||
model: "AutoModelForCausalLMWithValueHead",
|
||||
queries: torch.Tensor,
|
||||
responses: torch.Tensor,
|
||||
model_inputs: dict,
|
||||
queries: "torch.Tensor",
|
||||
responses: "torch.Tensor",
|
||||
model_inputs: Dict[str, Any],
|
||||
return_logits: bool = False,
|
||||
response_masks: Optional[torch.Tensor] = None,
|
||||
):
|
||||
response_masks: Optional["torch.Tensor"] = None,
|
||||
) -> Tuple["torch.Tensor", Optional["torch.Tensor"], "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Calculates model outputs in multiple batches.
|
||||
|
||||
@@ -316,11 +419,10 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
input_ids = input_kwargs["input_ids"]
|
||||
attention_mask = input_kwargs["attention_mask"]
|
||||
|
||||
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
|
||||
with self.amp_context: # support bf16
|
||||
logits, _, values = model(**input_kwargs)
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
if getattr(unwrapped_model.config, "model_type", None) == "chatglm":
|
||||
if self.is_chatglm_model:
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
|
||||
@@ -363,14 +465,28 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
if self.args.should_save:
|
||||
if output_dir is None:
|
||||
output_dir = self.args.output_dir
|
||||
|
||||
if self.is_fsdp_enabled or self.is_deepspeed_enabled:
|
||||
try:
|
||||
self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model))
|
||||
state_dict = self.accelerator.get_state_dict(self.model) # must be called at all ranks
|
||||
if self.args.should_save:
|
||||
self._save(output_dir, state_dict=state_dict)
|
||||
except ValueError:
|
||||
logger.warning(
|
||||
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
|
||||
" use zero_to_fp32.py to recover weights"
|
||||
)
|
||||
self._save(output_dir, state_dict={})
|
||||
remove_dummy_checkpoint(True, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
|
||||
if self.args.should_save:
|
||||
self._save(output_dir, state_dict={})
|
||||
# remove the dummy state_dict
|
||||
remove_dummy_checkpoint(self.args.should_save, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
|
||||
self.model.save_checkpoint(output_dir)
|
||||
|
||||
elif self.args.should_save:
|
||||
self._save(output_dir)
|
||||
|
||||
if self.processor is not None and self.args.should_save:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
@@ -1,19 +1,15 @@
|
||||
# Inspired by: https://github.com/lvwerra/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from torch.optim import AdamW
|
||||
from transformers import DataCollatorWithPadding
|
||||
from transformers.optimization import get_scheduler
|
||||
from trl import PPOConfig
|
||||
|
||||
from ...data import get_dataset
|
||||
from ...extras.callbacks import FixValueHeadModelCallback
|
||||
from ...extras.misc import fix_valuehead_checkpoint
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_custom_optimzer, create_ref_model, create_reward_model
|
||||
from ..trainer_utils import create_ref_model, create_reward_model
|
||||
from .trainer import CustomPPOTrainer
|
||||
|
||||
|
||||
@@ -31,8 +27,9 @@ def run_ppo(
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="ppo")
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="ppo", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||
|
||||
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
|
||||
@@ -42,45 +39,6 @@ def run_ppo(
|
||||
ref_model = create_ref_model(model_args, finetuning_args, add_valuehead=True)
|
||||
reward_model = create_reward_model(model, model_args, finetuning_args)
|
||||
|
||||
# Create ppo config
|
||||
backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
|
||||
ppo_config = PPOConfig(
|
||||
model_name=model_args.model_name_or_path,
|
||||
learning_rate=training_args.learning_rate,
|
||||
mini_batch_size=training_args.per_device_train_batch_size,
|
||||
batch_size=backward_batch_size * finetuning_args.ppo_buffer_size,
|
||||
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
||||
ppo_epochs=finetuning_args.ppo_epochs,
|
||||
max_grad_norm=training_args.max_grad_norm,
|
||||
seed=training_args.seed,
|
||||
optimize_device_cache=True,
|
||||
target=finetuning_args.ppo_target,
|
||||
log_with=finetuning_args.ppo_logger,
|
||||
use_score_scaling=finetuning_args.ppo_score_norm,
|
||||
use_score_norm=finetuning_args.ppo_score_norm,
|
||||
whiten_rewards=finetuning_args.ppo_whiten_rewards,
|
||||
accelerator_kwargs={"step_scheduler_with_optimizer": False},
|
||||
project_kwargs={"logging_dir": training_args.logging_dir},
|
||||
)
|
||||
|
||||
# Create optimizer and scheduler
|
||||
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
|
||||
if optimizer is None:
|
||||
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=training_args.learning_rate)
|
||||
|
||||
if training_args.max_steps > 0:
|
||||
num_training_steps = training_args.max_steps
|
||||
else:
|
||||
total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size
|
||||
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
|
||||
|
||||
lr_scheduler = get_scheduler(
|
||||
training_args.lr_scheduler_type,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
|
||||
num_training_steps=num_training_steps,
|
||||
)
|
||||
|
||||
# Initialize our Trainer
|
||||
ppo_trainer = CustomPPOTrainer(
|
||||
model_args=model_args,
|
||||
@@ -88,15 +46,12 @@ def run_ppo(
|
||||
finetuning_args=finetuning_args,
|
||||
generating_args=generating_args,
|
||||
callbacks=callbacks + [FixValueHeadModelCallback()],
|
||||
reward_model=reward_model,
|
||||
config=ppo_config,
|
||||
model=model,
|
||||
reward_model=reward_model,
|
||||
ref_model=ref_model,
|
||||
tokenizer=tokenizer,
|
||||
dataset=dataset,
|
||||
data_collator=data_collator,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
**tokenizer_module,
|
||||
)
|
||||
|
||||
# Training
|
||||
@@ -0,0 +1,51 @@
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Optional
|
||||
|
||||
from transformers import Trainer
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch
|
||||
from transformers import ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
r"""
|
||||
Inherits Trainer for custom optimizer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
@@ -3,12 +3,13 @@
|
||||
import math
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from transformers import DataCollatorForLanguageModeling, Trainer
|
||||
from transformers import DataCollatorForLanguageModeling
|
||||
|
||||
from ...data import get_dataset, split_dataset
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_custom_optimzer, create_modelcard_and_push
|
||||
from ..trainer_utils import create_modelcard_and_push
|
||||
from .trainer import CustomTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -24,20 +25,20 @@ def run_pt(
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="pt")
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
|
||||
# Initialize our Trainer
|
||||
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
|
||||
trainer = Trainer(
|
||||
trainer = CustomTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
optimizers=(optimizer, None),
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
@@ -1,29 +1,58 @@
|
||||
import json
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
from transformers.trainer import PredictionOutput
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class PairwiseTrainer(Trainer):
|
||||
r"""
|
||||
Inherits PeftTrainer to compute pairwise loss.
|
||||
Inherits Trainer to compute pairwise loss.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
def __init__(
|
||||
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
self.can_return_loss = True # override property to return eval_loss
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def compute_loss(
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False
|
||||
@@ -34,7 +63,7 @@ class PairwiseTrainer(Trainer):
|
||||
Subclass and override to inject custom behavior.
|
||||
|
||||
Note that the first element will be removed from the output tuple.
|
||||
See: https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/trainer.py#L3509
|
||||
See: https://github.com/huggingface/transformers/blob/v4.39.1/src/transformers/trainer.py#L3777
|
||||
"""
|
||||
# Compute rewards
|
||||
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
|
||||
@@ -2,13 +2,12 @@
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import get_dataset, split_dataset
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.callbacks import FixValueHeadModelCallback
|
||||
from ...extras.misc import fix_valuehead_checkpoint
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_custom_optimzer, create_modelcard_and_push
|
||||
from .collator import PairwiseDataCollatorWithPadding
|
||||
from ..trainer_utils import create_modelcard_and_push
|
||||
from .metric import compute_accuracy
|
||||
from .trainer import PairwiseTrainer
|
||||
|
||||
@@ -26,8 +25,9 @@ def run_rm(
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
||||
|
||||
@@ -35,15 +35,14 @@ def run_rm(
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
|
||||
trainer = PairwiseTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks + [FixValueHeadModelCallback()],
|
||||
optimizers=(optimizer, None),
|
||||
compute_metrics=compute_accuracy,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
@@ -57,7 +56,7 @@ def run_rm(
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
@@ -10,12 +10,15 @@ from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_a
|
||||
if TYPE_CHECKING:
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
|
||||
if is_jieba_available():
|
||||
import jieba # type: ignore
|
||||
|
||||
|
||||
if is_nltk_available():
|
||||
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
|
||||
|
||||
|
||||
if is_rouge_available():
|
||||
from rouge_chinese import Rouge
|
||||
|
||||
@@ -1,31 +1,63 @@
|
||||
import json
|
||||
import os
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import Seq2SeqTrainer
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.trainer import PredictionOutput
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
r"""
|
||||
Inherits PeftTrainer to compute generative metrics such as BLEU and ROUGE.
|
||||
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: nn.Module,
|
||||
model: "torch.nn.Module",
|
||||
inputs: Dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
@@ -9,10 +9,9 @@ from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.misc import get_logits_processor
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ...train.sft.metric import ComputeMetrics
|
||||
from ...train.sft.trainer import CustomSeq2SeqTrainer
|
||||
from ...train.utils import create_modelcard_and_push
|
||||
from ..utils import create_custom_optimzer
|
||||
from ..trainer_utils import create_modelcard_and_push
|
||||
from .metric import ComputeMetrics
|
||||
from .trainer import CustomSeq2SeqTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -29,8 +28,9 @@ def run_sft(
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
if training_args.predict_with_generate:
|
||||
@@ -48,17 +48,17 @@ def run_sft(
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False if model_args.visual_inputs else training_args.remove_unused_columns
|
||||
|
||||
# Initialize our Trainer
|
||||
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
|
||||
trainer = CustomSeq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
optimizers=(optimizer, None),
|
||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
@@ -0,0 +1,423 @@
|
||||
from contextlib import contextmanager
|
||||
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
from transformers.optimization import get_scheduler
|
||||
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
||||
from transformers.trainer_pt_utils import get_parameter_names
|
||||
|
||||
from ..extras.constants import IGNORE_INDEX
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.packages import is_galore_available
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params
|
||||
|
||||
|
||||
if is_galore_available():
|
||||
from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from accelerate import Accelerator
|
||||
from transformers import PreTrainedModel, Seq2SeqTrainingArguments
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..hparams import DataArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class DummyOptimizer(torch.optim.Optimizer):
|
||||
r"""
|
||||
A dummy optimizer used for the GaLore algorithm.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, lr: float = 1e-3, optimizer_dict: Optional[Dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None
|
||||
) -> None:
|
||||
dummy_tensor = torch.randn(1, 1)
|
||||
self.optimizer_dict = optimizer_dict
|
||||
super().__init__([dummy_tensor], {"lr": lr})
|
||||
|
||||
def zero_grad(self, set_to_none: bool = True) -> None:
|
||||
pass
|
||||
|
||||
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
|
||||
pass
|
||||
|
||||
|
||||
def create_modelcard_and_push(
|
||||
trainer: "Trainer",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> None:
|
||||
kwargs = {
|
||||
"tasks": "text-generation",
|
||||
"finetuned_from": model_args.model_name_or_path,
|
||||
"tags": ["llama-factory", finetuning_args.finetuning_type],
|
||||
}
|
||||
if data_args.dataset is not None:
|
||||
kwargs["dataset"] = [dataset.strip() for dataset in data_args.dataset.split(",")]
|
||||
|
||||
if model_args.use_unsloth:
|
||||
kwargs["tags"] = kwargs["tags"] + ["unsloth"]
|
||||
|
||||
if not training_args.do_train:
|
||||
pass
|
||||
elif training_args.push_to_hub:
|
||||
trainer.push_to_hub(**kwargs)
|
||||
else:
|
||||
trainer.create_model_card(license="other", **kwargs) # prevent from connecting to hub
|
||||
|
||||
|
||||
def create_ref_model(
|
||||
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
|
||||
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]:
|
||||
r"""
|
||||
Creates reference model for PPO/DPO training. Evaluation mode is not supported.
|
||||
|
||||
The valuehead parameter is randomly initialized since it is useless for PPO training.
|
||||
"""
|
||||
if finetuning_args.ref_model is not None:
|
||||
ref_model_args_dict = model_args.to_dict()
|
||||
ref_model_args_dict.update(
|
||||
dict(
|
||||
model_name_or_path=finetuning_args.ref_model,
|
||||
adapter_name_or_path=finetuning_args.ref_model_adapters,
|
||||
quantization_bit=finetuning_args.ref_model_quantization_bit,
|
||||
)
|
||||
)
|
||||
ref_model_args = ModelArguments(**ref_model_args_dict)
|
||||
ref_finetuning_args = FinetuningArguments()
|
||||
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
|
||||
ref_model = load_model(
|
||||
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
)
|
||||
logger.info("Created reference model from {}".format(finetuning_args.ref_model))
|
||||
else:
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
ref_model = None
|
||||
else:
|
||||
tokenizer = load_tokenizer(model_args)["tokenizer"]
|
||||
ref_model = load_model(
|
||||
tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
)
|
||||
logger.info("Created reference model from the model itself.")
|
||||
|
||||
return ref_model
|
||||
|
||||
|
||||
def create_reward_model(
|
||||
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
|
||||
) -> Optional["AutoModelForCausalLMWithValueHead"]:
|
||||
r"""
|
||||
Creates reward model for PPO training.
|
||||
"""
|
||||
if finetuning_args.reward_model_type == "api":
|
||||
assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
|
||||
logger.info("Use reward server {}".format(finetuning_args.reward_model))
|
||||
return finetuning_args.reward_model
|
||||
elif finetuning_args.reward_model_type == "lora":
|
||||
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
|
||||
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090
|
||||
if "default" in name:
|
||||
param.data = param.data.to(torch.float32) # trainable params should in fp32
|
||||
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
|
||||
assert vhead_params is not None, "Reward model is not correctly loaded."
|
||||
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
|
||||
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
|
||||
model.register_buffer(
|
||||
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
|
||||
)
|
||||
model.register_buffer(
|
||||
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
|
||||
)
|
||||
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model))
|
||||
return None
|
||||
else:
|
||||
reward_model_args_dict = model_args.to_dict()
|
||||
reward_model_args_dict.update(
|
||||
dict(
|
||||
model_name_or_path=finetuning_args.reward_model,
|
||||
adapter_name_or_path=finetuning_args.reward_model_adapters,
|
||||
quantization_bit=finetuning_args.reward_model_quantization_bit,
|
||||
)
|
||||
)
|
||||
reward_model_args = ModelArguments(**reward_model_args_dict)
|
||||
reward_finetuning_args = FinetuningArguments()
|
||||
tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
|
||||
reward_model = load_model(
|
||||
tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
|
||||
)
|
||||
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model))
|
||||
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
|
||||
return reward_model
|
||||
|
||||
|
||||
@contextmanager
|
||||
def get_ref_context(accelerator: "Accelerator", model: "PreTrainedModel"):
|
||||
r"""
|
||||
Gets adapter context for the reference model.
|
||||
"""
|
||||
with accelerator.unwrap_model(model).disable_adapter():
|
||||
model.eval()
|
||||
yield
|
||||
model.train()
|
||||
|
||||
|
||||
def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
|
||||
r"""
|
||||
Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)
|
||||
"""
|
||||
decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
|
||||
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
||||
return decay_parameters
|
||||
|
||||
|
||||
def _create_galore_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
|
||||
galore_targets = find_all_linear_modules(model)
|
||||
else:
|
||||
galore_targets = finetuning_args.galore_target
|
||||
|
||||
galore_params: List["torch.nn.Parameter"] = []
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
|
||||
for param in module.parameters():
|
||||
if param.requires_grad and len(param.shape) > 1:
|
||||
galore_params.append(param)
|
||||
|
||||
galore_kwargs = {
|
||||
"rank": finetuning_args.galore_rank,
|
||||
"update_proj_gap": finetuning_args.galore_update_interval,
|
||||
"scale": finetuning_args.galore_scale,
|
||||
"proj_type": finetuning_args.galore_proj_type,
|
||||
}
|
||||
|
||||
id_galore_params = {id(param) for param in galore_params}
|
||||
decay_params, nodecay_params = [], [] # they are non-galore parameters
|
||||
trainable_params: List["torch.nn.Parameter"] = [] # galore_params + decay_params + nodecay_params
|
||||
decay_param_names = _get_decay_parameter_names(model)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
trainable_params.append(param)
|
||||
if id(param) not in id_galore_params:
|
||||
if name in decay_param_names:
|
||||
decay_params.append(param)
|
||||
else:
|
||||
nodecay_params.append(param)
|
||||
|
||||
_, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
|
||||
if training_args.optim == "adamw_torch":
|
||||
optim_class = GaLoreAdamW
|
||||
elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
|
||||
optim_class = GaLoreAdamW8bit
|
||||
elif training_args.optim == "adafactor":
|
||||
optim_class = GaLoreAdafactor
|
||||
else:
|
||||
raise NotImplementedError("Unknow optim: {}".format(training_args.optim))
|
||||
|
||||
if finetuning_args.galore_layerwise:
|
||||
if training_args.gradient_accumulation_steps != 1:
|
||||
raise ValueError("Per-layer GaLore does not support gradient accumulation.")
|
||||
|
||||
optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {}
|
||||
for param in nodecay_params:
|
||||
param_groups = [dict(params=[param], weight_decay=0.0)]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
for param in decay_params:
|
||||
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
for param in galore_params: # galore params have weight decay
|
||||
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
|
||||
def optimizer_hook(param: "torch.nn.Parameter"):
|
||||
if param.grad is not None:
|
||||
optimizer_dict[param].step()
|
||||
optimizer_dict[param].zero_grad()
|
||||
|
||||
for param in trainable_params:
|
||||
param.register_post_accumulate_grad_hook(optimizer_hook)
|
||||
|
||||
optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
|
||||
else:
|
||||
param_groups = [
|
||||
dict(params=nodecay_params, weight_decay=0.0),
|
||||
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
||||
dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
|
||||
]
|
||||
optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
|
||||
logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
|
||||
return optimizer
|
||||
|
||||
|
||||
def _create_loraplus_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
default_lr = training_args.learning_rate
|
||||
loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
|
||||
embedding_lr = finetuning_args.loraplus_lr_embedding
|
||||
|
||||
decay_param_names = _get_decay_parameter_names(model)
|
||||
param_dict: Dict[str, List["torch.nn.Parameter"]] = {
|
||||
"lora_a": [],
|
||||
"lora_b": [],
|
||||
"lora_b_nodecay": [],
|
||||
"embedding": [],
|
||||
}
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
if "lora_embedding_B" in name:
|
||||
param_dict["embedding"].append(param)
|
||||
elif "lora_B" in name or param.ndim == 1:
|
||||
if name in decay_param_names:
|
||||
param_dict["lora_b"].append(param)
|
||||
else:
|
||||
param_dict["lora_b_nodecay"].append(param)
|
||||
else:
|
||||
param_dict["lora_a"].append(param)
|
||||
|
||||
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
param_groups = [
|
||||
dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay),
|
||||
dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay),
|
||||
dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0),
|
||||
dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
|
||||
]
|
||||
optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
logger.info("Using LoRA+ optimizer with loraplus lr ratio {:.2f}.".format(finetuning_args.loraplus_lr_ratio))
|
||||
return optimizer
|
||||
|
||||
|
||||
def _create_badam_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
decay_params, nodecay_params = [], []
|
||||
decay_param_names = _get_decay_parameter_names(model)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
if name in decay_param_names:
|
||||
decay_params.append(param)
|
||||
else:
|
||||
nodecay_params.append(param)
|
||||
|
||||
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
param_groups = [
|
||||
dict(params=nodecay_params, weight_decay=0.0),
|
||||
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
||||
]
|
||||
|
||||
if finetuning_args.badam_mode == "layer":
|
||||
from badam import BlockOptimizer
|
||||
|
||||
base_optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
optimizer = BlockOptimizer(
|
||||
base_optimizer=base_optimizer,
|
||||
named_parameters_list=list(model.named_parameters()),
|
||||
block_prefix_list=None,
|
||||
switch_block_every=finetuning_args.badam_switch_interval,
|
||||
start_block=finetuning_args.badam_start_block,
|
||||
switch_mode=finetuning_args.badam_switch_mode,
|
||||
verbose=finetuning_args.badam_verbose,
|
||||
)
|
||||
logger.info(
|
||||
f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
|
||||
f"switch block every {finetuning_args.badam_switch_interval} steps, "
|
||||
f"default start block is {finetuning_args.badam_start_block}"
|
||||
)
|
||||
|
||||
elif finetuning_args.badam_mode == "ratio":
|
||||
from badam import BlockOptimizerRatio
|
||||
|
||||
assert finetuning_args.badam_update_ratio > 1e-6
|
||||
optimizer = BlockOptimizerRatio(
|
||||
param_groups=param_groups,
|
||||
named_parameters_list=list(model.named_parameters()),
|
||||
update_ratio=finetuning_args.badam_update_ratio,
|
||||
mask_mode=finetuning_args.badam_mask_mode,
|
||||
verbose=finetuning_args.badam_verbose,
|
||||
include_embedding=False,
|
||||
**optim_kwargs,
|
||||
)
|
||||
logger.info(
|
||||
f"Using BAdam optimizer with ratio-wise update, update ratio is {finetuning_args.badam_update_ratio}, "
|
||||
f"mask mode is {finetuning_args.badam_mask_mode}"
|
||||
)
|
||||
|
||||
return optimizer
|
||||
|
||||
|
||||
def create_custom_optimzer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> Optional["torch.optim.Optimizer"]:
|
||||
if finetuning_args.use_galore:
|
||||
return _create_galore_optimizer(model, training_args, finetuning_args)
|
||||
|
||||
if finetuning_args.loraplus_lr_ratio is not None:
|
||||
return _create_loraplus_optimizer(model, training_args, finetuning_args)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
return _create_badam_optimizer(model, training_args, finetuning_args)
|
||||
|
||||
|
||||
def create_custom_scheduler(
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
num_training_steps: int,
|
||||
optimizer: Optional["torch.optim.Optimizer"] = None,
|
||||
) -> None:
|
||||
if optimizer is not None and isinstance(optimizer, DummyOptimizer):
|
||||
optimizer_dict = optimizer.optimizer_dict
|
||||
scheduler_dict: Dict["torch.nn.Parameter", "torch.optim.lr_scheduler.LRScheduler"] = {}
|
||||
|
||||
for param in optimizer_dict.keys():
|
||||
scheduler_dict[param] = get_scheduler(
|
||||
training_args.lr_scheduler_type,
|
||||
optimizer=optimizer_dict[param],
|
||||
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
|
||||
num_training_steps=num_training_steps,
|
||||
scheduler_specific_kwargs=training_args.lr_scheduler_kwargs,
|
||||
)
|
||||
|
||||
def scheduler_hook(param: "torch.nn.Parameter"):
|
||||
scheduler_dict[param].step()
|
||||
|
||||
for param in optimizer_dict.keys():
|
||||
param.register_post_accumulate_grad_hook(scheduler_hook)
|
||||
|
||||
|
||||
def get_batch_logps(
|
||||
logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes the log probabilities of the given labels under the given logits.
|
||||
|
||||
Returns:
|
||||
logps: A tensor of shape (batch_size,) containing the sum of log probabilities.
|
||||
valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens.
|
||||
"""
|
||||
if logits.shape[:-1] != labels.shape:
|
||||
raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.")
|
||||
|
||||
labels = labels[:, 1:].clone()
|
||||
logits = logits[:, :-1, :]
|
||||
loss_mask = labels != label_pad_token_id
|
||||
labels[labels == label_pad_token_id] = 0 # dummy token
|
||||
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
|
||||
return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)
|
||||
@@ -7,8 +7,9 @@ from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.callbacks import LogCallback
|
||||
from ..extras.logging import get_logger
|
||||
from ..hparams import get_infer_args, get_train_args
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .dpo import run_dpo
|
||||
from .kto import run_kto
|
||||
from .ppo import run_ppo
|
||||
from .pt import run_pt
|
||||
from .rm import run_rm
|
||||
@@ -22,9 +23,9 @@ if TYPE_CHECKING:
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None):
|
||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
|
||||
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
|
||||
callbacks = [LogCallback()] if callbacks is None else callbacks
|
||||
callbacks.append(LogCallback(training_args.output_dir))
|
||||
|
||||
if finetuning_args.stage == "pt":
|
||||
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
@@ -36,21 +37,26 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
|
||||
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||
elif finetuning_args.stage == "dpo":
|
||||
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "kto":
|
||||
run_kto(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
else:
|
||||
raise ValueError("Unknown task.")
|
||||
|
||||
|
||||
def export_model(args: Optional[Dict[str, Any]] = None):
|
||||
def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
||||
model_args, data_args, finetuning_args, _ = get_infer_args(args)
|
||||
|
||||
if model_args.export_dir is None:
|
||||
raise ValueError("Please specify `export_dir`.")
|
||||
raise ValueError("Please specify `export_dir` to save model.")
|
||||
|
||||
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
|
||||
raise ValueError("Please merge adapters before quantizing the model.")
|
||||
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
processor = tokenizer_module["processor"]
|
||||
get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
||||
model = load_model(tokenizer, model_args, finetuning_args) # must after fixing tokenizer to resize vocab
|
||||
|
||||
if getattr(model, "quantization_method", None) and model_args.adapter_name_or_path is not None:
|
||||
raise ValueError("Cannot merge adapters to a quantized model.")
|
||||
@@ -58,12 +64,11 @@ def export_model(args: Optional[Dict[str, Any]] = None):
|
||||
if not isinstance(model, PreTrainedModel):
|
||||
raise ValueError("The model is not a `PreTrainedModel`, export aborted.")
|
||||
|
||||
if getattr(model, "quantization_method", None):
|
||||
model = model.to("cpu")
|
||||
elif hasattr(model.config, "torch_dtype"):
|
||||
model = model.to(getattr(model.config, "torch_dtype")).to("cpu")
|
||||
if getattr(model, "quantization_method", None) is None: # cannot convert dtype of a quantized model
|
||||
output_dtype = getattr(model.config, "torch_dtype", torch.float16)
|
||||
setattr(model.config, "torch_dtype", output_dtype)
|
||||
model = model.to(output_dtype)
|
||||
else:
|
||||
model = model.to(torch.float16).to("cpu")
|
||||
setattr(model.config, "torch_dtype", torch.float16)
|
||||
|
||||
model.save_pretrained(
|
||||
@@ -85,9 +90,13 @@ def export_model(args: Optional[Dict[str, Any]] = None):
|
||||
tokenizer.save_pretrained(model_args.export_dir)
|
||||
if model_args.export_hub_model_id is not None:
|
||||
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token)
|
||||
|
||||
if model_args.visual_inputs and processor is not None:
|
||||
getattr(processor, "image_processor").save_pretrained(model_args.export_dir)
|
||||
if model_args.export_hub_model_id is not None:
|
||||
getattr(processor, "image_processor").push_to_hub(
|
||||
model_args.export_hub_model_id, token=model_args.hf_hub_token
|
||||
)
|
||||
|
||||
except Exception:
|
||||
logger.warning("Cannot save tokenizer, please copy the files manually.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_exp()
|
||||
@@ -1,13 +1,14 @@
|
||||
import json
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple
|
||||
from typing import TYPE_CHECKING, Dict, Generator, List, Optional, Sequence, Tuple
|
||||
|
||||
import gradio as gr
|
||||
from gradio.components import Component # cannot use TYPE_CHECKING here
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ..chat import ChatModel
|
||||
from ..data import Role
|
||||
from ..extras.constants import PEFT_METHODS
|
||||
from ..extras.misc import torch_gc
|
||||
from ..extras.packages import is_gradio_available
|
||||
from .common import get_save_dir
|
||||
from .locales import ALERTS
|
||||
|
||||
@@ -17,6 +18,10 @@ if TYPE_CHECKING:
|
||||
from .manager import Manager
|
||||
|
||||
|
||||
if is_gradio_available():
|
||||
import gradio as gr
|
||||
|
||||
|
||||
class WebChatModel(ChatModel):
|
||||
def __init__(self, manager: "Manager", demo_mode: bool = False, lazy_init: bool = True) -> None:
|
||||
self.manager = manager
|
||||
@@ -29,21 +34,25 @@ class WebChatModel(ChatModel):
|
||||
if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"): # load demo model
|
||||
model_name_or_path = os.environ.get("DEMO_MODEL")
|
||||
template = os.environ.get("DEMO_TEMPLATE")
|
||||
super().__init__(dict(model_name_or_path=model_name_or_path, template=template))
|
||||
infer_backend = os.environ.get("DEMO_BACKEND", "huggingface")
|
||||
super().__init__(
|
||||
dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend)
|
||||
)
|
||||
|
||||
@property
|
||||
def loaded(self) -> bool:
|
||||
return self.engine is not None
|
||||
|
||||
def load_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
|
||||
get = lambda name: data[self.manager.get_elem_by_name(name)]
|
||||
lang = get("top.lang")
|
||||
def load_model(self, data) -> Generator[str, None, None]:
|
||||
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
|
||||
lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
|
||||
finetuning_type, checkpoint_path = get("top.finetuning_type"), get("top.checkpoint_path")
|
||||
error = ""
|
||||
if self.loaded:
|
||||
error = ALERTS["err_exists"][lang]
|
||||
elif not get("top.model_name"):
|
||||
elif not model_name:
|
||||
error = ALERTS["err_no_model"][lang]
|
||||
elif not get("top.model_path"):
|
||||
elif not model_path:
|
||||
error = ALERTS["err_no_path"][lang]
|
||||
elif self.demo_mode:
|
||||
error = ALERTS["err_demo"][lang]
|
||||
@@ -53,34 +62,32 @@ class WebChatModel(ChatModel):
|
||||
yield error
|
||||
return
|
||||
|
||||
if get("top.adapter_path"):
|
||||
adapter_name_or_path = ",".join(
|
||||
[
|
||||
get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
|
||||
for adapter in get("top.adapter_path")
|
||||
]
|
||||
)
|
||||
else:
|
||||
adapter_name_or_path = None
|
||||
|
||||
yield ALERTS["info_loading"][lang]
|
||||
args = dict(
|
||||
model_name_or_path=get("top.model_path"),
|
||||
adapter_name_or_path=adapter_name_or_path,
|
||||
finetuning_type=get("top.finetuning_type"),
|
||||
model_name_or_path=model_path,
|
||||
finetuning_type=finetuning_type,
|
||||
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
|
||||
template=get("top.template"),
|
||||
flash_attn=(get("top.booster") == "flash_attn"),
|
||||
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
|
||||
use_unsloth=(get("top.booster") == "unsloth"),
|
||||
visual_inputs=get("top.visual_inputs"),
|
||||
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
|
||||
infer_backend=get("infer.infer_backend"),
|
||||
)
|
||||
super().__init__(args)
|
||||
|
||||
if checkpoint_path:
|
||||
if finetuning_type in PEFT_METHODS: # list
|
||||
args["adapter_name_or_path"] = ",".join(
|
||||
[get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path]
|
||||
)
|
||||
else: # str
|
||||
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path)
|
||||
|
||||
super().__init__(args)
|
||||
yield ALERTS["info_loaded"][lang]
|
||||
|
||||
def unload_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
|
||||
lang = data[self.manager.get_elem_by_name("top.lang")]
|
||||
def unload_model(self, data) -> Generator[str, None, None]:
|
||||
lang = data[self.manager.get_elem_by_id("top.lang")]
|
||||
|
||||
if self.demo_mode:
|
||||
gr.Warning(ALERTS["err_demo"][lang])
|
||||
@@ -92,23 +99,30 @@ class WebChatModel(ChatModel):
|
||||
torch_gc()
|
||||
yield ALERTS["info_unloaded"][lang]
|
||||
|
||||
def predict(
|
||||
def append(
|
||||
self,
|
||||
chatbot: List[Tuple[str, str]],
|
||||
chatbot: List[List[Optional[str]]],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
role: str,
|
||||
query: str,
|
||||
messages: Sequence[Tuple[str, str]],
|
||||
) -> Tuple[List[List[Optional[str]]], List[Dict[str, str]], str]:
|
||||
return chatbot + [[query, None]], messages + [{"role": role, "content": query}], ""
|
||||
|
||||
def stream(
|
||||
self,
|
||||
chatbot: List[List[Optional[str]]],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: str,
|
||||
tools: str,
|
||||
image: Optional[NDArray],
|
||||
max_new_tokens: int,
|
||||
top_p: float,
|
||||
temperature: float,
|
||||
) -> Generator[Tuple[Sequence[Tuple[str, str]], Sequence[Tuple[str, str]]], None, None]:
|
||||
chatbot.append([query, ""])
|
||||
query_messages = messages + [{"role": role, "content": query}]
|
||||
) -> Generator[Tuple[List[List[Optional[str]]], List[Dict[str, str]]], None, None]:
|
||||
chatbot[-1][1] = ""
|
||||
response = ""
|
||||
for new_text in self.stream_chat(
|
||||
query_messages, system, tools, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
|
||||
messages, system, tools, image, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
|
||||
):
|
||||
response += new_text
|
||||
if tools:
|
||||
@@ -120,18 +134,11 @@ class WebChatModel(ChatModel):
|
||||
name, arguments = result
|
||||
arguments = json.loads(arguments)
|
||||
tool_call = json.dumps({"name": name, "arguments": arguments}, ensure_ascii=False)
|
||||
output_messages = query_messages + [{"role": Role.FUNCTION.value, "content": tool_call}]
|
||||
output_messages = messages + [{"role": Role.FUNCTION.value, "content": tool_call}]
|
||||
bot_text = "```json\n" + tool_call + "\n```"
|
||||
else:
|
||||
output_messages = query_messages + [{"role": Role.ASSISTANT.value, "content": result}]
|
||||
output_messages = messages + [{"role": Role.ASSISTANT.value, "content": result}]
|
||||
bot_text = result
|
||||
|
||||
chatbot[-1] = [query, self.postprocess(bot_text)]
|
||||
chatbot[-1][1] = bot_text
|
||||
yield chatbot, output_messages
|
||||
|
||||
def postprocess(self, response: str) -> str:
|
||||
blocks = response.split("```")
|
||||
for i, block in enumerate(blocks):
|
||||
if i % 2 == 0:
|
||||
blocks[i] = block.replace("<", "<").replace(">", ">")
|
||||
return "```".join(blocks)
|
||||
176
src/AntSK.LLamaFactory/llamafactory/llamafactory/webui/common.py
Normal file
176
src/AntSK.LLamaFactory/llamafactory/llamafactory/webui/common.py
Normal file
@@ -0,0 +1,176 @@
|
||||
import json
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
from yaml import safe_dump, safe_load
|
||||
|
||||
from ..extras.constants import (
|
||||
CHECKPOINT_NAMES,
|
||||
DATA_CONFIG,
|
||||
DEFAULT_TEMPLATE,
|
||||
PEFT_METHODS,
|
||||
STAGES_USE_PAIR_DATA,
|
||||
SUPPORTED_MODELS,
|
||||
TRAINING_STAGES,
|
||||
VISION_MODELS,
|
||||
DownloadSource,
|
||||
)
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import use_modelscope
|
||||
from ..extras.packages import is_gradio_available
|
||||
|
||||
|
||||
if is_gradio_available():
|
||||
import gradio as gr
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
DEFAULT_CACHE_DIR = "cache"
|
||||
DEFAULT_CONFIG_DIR = "config"
|
||||
DEFAULT_DATA_DIR = "data"
|
||||
DEFAULT_SAVE_DIR = "saves"
|
||||
USER_CONFIG = "user_config.yaml"
|
||||
|
||||
|
||||
def get_save_dir(*paths: str) -> os.PathLike:
|
||||
r"""
|
||||
Gets the path to saved model checkpoints.
|
||||
"""
|
||||
paths = (path.replace(os.path.sep, "").replace(" ", "").strip() for path in paths)
|
||||
return os.path.join(DEFAULT_SAVE_DIR, *paths)
|
||||
|
||||
|
||||
def get_config_path() -> os.PathLike:
|
||||
r"""
|
||||
Gets the path to user config.
|
||||
"""
|
||||
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG)
|
||||
|
||||
|
||||
def load_config() -> Dict[str, Any]:
|
||||
r"""
|
||||
Loads user config if exists.
|
||||
"""
|
||||
try:
|
||||
with open(get_config_path(), "r", encoding="utf-8") as f:
|
||||
return safe_load(f)
|
||||
except Exception:
|
||||
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
|
||||
|
||||
|
||||
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None:
|
||||
r"""
|
||||
Saves user config.
|
||||
"""
|
||||
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
|
||||
user_config = load_config()
|
||||
user_config["lang"] = lang or user_config["lang"]
|
||||
if model_name:
|
||||
user_config["last_model"] = model_name
|
||||
|
||||
if model_name and model_path:
|
||||
user_config["path_dict"][model_name] = model_path
|
||||
|
||||
with open(get_config_path(), "w", encoding="utf-8") as f:
|
||||
safe_dump(user_config, f)
|
||||
|
||||
|
||||
def get_model_path(model_name: str) -> str:
|
||||
r"""
|
||||
Gets the model path according to the model name.
|
||||
"""
|
||||
user_config = load_config()
|
||||
path_dict: Dict["DownloadSource", str] = SUPPORTED_MODELS.get(model_name, defaultdict(str))
|
||||
model_path = user_config["path_dict"].get(model_name, "") or path_dict.get(DownloadSource.DEFAULT, "")
|
||||
if (
|
||||
use_modelscope()
|
||||
and path_dict.get(DownloadSource.MODELSCOPE)
|
||||
and model_path == path_dict.get(DownloadSource.DEFAULT)
|
||||
): # replace path
|
||||
model_path = path_dict.get(DownloadSource.MODELSCOPE)
|
||||
|
||||
return model_path
|
||||
|
||||
|
||||
def get_prefix(model_name: str) -> str:
|
||||
r"""
|
||||
Gets the prefix of the model name to obtain the model family.
|
||||
"""
|
||||
return model_name.split("-")[0]
|
||||
|
||||
|
||||
def get_model_info(model_name: str) -> Tuple[str, str, bool]:
|
||||
r"""
|
||||
Gets the necessary information of this model.
|
||||
|
||||
Returns:
|
||||
model_path (str)
|
||||
template (str)
|
||||
visual (bool)
|
||||
"""
|
||||
return get_model_path(model_name), get_template(model_name), get_visual(model_name)
|
||||
|
||||
|
||||
def get_template(model_name: str) -> str:
|
||||
r"""
|
||||
Gets the template name if the model is a chat model.
|
||||
"""
|
||||
if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE:
|
||||
return DEFAULT_TEMPLATE[get_prefix(model_name)]
|
||||
return "default"
|
||||
|
||||
|
||||
def get_visual(model_name: str) -> bool:
|
||||
r"""
|
||||
Judges if the model is a vision language model.
|
||||
"""
|
||||
return get_prefix(model_name) in VISION_MODELS
|
||||
|
||||
|
||||
def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown":
|
||||
r"""
|
||||
Lists all available checkpoints.
|
||||
"""
|
||||
checkpoints = []
|
||||
if model_name:
|
||||
save_dir = get_save_dir(model_name, finetuning_type)
|
||||
if save_dir and os.path.isdir(save_dir):
|
||||
for checkpoint in os.listdir(save_dir):
|
||||
if os.path.isdir(os.path.join(save_dir, checkpoint)) and any(
|
||||
os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES
|
||||
):
|
||||
checkpoints.append(checkpoint)
|
||||
|
||||
if finetuning_type in PEFT_METHODS:
|
||||
return gr.Dropdown(value=[], choices=checkpoints, multiselect=True)
|
||||
else:
|
||||
return gr.Dropdown(value=None, choices=checkpoints, multiselect=False)
|
||||
|
||||
|
||||
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:
|
||||
r"""
|
||||
Loads dataset_info.json.
|
||||
"""
|
||||
if dataset_dir == "ONLINE":
|
||||
logger.info("dataset_dir is ONLINE, using online dataset.")
|
||||
return {}
|
||||
|
||||
try:
|
||||
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
except Exception as err:
|
||||
logger.warning("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err)))
|
||||
return {}
|
||||
|
||||
|
||||
def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown":
|
||||
r"""
|
||||
Lists all available datasets in the dataset dir for the training stage.
|
||||
"""
|
||||
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
|
||||
ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA
|
||||
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
|
||||
return gr.Dropdown(choices=datasets)
|
||||
@@ -0,0 +1,74 @@
|
||||
from typing import TYPE_CHECKING, Dict, Tuple
|
||||
|
||||
from ...data import Role
|
||||
from ...extras.packages import is_gradio_available
|
||||
from ..utils import check_json_schema
|
||||
|
||||
|
||||
if is_gradio_available():
|
||||
import gradio as gr
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from gradio.components import Component
|
||||
|
||||
from ..engine import Engine
|
||||
|
||||
|
||||
def create_chat_box(
|
||||
engine: "Engine", visible: bool = False
|
||||
) -> Tuple["Component", "Component", Dict[str, "Component"]]:
|
||||
with gr.Column(visible=visible) as chat_box:
|
||||
chatbot = gr.Chatbot(show_copy_button=True)
|
||||
messages = gr.State([])
|
||||
with gr.Row():
|
||||
with gr.Column(scale=4):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
role = gr.Dropdown(choices=[Role.USER.value, Role.OBSERVATION.value], value=Role.USER.value)
|
||||
system = gr.Textbox(show_label=False)
|
||||
tools = gr.Textbox(show_label=False, lines=3)
|
||||
|
||||
with gr.Column() as image_box:
|
||||
image = gr.Image(sources=["upload"], type="numpy")
|
||||
|
||||
query = gr.Textbox(show_label=False, lines=8)
|
||||
submit_btn = gr.Button(variant="primary")
|
||||
|
||||
with gr.Column(scale=1):
|
||||
max_new_tokens = gr.Slider(minimum=8, maximum=4096, value=512, step=1)
|
||||
top_p = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.01)
|
||||
temperature = gr.Slider(minimum=0.01, maximum=1.5, value=0.95, step=0.01)
|
||||
clear_btn = gr.Button()
|
||||
|
||||
tools.input(check_json_schema, inputs=[tools, engine.manager.get_elem_by_id("top.lang")])
|
||||
|
||||
submit_btn.click(
|
||||
engine.chatter.append,
|
||||
[chatbot, messages, role, query],
|
||||
[chatbot, messages, query],
|
||||
).then(
|
||||
engine.chatter.stream,
|
||||
[chatbot, messages, system, tools, image, max_new_tokens, top_p, temperature],
|
||||
[chatbot, messages],
|
||||
)
|
||||
clear_btn.click(lambda: ([], []), outputs=[chatbot, messages])
|
||||
|
||||
return (
|
||||
chatbot,
|
||||
messages,
|
||||
dict(
|
||||
chat_box=chat_box,
|
||||
role=role,
|
||||
system=system,
|
||||
tools=tools,
|
||||
image_box=image_box,
|
||||
image=image,
|
||||
query=query,
|
||||
submit_btn=submit_btn,
|
||||
max_new_tokens=max_new_tokens,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
clear_btn=clear_btn,
|
||||
),
|
||||
)
|
||||
@@ -1,10 +1,13 @@
|
||||
import json
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, Dict, Tuple
|
||||
|
||||
import gradio as gr
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Tuple
|
||||
|
||||
from ...extras.constants import DATA_CONFIG
|
||||
from ...extras.packages import is_gradio_available
|
||||
|
||||
|
||||
if is_gradio_available():
|
||||
import gradio as gr
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -22,36 +25,46 @@ def next_page(page_index: int, total_num: int) -> int:
|
||||
return page_index + 1 if (page_index + 1) * PAGE_SIZE < total_num else page_index
|
||||
|
||||
|
||||
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
|
||||
def can_preview(dataset_dir: str, dataset: list) -> "gr.Button":
|
||||
try:
|
||||
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
|
||||
dataset_info = json.load(f)
|
||||
except Exception:
|
||||
return gr.update(interactive=False)
|
||||
return gr.Button(interactive=False)
|
||||
|
||||
if (
|
||||
len(dataset) > 0
|
||||
and "file_name" in dataset_info[dataset[0]]
|
||||
and os.path.isfile(os.path.join(dataset_dir, dataset_info[dataset[0]]["file_name"]))
|
||||
):
|
||||
return gr.update(interactive=True)
|
||||
if len(dataset) == 0 or "file_name" not in dataset_info[dataset[0]]:
|
||||
return gr.Button(interactive=False)
|
||||
|
||||
data_path = os.path.join(dataset_dir, dataset_info[dataset[0]]["file_name"])
|
||||
if os.path.isfile(data_path) or (os.path.isdir(data_path) and os.listdir(data_path)):
|
||||
return gr.Button(interactive=True)
|
||||
else:
|
||||
return gr.update(interactive=False)
|
||||
return gr.Button(interactive=False)
|
||||
|
||||
|
||||
def get_preview(dataset_dir: str, dataset: list, page_index: int) -> Tuple[int, list, Dict[str, Any]]:
|
||||
def _load_data_file(file_path: str) -> List[Any]:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
if file_path.endswith(".json"):
|
||||
return json.load(f)
|
||||
elif file_path.endswith(".jsonl"):
|
||||
return [json.loads(line) for line in f]
|
||||
else:
|
||||
return list(f)
|
||||
|
||||
|
||||
def get_preview(dataset_dir: str, dataset: list, page_index: int) -> Tuple[int, list, "gr.Column"]:
|
||||
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
|
||||
dataset_info = json.load(f)
|
||||
|
||||
data_file: str = dataset_info[dataset[0]]["file_name"]
|
||||
with open(os.path.join(dataset_dir, data_file), "r", encoding="utf-8") as f:
|
||||
if data_file.endswith(".json"):
|
||||
data = json.load(f)
|
||||
elif data_file.endswith(".jsonl"):
|
||||
data = [json.loads(line) for line in f]
|
||||
else:
|
||||
data = [line for line in f] # noqa: C416
|
||||
return len(data), data[PAGE_SIZE * page_index : PAGE_SIZE * (page_index + 1)], gr.update(visible=True)
|
||||
data_path = os.path.join(dataset_dir, dataset_info[dataset[0]]["file_name"])
|
||||
if os.path.isfile(data_path):
|
||||
data = _load_data_file(data_path)
|
||||
else:
|
||||
data = []
|
||||
for file_name in os.listdir(data_path):
|
||||
data.extend(_load_data_file(os.path.join(data_path, file_name)))
|
||||
|
||||
return len(data), data[PAGE_SIZE * page_index : PAGE_SIZE * (page_index + 1)], gr.Column(visible=True)
|
||||
|
||||
|
||||
def create_preview_box(dataset_dir: "gr.Textbox", dataset: "gr.Dropdown") -> Dict[str, "Component"]:
|
||||
@@ -67,7 +80,7 @@ def create_preview_box(dataset_dir: "gr.Textbox", dataset: "gr.Dropdown") -> Dic
|
||||
close_btn = gr.Button()
|
||||
|
||||
with gr.Row():
|
||||
preview_samples = gr.JSON(interactive=False)
|
||||
preview_samples = gr.JSON()
|
||||
|
||||
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn], queue=False).then(
|
||||
lambda: 0, outputs=[page_index], queue=False
|
||||
@@ -81,7 +94,7 @@ def create_preview_box(dataset_dir: "gr.Textbox", dataset: "gr.Dropdown") -> Dic
|
||||
next_btn.click(next_page, [page_index, preview_count], [page_index], queue=False).then(
|
||||
get_preview, [dataset_dir, dataset, page_index], [preview_count, preview_samples, preview_box], queue=False
|
||||
)
|
||||
close_btn.click(lambda: gr.update(visible=False), outputs=[preview_box], queue=False)
|
||||
close_btn.click(lambda: gr.Column(visible=False), outputs=[preview_box], queue=False)
|
||||
return dict(
|
||||
data_preview_btn=data_preview_btn,
|
||||
preview_count=preview_count,
|
||||
@@ -1,11 +1,14 @@
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from ..common import DEFAULT_DATA_DIR, list_dataset
|
||||
from ...extras.packages import is_gradio_available
|
||||
from ..common import DEFAULT_DATA_DIR, list_datasets
|
||||
from .data import create_preview_box
|
||||
|
||||
|
||||
if is_gradio_available():
|
||||
import gradio as gr
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from gradio.components import Component
|
||||
|
||||
@@ -18,27 +21,25 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
|
||||
with gr.Row():
|
||||
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
|
||||
dataset = gr.Dropdown(multiselect=True, scale=4)
|
||||
dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4)
|
||||
preview_elems = create_preview_box(dataset_dir, dataset)
|
||||
|
||||
dataset_dir.change(list_dataset, [dataset_dir], [dataset], queue=False)
|
||||
|
||||
input_elems.update({dataset_dir, dataset})
|
||||
elem_dict.update(dict(dataset_dir=dataset_dir, dataset=dataset, **preview_elems))
|
||||
|
||||
with gr.Row():
|
||||
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
|
||||
cutoff_len = gr.Slider(minimum=4, maximum=65536, value=1024, step=1)
|
||||
max_samples = gr.Textbox(value="100000")
|
||||
batch_size = gr.Slider(value=8, minimum=1, maximum=512, step=1)
|
||||
batch_size = gr.Slider(minimum=1, maximum=1024, value=2, step=1)
|
||||
predict = gr.Checkbox(value=True)
|
||||
|
||||
input_elems.update({cutoff_len, max_samples, batch_size, predict})
|
||||
elem_dict.update(dict(cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict))
|
||||
|
||||
with gr.Row():
|
||||
max_new_tokens = gr.Slider(10, 2048, value=128, step=1)
|
||||
top_p = gr.Slider(0.01, 1, value=0.7, step=0.01)
|
||||
temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01)
|
||||
max_new_tokens = gr.Slider(minimum=8, maximum=4096, value=512, step=1)
|
||||
top_p = gr.Slider(minimum=0.01, maximum=1, value=0.7, step=0.01)
|
||||
temperature = gr.Slider(minimum=0.01, maximum=1.5, value=0.95, step=0.01)
|
||||
output_dir = gr.Textbox()
|
||||
|
||||
input_elems.update({max_new_tokens, top_p, temperature, output_dir})
|
||||
@@ -46,31 +47,33 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
|
||||
with gr.Row():
|
||||
cmd_preview_btn = gr.Button()
|
||||
start_btn = gr.Button()
|
||||
stop_btn = gr.Button()
|
||||
start_btn = gr.Button(variant="primary")
|
||||
stop_btn = gr.Button(variant="stop")
|
||||
|
||||
with gr.Row():
|
||||
resume_btn = gr.Checkbox(visible=False, interactive=False, value=False)
|
||||
process_bar = gr.Slider(visible=False, interactive=False)
|
||||
resume_btn = gr.Checkbox(visible=False, interactive=False)
|
||||
progress_bar = gr.Slider(visible=False, interactive=False)
|
||||
|
||||
with gr.Box():
|
||||
with gr.Row():
|
||||
output_box = gr.Markdown()
|
||||
|
||||
output_elems = [output_box, process_bar]
|
||||
elem_dict.update(
|
||||
dict(
|
||||
cmd_preview_btn=cmd_preview_btn,
|
||||
start_btn=start_btn,
|
||||
stop_btn=stop_btn,
|
||||
resume_btn=resume_btn,
|
||||
process_bar=process_bar,
|
||||
progress_bar=progress_bar,
|
||||
output_box=output_box,
|
||||
)
|
||||
)
|
||||
output_elems = [output_box, progress_bar]
|
||||
|
||||
cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems)
|
||||
cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems, concurrency_limit=None)
|
||||
start_btn.click(engine.runner.run_eval, input_elems, output_elems)
|
||||
stop_btn.click(engine.runner.set_abort, queue=False)
|
||||
resume_btn.change(engine.runner.monitor, outputs=output_elems)
|
||||
stop_btn.click(engine.runner.set_abort)
|
||||
resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None)
|
||||
|
||||
dataset.focus(list_datasets, [dataset_dir], [dataset], queue=False)
|
||||
|
||||
return elem_dict
|
||||
@@ -1,12 +1,17 @@
|
||||
from typing import TYPE_CHECKING, Dict, Generator, List
|
||||
from typing import TYPE_CHECKING, Dict, Generator, List, Union
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from ...train import export_model
|
||||
from ...extras.constants import PEFT_METHODS
|
||||
from ...extras.misc import torch_gc
|
||||
from ...extras.packages import is_gradio_available
|
||||
from ...train.tuner import export_model
|
||||
from ..common import get_save_dir
|
||||
from ..locales import ALERTS
|
||||
|
||||
|
||||
if is_gradio_available():
|
||||
import gradio as gr
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from gradio.components import Component
|
||||
|
||||
@@ -20,12 +25,14 @@ def save_model(
|
||||
lang: str,
|
||||
model_name: str,
|
||||
model_path: str,
|
||||
adapter_path: List[str],
|
||||
finetuning_type: str,
|
||||
checkpoint_path: Union[str, List[str]],
|
||||
template: str,
|
||||
max_shard_size: int,
|
||||
visual_inputs: bool,
|
||||
export_size: int,
|
||||
export_quantization_bit: int,
|
||||
export_quantization_dataset: str,
|
||||
export_device: str,
|
||||
export_legacy_format: bool,
|
||||
export_dir: str,
|
||||
export_hub_model_id: str,
|
||||
@@ -39,44 +46,50 @@ def save_model(
|
||||
error = ALERTS["err_no_export_dir"][lang]
|
||||
elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset:
|
||||
error = ALERTS["err_no_dataset"][lang]
|
||||
elif export_quantization_bit not in GPTQ_BITS and not adapter_path:
|
||||
elif export_quantization_bit not in GPTQ_BITS and not checkpoint_path:
|
||||
error = ALERTS["err_no_adapter"][lang]
|
||||
elif export_quantization_bit in GPTQ_BITS and isinstance(checkpoint_path, list):
|
||||
error = ALERTS["err_gptq_lora"][lang]
|
||||
|
||||
if error:
|
||||
gr.Warning(error)
|
||||
yield error
|
||||
return
|
||||
|
||||
if adapter_path:
|
||||
adapter_name_or_path = ",".join(
|
||||
[get_save_dir(model_name, finetuning_type, adapter) for adapter in adapter_path]
|
||||
)
|
||||
else:
|
||||
adapter_name_or_path = None
|
||||
|
||||
args = dict(
|
||||
model_name_or_path=model_path,
|
||||
adapter_name_or_path=adapter_name_or_path,
|
||||
finetuning_type=finetuning_type,
|
||||
template=template,
|
||||
visual_inputs=visual_inputs,
|
||||
export_dir=export_dir,
|
||||
export_hub_model_id=export_hub_model_id or None,
|
||||
export_size=max_shard_size,
|
||||
export_size=export_size,
|
||||
export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None,
|
||||
export_quantization_dataset=export_quantization_dataset,
|
||||
export_device=export_device,
|
||||
export_legacy_format=export_legacy_format,
|
||||
)
|
||||
|
||||
if checkpoint_path:
|
||||
if finetuning_type in PEFT_METHODS: # list
|
||||
args["adapter_name_or_path"] = ",".join(
|
||||
[get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path]
|
||||
)
|
||||
else: # str
|
||||
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path)
|
||||
|
||||
yield ALERTS["info_exporting"][lang]
|
||||
export_model(args)
|
||||
torch_gc()
|
||||
yield ALERTS["info_exported"][lang]
|
||||
|
||||
|
||||
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
with gr.Row():
|
||||
max_shard_size = gr.Slider(value=1, minimum=1, maximum=100)
|
||||
export_quantization_bit = gr.Dropdown(choices=["none", "8", "4", "3", "2"], value="none")
|
||||
export_size = gr.Slider(minimum=1, maximum=100, value=1, step=1)
|
||||
export_quantization_bit = gr.Dropdown(choices=["none"] + GPTQ_BITS, value="none")
|
||||
export_quantization_dataset = gr.Textbox(value="data/c4_demo.json")
|
||||
export_device = gr.Radio(choices=["cpu", "auto"], value="cpu")
|
||||
export_legacy_format = gr.Checkbox()
|
||||
|
||||
with gr.Row():
|
||||
@@ -89,15 +102,17 @@ def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
export_btn.click(
|
||||
save_model,
|
||||
[
|
||||
engine.manager.get_elem_by_name("top.lang"),
|
||||
engine.manager.get_elem_by_name("top.model_name"),
|
||||
engine.manager.get_elem_by_name("top.model_path"),
|
||||
engine.manager.get_elem_by_name("top.adapter_path"),
|
||||
engine.manager.get_elem_by_name("top.finetuning_type"),
|
||||
engine.manager.get_elem_by_name("top.template"),
|
||||
max_shard_size,
|
||||
engine.manager.get_elem_by_id("top.lang"),
|
||||
engine.manager.get_elem_by_id("top.model_name"),
|
||||
engine.manager.get_elem_by_id("top.model_path"),
|
||||
engine.manager.get_elem_by_id("top.finetuning_type"),
|
||||
engine.manager.get_elem_by_id("top.checkpoint_path"),
|
||||
engine.manager.get_elem_by_id("top.template"),
|
||||
engine.manager.get_elem_by_id("top.visual_inputs"),
|
||||
export_size,
|
||||
export_quantization_bit,
|
||||
export_quantization_dataset,
|
||||
export_device,
|
||||
export_legacy_format,
|
||||
export_dir,
|
||||
export_hub_model_id,
|
||||
@@ -106,9 +121,10 @@ def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
)
|
||||
|
||||
return dict(
|
||||
max_shard_size=max_shard_size,
|
||||
export_size=export_size,
|
||||
export_quantization_bit=export_quantization_bit,
|
||||
export_quantization_dataset=export_quantization_dataset,
|
||||
export_device=export_device,
|
||||
export_legacy_format=export_legacy_format,
|
||||
export_dir=export_dir,
|
||||
export_hub_model_id=export_hub_model_id,
|
||||
@@ -1,10 +1,13 @@
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from ...extras.packages import is_gradio_available
|
||||
from .chatbot import create_chat_box
|
||||
|
||||
|
||||
if is_gradio_available():
|
||||
import gradio as gr
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from gradio.components import Component
|
||||
|
||||
@@ -25,15 +28,21 @@ def create_infer_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
input_elems.update({infer_backend})
|
||||
elem_dict.update(dict(infer_backend=infer_backend, load_btn=load_btn, unload_btn=unload_btn, info_box=info_box))
|
||||
|
||||
chat_box, chatbot, history, chat_elems = create_chat_box(engine, visible=False)
|
||||
elem_dict.update(dict(chat_box=chat_box, **chat_elems))
|
||||
chatbot, messages, chat_elems = create_chat_box(engine, visible=False)
|
||||
elem_dict.update(chat_elems)
|
||||
|
||||
load_btn.click(engine.chatter.load_model, input_elems, [info_box]).then(
|
||||
lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box]
|
||||
lambda: gr.Column(visible=engine.chatter.loaded), outputs=[chat_elems["chat_box"]]
|
||||
)
|
||||
|
||||
unload_btn.click(engine.chatter.unload_model, input_elems, [info_box]).then(
|
||||
lambda: ([], []), outputs=[chatbot, history]
|
||||
).then(lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box])
|
||||
lambda: ([], []), outputs=[chatbot, messages]
|
||||
).then(lambda: gr.Column(visible=engine.chatter.loaded), outputs=[chat_elems["chat_box"]])
|
||||
|
||||
engine.manager.get_elem_by_id("top.visual_inputs").change(
|
||||
lambda enabled: gr.Column(visible=enabled),
|
||||
[engine.manager.get_elem_by_id("top.visual_inputs")],
|
||||
[chat_elems["image_box"]],
|
||||
)
|
||||
|
||||
return elem_dict
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user