mirror of
https://github.com/AIDotNet/AntSK.git
synced 2026-02-17 22:10:14 +08:00
Merge pull request #84 from AIDotNet/feature_llamasharp
Feature llamasharp
This commit is contained in:
@@ -199,7 +199,7 @@
|
||||
<member name="M:AntSK.Domain.Domain.Other.QAHandler.InvokeAsync(Microsoft.KernelMemory.Pipeline.DataPipeline,System.Threading.CancellationToken)">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Service.ChatService.SendChatByAppAsync(AntSK.Domain.Repositories.Apps,System.String,Microsoft.SemanticKernel.ChatCompletion.ChatHistory)">
|
||||
<member name="M:AntSK.Domain.Domain.Service.ChatService.SendChatByAppAsync(AntSK.Domain.Repositories.Apps,Microsoft.SemanticKernel.ChatCompletion.ChatHistory)">
|
||||
<summary>
|
||||
发送消息
|
||||
</summary>
|
||||
|
||||
@@ -14,10 +14,10 @@ namespace AntSK.Domain.Domain.Interface
|
||||
{
|
||||
public interface IChatService
|
||||
{
|
||||
IAsyncEnumerable<StreamingKernelContent> SendChatByAppAsync(Apps app, string questions, ChatHistory history);
|
||||
IAsyncEnumerable<string> SendChatByAppAsync(Apps app, ChatHistory history);
|
||||
|
||||
IAsyncEnumerable<StreamingKernelContent> SendKmsByAppAsync(Apps app, string questions, ChatHistory history, string filePath, List<RelevantSource> relevantSources = null);
|
||||
Task<string> SendImgByAppAsync(Apps app, string questions);
|
||||
Task<ChatHistory> GetChatHistory(List<Chats> MessageList);
|
||||
Task<ChatHistory> GetChatHistory(List<Chats> MessageList, ChatHistory history);
|
||||
}
|
||||
}
|
||||
@@ -10,6 +10,7 @@ using AntSK.LLM.StableDiffusion;
|
||||
using Markdig;
|
||||
using Microsoft.KernelMemory;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel.Connectors.OpenAI;
|
||||
using System.Diagnostics;
|
||||
using System.Drawing;
|
||||
@@ -35,45 +36,54 @@ namespace AntSK.Domain.Domain.Service
|
||||
/// <param name="questions"></param>
|
||||
/// <param name="history"></param>
|
||||
/// <returns></returns>
|
||||
public async IAsyncEnumerable<StreamingKernelContent> SendChatByAppAsync(Apps app, string questions, ChatHistory history)
|
||||
public async IAsyncEnumerable<string> SendChatByAppAsync(Apps app, ChatHistory history)
|
||||
{
|
||||
|
||||
if (string.IsNullOrEmpty(app.Prompt) || !app.Prompt.Contains("{{$input}}"))
|
||||
{
|
||||
//如果模板为空,给默认提示词
|
||||
app.Prompt = app.Prompt.ConvertToString() + "{{$input}}";
|
||||
}
|
||||
KernelArguments args = new KernelArguments();
|
||||
if (history.Count > 10)
|
||||
{
|
||||
app.Prompt = @"${{ConversationSummaryPlugin.SummarizeConversation $history}}" + app.Prompt;
|
||||
args = new() {
|
||||
{ "history", string.Join("\n", history.Select(x => x.Role + ": " + x.Content)) },
|
||||
{ "input", questions }
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
args = new()
|
||||
{
|
||||
{ "input", $"{string.Join("\n", history.Select(x => x.Role + ": " + x.Content))}{Environment.NewLine} user:{questions}" }
|
||||
};
|
||||
}
|
||||
|
||||
var _kernel = _kernelService.GetKernelByApp(app);
|
||||
var chat = _kernel.GetRequiredService<IChatCompletionService>();
|
||||
var temperature = app.Temperature / 100;//存的是0~100需要缩小
|
||||
OpenAIPromptExecutionSettings settings = new() { Temperature = temperature };
|
||||
List<string> completionList = new List<string>();
|
||||
if (!string.IsNullOrEmpty(app.ApiFunctionList) || !string.IsNullOrEmpty(app.NativeFunctionList))//这里还需要加上本地插件的
|
||||
{
|
||||
_kernelService.ImportFunctionsByApp(app, _kernel);
|
||||
settings.ToolCallBehavior = ToolCallBehavior.AutoInvokeKernelFunctions;
|
||||
settings.ToolCallBehavior = ToolCallBehavior.EnableKernelFunctions;
|
||||
while (true)
|
||||
{
|
||||
ChatMessageContent result = await chat.GetChatMessageContentAsync(history, settings, _kernel);
|
||||
if (result.Content is not null)
|
||||
{
|
||||
string chunkCompletion = result.Content.ConvertToString();
|
||||
completionList.Add(chunkCompletion);
|
||||
foreach (var content in completionList)
|
||||
{
|
||||
yield return content.ConvertToString();
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
history.Add(result);
|
||||
|
||||
IEnumerable<FunctionCallContent> functionCalls = FunctionCallContent.GetFunctionCalls(result);
|
||||
if (!functionCalls.Any())
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
foreach (var functionCall in functionCalls)
|
||||
{
|
||||
FunctionResultContent resultContent = await functionCall.InvokeAsync(_kernel);
|
||||
|
||||
history.Add(resultContent.ToChatMessage());
|
||||
}
|
||||
}
|
||||
}
|
||||
var func = _kernel.CreateFunctionFromPrompt(app.Prompt, settings);
|
||||
var chatResult = _kernel.InvokeStreamingAsync(function: func,
|
||||
arguments: args);
|
||||
await foreach (var content in chatResult)
|
||||
else
|
||||
{
|
||||
yield return content;
|
||||
var chatResult = chat.GetStreamingChatMessageContentsAsync(history, settings, _kernel);
|
||||
await foreach (var content in chatResult)
|
||||
{
|
||||
yield return content.ConvertToString();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -318,9 +328,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
}
|
||||
}
|
||||
|
||||
public async Task<ChatHistory> GetChatHistory(List<Chats> MessageList)
|
||||
public async Task<ChatHistory> GetChatHistory(List<Chats> MessageList, ChatHistory history)
|
||||
{
|
||||
ChatHistory history = new ChatHistory();
|
||||
if (MessageList.Count > 1)
|
||||
{
|
||||
|
||||
|
||||
@@ -20,6 +20,8 @@ using System.Reflection;
|
||||
using DocumentFormat.OpenXml.Drawing;
|
||||
using Microsoft.KernelMemory;
|
||||
using OpenCvSharp.ML;
|
||||
using LLamaSharp.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -105,11 +107,13 @@ namespace AntSK.Domain.Domain.Service
|
||||
var (weights, parameters) = LLamaConfig.GetLLamaConfig(chatModel.ModelName);
|
||||
var ex = new StatelessExecutor(weights, parameters);
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("local-llama", new LLamaSharpTextCompletion(ex));
|
||||
builder.Services.AddKeyedSingleton<IChatCompletionService>("local-llama-chat", new LLamaSharpChatCompletion(ex));
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.SparkDesk:
|
||||
var options = new SparkDeskOptions { AppId = chatModel.EndPoint, ApiSecret = chatModel.ModelKey, ApiKey = chatModel.ModelName, ModelVersion = Sdcb.SparkDesk.ModelVersion.V3_5 };
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("spark-desk", new SparkDeskTextCompletion(options, chatModel.Id));
|
||||
builder.Services.AddKeyedSingleton<IChatCompletionService>("spark-desk-chat", new SparkDeskChatCompletion(options, chatModel.Id));
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.DashScope:
|
||||
@@ -118,6 +122,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
case Model.Enum.AIType.Mock:
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("mock", new MockTextCompletion());
|
||||
builder.Services.AddKeyedSingleton<IChatCompletionService>("mock-chat", new MockChatCompletion());
|
||||
break;
|
||||
case Model.Enum.AIType.LLamaFactory:
|
||||
builder.AddOpenAIChatCompletion(
|
||||
|
||||
@@ -53,7 +53,7 @@
|
||||
<Button Type="@ButtonType.Link" OnClick="NavigateModelList">去创建</Button>
|
||||
</FormItem>
|
||||
<FormItem Label="提示词" LabelCol="LayoutModel._formItemLayout.LabelCol" WrapperCol="LayoutModel._formItemLayout.WrapperCol">
|
||||
<TextArea MinRows="4" Placeholder="请输入提示词,用户输入使用{{$input}} 来做占位符" @bind-Value="@context.Prompt" />
|
||||
<TextArea MinRows="4" Placeholder="请输入角色信息" @bind-Value="@context.Prompt" />
|
||||
</FormItem>
|
||||
<FormItem Label="温度系数" LabelCol="LayoutModel._formItemLayout.LabelCol" WrapperCol="LayoutModel._formItemLayout.WrapperCol">
|
||||
<span>更确定</span>
|
||||
|
||||
@@ -224,26 +224,40 @@ namespace AntSK.Pages.ChatPage.Components
|
||||
/// <returns></returns>
|
||||
protected async Task<bool> SendAsync(string questions, string? filePath)
|
||||
{
|
||||
ChatHistory history = new ChatHistory();
|
||||
|
||||
//处理多轮会话
|
||||
Apps app = _apps_Repositories.GetFirst(p => p.Id == AppId);
|
||||
if (MessageList.Count > 0)
|
||||
{
|
||||
history = await _chatService.GetChatHistory(MessageList);
|
||||
}
|
||||
ChatHistory history;
|
||||
|
||||
if (app.Type == AppType.chat.ToString() && (filePath == null || app.EmbeddingModelID.IsNull()))
|
||||
{
|
||||
await SendChat(questions, history, app);
|
||||
if (string.IsNullOrEmpty(app.Prompt))
|
||||
{
|
||||
app.Prompt = "你叫AntSK,是一个人工智能助手";
|
||||
}
|
||||
//聊天应用增加系统角色
|
||||
history = new ChatHistory(app.Prompt.ConvertToString());
|
||||
|
||||
if (MessageList.Count > 0)
|
||||
{
|
||||
history = await _chatService.GetChatHistory(MessageList, history);
|
||||
}
|
||||
await SendChat(history, app);
|
||||
}
|
||||
else if (app.Type == AppType.kms.ToString() || filePath != null || app.EmbeddingModelID.IsNotNull())
|
||||
{
|
||||
history = new ChatHistory();
|
||||
|
||||
if (MessageList.Count > 0)
|
||||
{
|
||||
history = await _chatService.GetChatHistory(MessageList, history);
|
||||
}
|
||||
await SendKms(questions, history, app, filePath);
|
||||
|
||||
|
||||
}
|
||||
else if (app.Type == AppType.img.ToString())
|
||||
{
|
||||
await SendImg(questions,app);
|
||||
await SendImg(questions, app);
|
||||
}
|
||||
|
||||
//缓存消息记录
|
||||
@@ -253,7 +267,7 @@ namespace AntSK.Pages.ChatPage.Components
|
||||
if (OnRelevantSources.IsNotNull())
|
||||
{
|
||||
await OnRelevantSources.InvokeAsync(_relevantSources);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -318,14 +332,13 @@ namespace AntSK.Pages.ChatPage.Components
|
||||
/// <summary>
|
||||
/// 发送普通对话
|
||||
/// </summary>
|
||||
/// <param name="questions"></param>
|
||||
/// <param name="history"></param>
|
||||
/// <param name="app"></param>
|
||||
/// <returns></returns>
|
||||
private async Task SendChat(string questions, ChatHistory history, Apps app)
|
||||
private async Task SendChat(ChatHistory history, Apps app)
|
||||
{
|
||||
Chats info = null;
|
||||
var chatResult = _chatService.SendChatByAppAsync(app, questions, history);
|
||||
var chatResult = _chatService.SendChatByAppAsync(app, history);
|
||||
await foreach (var content in chatResult)
|
||||
{
|
||||
if (info == null)
|
||||
|
||||
@@ -85,12 +85,13 @@
|
||||
<FormItem Label="APPID" LabelCol="LayoutModel._formItemLayout.LabelCol" WrapperCol="LayoutModel._formItemLayout.WrapperCol">
|
||||
<Input Placeholder="请输入APPID" @bind-Value="@context.EndPoint" />
|
||||
</FormItem>
|
||||
<FormItem Label="APIKey" LabelCol="LayoutModel._formItemLayout.LabelCol" WrapperCol="LayoutModel._formItemLayout.WrapperCol">
|
||||
<Input Placeholder="请输入请输入APIKey" @bind-Value="@context.ModelName" />
|
||||
</FormItem>
|
||||
<FormItem Label="APISecret" LabelCol="LayoutModel._formItemLayout.LabelCol" WrapperCol="LayoutModel._formItemLayout.WrapperCol">
|
||||
<InputPassword @bind-Value="@context.ModelKey" Placeholder="APISecret" Size="@InputSize.Large" />
|
||||
</FormItem>
|
||||
<FormItem Label="APIKey" LabelCol="LayoutModel._formItemLayout.LabelCol" WrapperCol="LayoutModel._formItemLayout.WrapperCol">
|
||||
<Input Placeholder="请输入请输入APIKey" @bind-Value="@context.ModelName" />
|
||||
</FormItem>
|
||||
|
||||
}
|
||||
@if (context.AIType == AIType.DashScope)
|
||||
{
|
||||
|
||||
@@ -41,13 +41,14 @@ namespace AntSK.Services.OpenApi
|
||||
{
|
||||
case "chat":
|
||||
//普通会话
|
||||
history.AddUserMessage(questions);
|
||||
if (model.stream)
|
||||
{
|
||||
OpenAIStreamResult result1 = new OpenAIStreamResult();
|
||||
result1.created = DateTimeOffset.UtcNow.ToUnixTimeSeconds();
|
||||
result1.choices = new List<StreamChoicesModel>()
|
||||
{ new StreamChoicesModel() { delta = new OpenAIMessage() { role = "assistant" } } };
|
||||
await SendChatStream(HttpContext, result1, app, questions,history);
|
||||
await SendChatStream(HttpContext, result1, app,history);
|
||||
HttpContext.Response.ContentType = "application/json";
|
||||
await HttpContext.Response.WriteAsync(JsonConvert.SerializeObject(result1));
|
||||
await HttpContext.Response.CompleteAsync();
|
||||
@@ -59,14 +60,12 @@ namespace AntSK.Services.OpenApi
|
||||
result2.created = DateTimeOffset.UtcNow.ToUnixTimeSeconds();
|
||||
result2.choices = new List<ChoicesModel>()
|
||||
{ new ChoicesModel() { message = new OpenAIMessage() { role = "assistant" } } };
|
||||
result2.choices[0].message.content = await SendChat(questions,history, app);
|
||||
result2.choices[0].message.content = await SendChat(history, app);
|
||||
HttpContext.Response.ContentType = "application/json";
|
||||
await HttpContext.Response.WriteAsync(JsonConvert.SerializeObject(result2));
|
||||
await HttpContext.Response.CompleteAsync();
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case "kms":
|
||||
//知识库问答
|
||||
if (model.stream)
|
||||
@@ -91,16 +90,15 @@ namespace AntSK.Services.OpenApi
|
||||
await HttpContext.Response.WriteAsync(JsonConvert.SerializeObject(result4));
|
||||
await HttpContext.Response.CompleteAsync();
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private async Task SendChatStream(HttpContext HttpContext, OpenAIStreamResult result, Apps app,string questions, ChatHistory history)
|
||||
private async Task SendChatStream(HttpContext HttpContext, OpenAIStreamResult result, Apps app, ChatHistory history)
|
||||
{
|
||||
HttpContext.Response.Headers.Add("Content-Type", "text/event-stream");
|
||||
var chatResult = _chatService.SendChatByAppAsync(app, questions, history);
|
||||
var chatResult = _chatService.SendChatByAppAsync(app, history);
|
||||
await foreach (var content in chatResult)
|
||||
{
|
||||
result.choices[0].delta.content = content.ConvertToString();
|
||||
@@ -113,7 +111,6 @@ namespace AntSK.Services.OpenApi
|
||||
|
||||
await HttpContext.Response.WriteAsync("data: [DONE]");
|
||||
await HttpContext.Response.Body.FlushAsync();
|
||||
|
||||
await HttpContext.Response.CompleteAsync();
|
||||
}
|
||||
|
||||
@@ -124,49 +121,48 @@ namespace AntSK.Services.OpenApi
|
||||
/// <param name="history"></param>
|
||||
/// <param name="app"></param>
|
||||
/// <returns></returns>
|
||||
private async Task<string> SendChat(string questions, ChatHistory history, Apps app)
|
||||
private async Task<string> SendChat(ChatHistory history, Apps app)
|
||||
{
|
||||
string result = "";
|
||||
|
||||
if (string.IsNullOrEmpty(app.Prompt) || !app.Prompt.Contains("{{$input}}"))
|
||||
{
|
||||
//如果模板为空,给默认提示词
|
||||
app.Prompt = app.Prompt.ConvertToString() + "{{$input}}";
|
||||
}
|
||||
KernelArguments args = new KernelArguments();
|
||||
if (history.Count > 10)
|
||||
{
|
||||
app.Prompt = @"${{ConversationSummaryPlugin.SummarizeConversation $history}}" + app.Prompt;
|
||||
args = new() {
|
||||
{ "history", string.Join("\n", history.Select(x => x.Role + ": " + x.Content)) },
|
||||
{ "input", questions }
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
args = new()
|
||||
{
|
||||
{ "input", $"{string.Join("\n", history.Select(x => x.Role + ": " + x.Content))}{Environment.NewLine} user:{questions}" }
|
||||
};
|
||||
}
|
||||
|
||||
var _kernel = _kernelService.GetKernelByApp(app);
|
||||
var temperature = app.Temperature / 100; //存的是0~100需要缩小
|
||||
var chat = _kernel.GetRequiredService<IChatCompletionService>();
|
||||
|
||||
var temperature = app.Temperature / 100;//存的是0~100需要缩小
|
||||
OpenAIPromptExecutionSettings settings = new() { Temperature = temperature };
|
||||
List<string> completionList = new List<string>();
|
||||
if (!string.IsNullOrEmpty(app.ApiFunctionList) || !string.IsNullOrEmpty(app.NativeFunctionList))//这里还需要加上本地插件的
|
||||
{
|
||||
_kernelService.ImportFunctionsByApp(app, _kernel);
|
||||
settings.ToolCallBehavior = ToolCallBehavior.AutoInvokeKernelFunctions;
|
||||
}
|
||||
var func = _kernel.CreateFunctionFromPrompt(app.Prompt, settings);
|
||||
var chatResult =await _kernel.InvokeAsync(function: func, arguments: args);
|
||||
if (chatResult.IsNotNull())
|
||||
{
|
||||
string answers = chatResult.GetValue<string>();
|
||||
result = answers;
|
||||
}
|
||||
settings.ToolCallBehavior = ToolCallBehavior.EnableKernelFunctions;
|
||||
while (true)
|
||||
{
|
||||
ChatMessageContent result = await chat.GetChatMessageContentAsync(history, settings, _kernel);
|
||||
if (result.Content is not null)
|
||||
{
|
||||
string chunkCompletion = result.Content.ConvertToString();
|
||||
completionList.Add(chunkCompletion);
|
||||
return chunkCompletion;
|
||||
}
|
||||
history.Add(result);
|
||||
IEnumerable<FunctionCallContent> functionCalls = FunctionCallContent.GetFunctionCalls(result);
|
||||
if (!functionCalls.Any())
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
return result;
|
||||
foreach (var functionCall in functionCalls)
|
||||
{
|
||||
FunctionResultContent resultContent = await functionCall.InvokeAsync(_kernel);
|
||||
|
||||
history.Add(resultContent.ToChatMessage());
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
ChatMessageContent result = await chat.GetChatMessageContentAsync(history, settings, _kernel);
|
||||
return result.Content.ConvertToString();
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
private async Task SendKmsStream(HttpContext HttpContext, OpenAIStreamResult result, Apps app, string questions,ChatHistory history)
|
||||
|
||||
55
src/AntSk.LLM/Mock/MockChatCompletion.cs
Normal file
55
src/AntSk.LLM/Mock/MockChatCompletion.cs
Normal file
@@ -0,0 +1,55 @@
|
||||
using AntSK.LLM.SparkDesk;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Sdcb.SparkDesk;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Runtime.CompilerServices;
|
||||
using System.Text;
|
||||
using System.Text.Encodings.Web;
|
||||
using System.Text.Json.Serialization;
|
||||
using System.Text.Json;
|
||||
using System.Text.Unicode;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.LLM.Mock
|
||||
{
|
||||
public class MockChatCompletion : IChatCompletionService
|
||||
{
|
||||
private readonly Dictionary<string, object?> _attributes = new();
|
||||
private readonly SparkDeskClient _client;
|
||||
private string _chatId;
|
||||
private readonly SparkDeskOptions _options;
|
||||
|
||||
private static readonly JsonSerializerOptions _jsonSerializerOptions = new()
|
||||
{
|
||||
NumberHandling = JsonNumberHandling.AllowReadingFromString,
|
||||
Encoder = JavaScriptEncoder.Create(UnicodeRanges.All)
|
||||
};
|
||||
|
||||
public IReadOnlyDictionary<string, object?> Attributes => _attributes;
|
||||
|
||||
public MockChatCompletion()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
public async Task<IReadOnlyList<ChatMessageContent>> GetChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
|
||||
{
|
||||
StringBuilder sb = new();
|
||||
string result = $"这是一条Mock数据,便于聊天测试,你的消息是:{chatHistory.LastOrDefault().ToString()}";
|
||||
return [new(AuthorRole.Assistant, result.ToString())];
|
||||
}
|
||||
|
||||
public async IAsyncEnumerable<StreamingChatMessageContent> GetStreamingChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
|
||||
{
|
||||
StringBuilder sb = new();
|
||||
string result = $"这是一条Mock数据,便于聊天测试,你的消息是:{chatHistory.LastOrDefault().ToString()}";
|
||||
foreach (var c in result)
|
||||
{
|
||||
yield return new StreamingChatMessageContent(AuthorRole.Assistant, c.ToString());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
231
src/AntSk.LLM/SparkDesk/SparkDeskChatCompletion.cs
Normal file
231
src/AntSk.LLM/SparkDesk/SparkDeskChatCompletion.cs
Normal file
@@ -0,0 +1,231 @@
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel.Connectors.OpenAI;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Sdcb.SparkDesk;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Runtime.CompilerServices;
|
||||
using System.Text;
|
||||
using System.Text.Encodings.Web;
|
||||
using System.Text.Json.Serialization;
|
||||
using System.Text.Json;
|
||||
using System.Text.Unicode;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.LLM.SparkDesk
|
||||
{
|
||||
public class SparkDeskChatCompletion : IChatCompletionService
|
||||
{
|
||||
private readonly Dictionary<string, object?> _attributes = new();
|
||||
private readonly SparkDeskClient _client;
|
||||
private string _chatId;
|
||||
private readonly SparkDeskOptions _options;
|
||||
|
||||
private static readonly JsonSerializerOptions _jsonSerializerOptions = new()
|
||||
{
|
||||
NumberHandling = JsonNumberHandling.AllowReadingFromString,
|
||||
Encoder = JavaScriptEncoder.Create(UnicodeRanges.All)
|
||||
};
|
||||
|
||||
public IReadOnlyDictionary<string, object?> Attributes => _attributes;
|
||||
|
||||
public SparkDeskChatCompletion(SparkDeskOptions options, string chatId)
|
||||
{
|
||||
_options = options;
|
||||
_chatId = chatId;
|
||||
_client = new(options.AppId, options.ApiKey, options.ApiSecret);
|
||||
}
|
||||
|
||||
public async Task<IReadOnlyList<ChatMessageContent>> GetChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, CancellationToken cancellationToken = default)
|
||||
{
|
||||
StringBuilder sb = new();
|
||||
var parameters = new ChatRequestParameters
|
||||
{
|
||||
ChatId = _chatId,
|
||||
};
|
||||
|
||||
OpenAIPromptExecutionSettings chatExecutionSettings = OpenAIPromptExecutionSettings.FromExecutionSettings(executionSettings);
|
||||
|
||||
parameters.Temperature = (float)chatExecutionSettings.Temperature;
|
||||
parameters.MaxTokens = chatExecutionSettings.MaxTokens ?? parameters.MaxTokens;
|
||||
|
||||
IList<KernelFunctionMetadata> functions = kernel?.Plugins.GetFunctionsMetadata().Where(x => x.PluginName == "AntSkFunctions").ToList() ?? [];
|
||||
var functionDefs = functions.Select(func => new FunctionDef(func.Name, func.Description, func.Parameters.Select(p => new FunctionParametersDef(p.Name, p.ParameterType?.IsClass == true ? "object" : "string", p.Description, p.IsRequired)).ToList())).ToList();
|
||||
|
||||
List<ChatMessage> messages = GetSparkMessage(chatHistory);
|
||||
|
||||
var result = await _client.ChatAsync(_options.ModelVersion, messages.ToArray(), parameters, functionDefs.Count > 0 ? [.. functionDefs] : null, cancellationToken: cancellationToken);
|
||||
|
||||
if (result.FunctionCall != null)
|
||||
{
|
||||
var func = functions.Where(x => x.Name == result.FunctionCall.Name).FirstOrDefault();
|
||||
|
||||
if (func == null)
|
||||
{
|
||||
return new List<ChatMessageContent> { new(AuthorRole.Assistant, $"插件{result.FunctionCall.Name}未注册") }.AsReadOnly();
|
||||
}
|
||||
|
||||
if (kernel.Plugins.TryGetFunction(func.PluginName, func.Name, out var function))
|
||||
{
|
||||
var arguments = new KernelArguments();
|
||||
|
||||
var JsonElement = JsonDocument.Parse(result.FunctionCall.Arguments).RootElement;
|
||||
foreach (var parameter in func.Parameters)
|
||||
{
|
||||
var error = "";
|
||||
try
|
||||
{
|
||||
if (JsonElement.TryGetProperty(parameter.Name, out var property))
|
||||
{
|
||||
arguments.Add(parameter.Name, property.Deserialize(parameter.ParameterType!, _jsonSerializerOptions));
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
error = $"参数{parameter.Name}解析错误:{ex.Message}";
|
||||
}
|
||||
|
||||
if (!string.IsNullOrEmpty(error))
|
||||
{
|
||||
return new List<ChatMessageContent> { new(AuthorRole.Assistant, error) }.AsReadOnly();
|
||||
|
||||
}
|
||||
}
|
||||
var functionResult = await function.InvokeAsync(kernel, arguments, cancellationToken);
|
||||
messages = [ ChatMessage.FromUser(messages.LastOrDefault().Content),
|
||||
ChatMessage.FromSystem($@"
|
||||
执行函数调用成功
|
||||
函数描述:{func.Description}
|
||||
函数执行结果:{functionResult}
|
||||
"),
|
||||
ChatMessage.FromUser("请根据函数调用结果回答我的问题,不要超出函数调用结果的返回,以及不要有多余描述:")];
|
||||
|
||||
|
||||
var callResult = await _client.ChatAsync(_options.ModelVersion, messages.ToArray(), parameters, null);
|
||||
ChatMessageContent chatMessageContent = new(AuthorRole.Assistant, callResult.Text.ToString(), modelId: "SparkDesk");
|
||||
|
||||
return new List<ChatMessageContent> { chatMessageContent }.AsReadOnly();
|
||||
|
||||
}
|
||||
return new List<ChatMessageContent> { new(AuthorRole.Assistant, "未找到插件") }.AsReadOnly();
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
ChatMessageContent chatMessageContent = new(AuthorRole.Assistant, result.Text.ToString(), modelId: "SparkDesk");
|
||||
|
||||
return new List<ChatMessageContent> { chatMessageContent }.AsReadOnly();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
public async IAsyncEnumerable<StreamingChatMessageContent> GetStreamingChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
|
||||
{
|
||||
var parameters = new ChatRequestParameters
|
||||
{
|
||||
ChatId = _chatId,
|
||||
};
|
||||
OpenAIPromptExecutionSettings chatExecutionSettings = OpenAIPromptExecutionSettings.FromExecutionSettings(executionSettings);
|
||||
|
||||
parameters.Temperature = (float)chatExecutionSettings.Temperature;
|
||||
parameters.MaxTokens = chatExecutionSettings.MaxTokens ?? parameters.MaxTokens;
|
||||
|
||||
IList<KernelFunctionMetadata> functions = kernel?.Plugins.GetFunctionsMetadata().Where(x => x.PluginName == "AntSkFunctions").ToList() ?? [];
|
||||
var functionDefs = functions.Select(func => new FunctionDef(func.Name, func.Description, func.Parameters.Select(p => new FunctionParametersDef(p.Name, p.ParameterType?.IsClass == true ? "object" : "string", p.Description, p.IsRequired)).ToList())).ToList();
|
||||
List<ChatMessage> messages = GetSparkMessage(chatHistory);
|
||||
await foreach (StreamedChatResponse msg in _client.ChatAsStreamAsync(_options.ModelVersion, messages.ToArray(), parameters, functionDefs.Count > 0 ? [.. functionDefs] : null, cancellationToken: cancellationToken))
|
||||
{
|
||||
|
||||
yield return new StreamingChatMessageContent(AuthorRole.Assistant, msg);
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
private static List<ChatMessage> GetSparkMessage(ChatHistory chatHistory)
|
||||
{
|
||||
List<ChatMessage> messages = new List<ChatMessage>();
|
||||
foreach (var msg in chatHistory.ToList())
|
||||
{
|
||||
string role = "";
|
||||
if (msg.Role == AuthorRole.User)
|
||||
{
|
||||
role = "user";
|
||||
}
|
||||
else if (msg.Role == AuthorRole.System)
|
||||
{
|
||||
role = "system";
|
||||
}
|
||||
else
|
||||
{
|
||||
role = "assistant";
|
||||
}
|
||||
messages.Add(new ChatMessage(role, msg.ToString()));
|
||||
}
|
||||
|
||||
return messages;
|
||||
}
|
||||
|
||||
|
||||
private static string? ProcessFunctionResult(object functionResult, ToolCallBehavior? toolCallBehavior)
|
||||
{
|
||||
if (functionResult is string stringResult)
|
||||
{
|
||||
return stringResult;
|
||||
}
|
||||
|
||||
if (functionResult is ChatMessageContent chatMessageContent)
|
||||
{
|
||||
return chatMessageContent.ToString();
|
||||
}
|
||||
|
||||
return JsonSerializer.Serialize(functionResult, _jsonSerializerOptions);
|
||||
}
|
||||
|
||||
public static Dictionary<string, object> ParseJsonElement(JsonElement element, string propertyName)
|
||||
{
|
||||
Dictionary<string, object> dict = new();
|
||||
|
||||
switch (element.ValueKind)
|
||||
{
|
||||
case JsonValueKind.Object:
|
||||
foreach (JsonProperty property in element.EnumerateObject())
|
||||
{
|
||||
dict.Add(property.Name, ParseJsonElement(property.Value, property.Name));
|
||||
}
|
||||
break;
|
||||
|
||||
case JsonValueKind.Array:
|
||||
List<object> list = new List<object>();
|
||||
foreach (JsonElement arrayElement in element.EnumerateArray())
|
||||
{
|
||||
list.Add(ParseJsonElement(arrayElement, ""));
|
||||
}
|
||||
dict.Add(propertyName, list);
|
||||
break;
|
||||
|
||||
case JsonValueKind.String:
|
||||
dict.Add(propertyName, element.GetString());
|
||||
break;
|
||||
|
||||
case JsonValueKind.Number:
|
||||
dict.Add(propertyName, element.GetInt32());
|
||||
break;
|
||||
|
||||
case JsonValueKind.True:
|
||||
case JsonValueKind.False:
|
||||
dict.Add(propertyName, element.GetBoolean());
|
||||
break;
|
||||
|
||||
default:
|
||||
dict.Add(propertyName, "Unsupported value type");
|
||||
break;
|
||||
}
|
||||
|
||||
return dict;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user