Compare commits

..

41 Commits
0.2.2 ... 0.2.3

Author SHA1 Message Date
zyxucp
bf0e62634f Update README.md 2024-03-23 12:44:53 +08:00
zyxucp
469ef9aab2 Merge pull request #38 from AIDotNet/feature_llamafactory
Feature llamafactory
2024-03-23 12:34:11 +08:00
zeyu xu
f7df26030d add 增加环境安装 2024-03-23 12:30:52 +08:00
zeyu xu
f61cbe9780 add 增加记录llamafactory是否启动的状态 2024-03-23 12:20:56 +08:00
zeyu xu
56b62cff2a fix 提示修改 2024-03-23 11:55:50 +08:00
zeyu xu
0aec21cf03 fix 修改日志输出样式宽度 2024-03-23 11:40:30 +08:00
zeyu xu
ff4f6be5fc add 日志输出 2024-03-22 22:57:38 +08:00
longdream
964a5022c8 修改输出 2024-03-22 21:44:51 +08:00
zeyu xu
b8c6a6a626 add 增加校验 2024-03-21 23:59:23 +08:00
zeyu xu
57fc9a9b7e fix 修改按钮启动后不可用 2024-03-21 23:58:31 +08:00
zeyu xu
068c126a23 add 增加llamafactory 下拉列表 2024-03-21 23:53:50 +08:00
zeyu xu
0ed1662c7b add llamafactory model 2024-03-21 23:20:05 +08:00
zeyu xu
a09377814f Merge branch 'main' into feature_llamafactory 2024-03-21 22:31:32 +08:00
zeyu xu
3cc952bb2a fix 修改SK config.json升级结构变更 2024-03-21 22:24:45 +08:00
zeyu xu
63c968742b Merge branch 'main' into feature_llamafactory 2024-03-21 22:15:48 +08:00
zeyu xu
a4d6f2a6fd fix 修复分享会话空指针bug 2024-03-21 22:14:49 +08:00
zeyu xu
d6de64853d fix 修改filelist封装 2024-03-21 21:51:09 +08:00
zyxucp
c7c1911eb1 fix 限制会话中上传按钮点击 2024-03-21 19:02:48 +08:00
zyxucp
dec8b5bef7 fix 修改样式 2024-03-21 18:12:15 +08:00
zyxucp
db7271b519 Merge branch 'feature_llamafactory' of https://github.com/AIDotNet/AntSK into feature_llamafactory 2024-03-21 14:28:37 +08:00
zyxucp
fcbee1f64f margin 2024-03-21 14:15:23 +08:00
zyxucp
2d9443a0a1 Merge pull request #36 from jeffersyuan1976/main
IconPicker组件
2024-03-21 13:53:43 +08:00
zeyu xu
6e3dd00d6f fix 删除重复文件 2024-03-21 13:46:45 +08:00
Jeffers
7a0656cd81 IconPicker组件 2024-03-21 13:23:22 +08:00
zyxucp
3b89d9e974 fix 整理启动注入函数 2024-03-21 12:38:08 +08:00
zyxucp
cd174308cf fix 修改codefirst注入模式 2024-03-21 12:20:05 +08:00
zyxucp
aacef47626 Update README.md 2024-03-20 23:27:45 +08:00
zyxucp
fcef01a41f Update README.md 2024-03-20 23:27:19 +08:00
zyxucp
7d19b694fa Update README.md 2024-03-20 23:26:44 +08:00
zyxucp
966a31b156 Update README.md 2024-03-20 23:25:28 +08:00
zeyu xu
7538393742 add requirements 2024-03-20 23:09:52 +08:00
zeyu xu
3658188be2 fix 修改llamafactory 单独一个类库,并增加目录输出 2024-03-20 22:26:23 +08:00
zyxucp
fcd9fb9079 Update docker-compose.simple.yml 2024-03-20 21:38:59 +08:00
zyxucp
d1168e16d6 Update docker-compose.yml 2024-03-20 21:38:44 +08:00
zyxucp
25a6f00dd2 Merge pull request #35 from longdream/main
llama factory 初始化
2024-03-20 17:41:33 +08:00
longdream
13c474f084 Merge branch 'feature_llamafactory' into main 2024-03-20 14:55:28 +08:00
zyxucp
8d78270007 fix 修复导入文件无法导入的bug 2024-03-20 13:47:57 +08:00
junlong
a94b59c156 llama factory 初始化 2024-03-20 11:19:57 +08:00
zyxucp
ae6d61ee6d Merge branch 'main' of https://github.com/AIDotNet/AntSK 2024-03-20 09:52:13 +08:00
zyxucp
74a7c94619 fix 修改配置文件目录层级 2024-03-20 09:52:02 +08:00
zeyu xu
bdd34ac786 update docker file 2024-03-19 22:37:28 +08:00
128 changed files with 13040 additions and 163 deletions

View File

@@ -20,7 +20,7 @@
- **联网搜索**AntSK实时获取最新信息确保用户接受到的资料总是最及时、最相关的。
- **模型管理**适配和管理集成不同厂商的不同模型。并且支持llama.cpp所支持的gguf类型的模型离线运行
- **模型管理**适配和管理集成不同厂商的不同模型。并且支持llama.cpp所支持的gguf类型以及llamafactory所支持的模型离线运行
- **国产信创**AntSK支持国产模型和国产数据库可以在信创条件下运行
@@ -37,6 +37,16 @@ AntSK 适用于多种业务场景,例如:
## 功能示例
### 在线演示
```
https://antsk.ai-dotnet.com/
```
默认账号admin
默认密码xuzeyu
### 其他功能示例
[视频示例](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
首先需要创建知识库

View File

@@ -18,7 +18,7 @@ services:
- ./pg/data:/var/lib/postgresql/data
antsk:
container_name: antsk
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.2.1
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.2.2.1
ports:
- 5000:5000
networks:

View File

@@ -10,6 +10,9 @@
<ItemGroup>
<PackageReference Include="AntDesign.Charts" Version="0.5.1" />
<PackageReference Include="AntDesign.ProLayout" Version="0.18.0" />
<PackageReference Include="BlazorComponents.Terminal" Version="0.6.0" />
<PackageReference Include="Swashbuckle.AspNetCore" Version="6.5.0" />
<PackageReference Include="AutoMapper" Version="8.1.0" />
<PackageReference Include="BCrypt.Net-Next" Version="4.0.3" />
@@ -34,6 +37,7 @@
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\AntSK.LLamaFactory\AntSK.LLamaFactory.csproj" />
<ProjectReference Include="..\AntSk.LLM\AntSK.LLM.csproj" />
<ProjectReference Include="..\MiddleWare\AntSK.BackgroundTask\AntSK.BackgroundTask.csproj" />
</ItemGroup>

View File

@@ -17,6 +17,27 @@
<param name="assemblies">程序集集合</param>
<returns></returns>
</member>
<member name="M:AntSK.Domain.Common.DependencyInjection.InitExtensions.CodeFirst(Microsoft.AspNetCore.Builder.WebApplication)">
<summary>
使用codefirst创建数据库表
</summary>
<param name="services"></param>
<returns></returns>
</member>
<member name="M:AntSK.Domain.Common.DependencyInjection.InitExtensions.LoadFun(Microsoft.AspNetCore.Builder.WebApplication)">
<summary>
加载数据库的插件
</summary>
<param name="services"></param>
<returns></returns>
</member>
<member name="M:AntSK.Domain.Common.DependencyInjection.InitExtensions.AddAntSKSwagger(Microsoft.Extensions.DependencyInjection.IServiceCollection)">
<summary>
swagger 初始化
</summary>
<param name="serviceCollection"></param>
<returns></returns>
</member>
<member name="F:AntSK.Domain.Common.DependencyInjection.ServiceLifetime.Scoped">
<summary>
作用域

View File

@@ -0,0 +1,164 @@
using AntSK.Domain.Domain.Model.Constant;
using AntSK.Domain.Domain.Service;
using AntSK.Domain.Repositories;
using DocumentFormat.OpenXml.Office2016.Drawing.ChartDrawing;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.OpenApi.Models;
using SqlSugar;
using Swashbuckle.AspNetCore.SwaggerGen;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using System.Text;
using System.Threading.Tasks;
namespace AntSK.Domain.Common.DependencyInjection
{
public static class InitExtensions
{
/// <summary>
/// 使用codefirst创建数据库表
/// </summary>
/// <param name="services"></param>
/// <returns></returns>
public static WebApplication CodeFirst(this WebApplication app)
{
using (var scope = app.Services.CreateScope())
{
// 获取仓储服务
var _repository = scope.ServiceProvider.GetRequiredService<IApps_Repositories>();
// 创建数据库(如果不存在)
_repository.GetDB().DbMaintenance.CreateDatabase();
// 获取当前应用程序域中所有程序集
var assemblies = AppDomain.CurrentDomain.GetAssemblies();
// 在所有程序集中查找具有[SugarTable]特性的类
foreach (var assembly in assemblies)
{
// 获取该程序集中所有具有SugarTable特性的类型
var entityTypes = assembly.GetTypes()
.Where(type => TypeIsEntity(type));
// 为每个找到的类型初始化数据库表
foreach (var type in entityTypes)
{
_repository.GetDB().CodeFirst.InitTables(type);
}
}
}
return app;
}
public static WebApplication InitDbData(this WebApplication app)
{
using (var scope = app.Services.CreateScope())
{
// 初始化字典
var _dic_Repository = scope.ServiceProvider.GetRequiredService<IDics_Repositories>();
var llamafactoryStart = _dic_Repository.GetFirst(p => p.Type == LLamaFactoryConstantcs.LLamaFactorDic && p.Key == LLamaFactoryConstantcs.IsStartKey);
if (llamafactoryStart==null)
{
llamafactoryStart = new Dics();
llamafactoryStart.Id=Guid.NewGuid().ToString();
llamafactoryStart.Type = LLamaFactoryConstantcs.LLamaFactorDic;
llamafactoryStart.Key = LLamaFactoryConstantcs.IsStartKey;
llamafactoryStart.Value = "false";
_dic_Repository.Insert(llamafactoryStart);
}
}
return app;
}
/// <summary>
/// 加载数据库的插件
/// </summary>
/// <param name="services"></param>
/// <returns></returns>
public static WebApplication LoadFun(this WebApplication app)
{
try
{
using (var scope = app.Services.CreateScope())
{
//codefirst 创建表
var funRep = scope.ServiceProvider.GetRequiredService<IFuns_Repositories>();
var functionService = scope.ServiceProvider.GetRequiredService<FunctionService>();
var funs = funRep.GetList();
foreach (var fun in funs)
{
functionService.FuncLoad(fun.Path);
}
}
}
catch (Exception ex)
{
Console.WriteLine(ex.Message + " ---- " + ex.StackTrace);
}
return app;
}
private static bool TypeIsEntity(Type type)
{
// 检查类型是否具有SugarTable特性
return type.GetCustomAttributes(typeof(SugarTable), inherit: false).Length > 0;
}
/// <summary>
/// swagger 初始化
/// </summary>
/// <param name="serviceCollection"></param>
/// <returns></returns>
public static IServiceCollection AddAntSKSwagger(this IServiceCollection serviceCollection)
{
serviceCollection.AddSwaggerGen(c =>
{
c.SwaggerDoc("v1", new() { Title = "AntSK.Api", Version = "v1" });
//添加Api层注释true表示显示控制器注释
var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
c.IncludeXmlComments(xmlPath, true);
//添加Domain层注释true表示显示控制器注释
var xmlFile1 = $"{Assembly.GetExecutingAssembly().GetName().Name.Replace("Api", "Domain")}.xml";
var xmlPath1 = Path.Combine(AppContext.BaseDirectory, xmlFile1);
c.IncludeXmlComments(xmlPath1, true);
c.DocInclusionPredicate((docName, apiDes) =>
{
if (!apiDes.TryGetMethodInfo(out MethodInfo method))
return false;
var version = method.DeclaringType.GetCustomAttributes(true).OfType<ApiExplorerSettingsAttribute>().Select(m => m.GroupName);
if (docName == "v1" && !version.Any())
return true;
var actionVersion = method.GetCustomAttributes(true).OfType<ApiExplorerSettingsAttribute>().Select(m => m.GroupName);
if (actionVersion.Any())
return actionVersion.Any(v => v == docName);
return version.Any(v => v == docName);
});
c.AddSecurityDefinition("Bearer", new OpenApiSecurityScheme()
{
Description = "Directly enter bearer {token} in the box below (note that there is a space between bearer and token)",
Name = "Authorization",
In = ParameterLocation.Header,
Type = SecuritySchemeType.ApiKey,
});
c.AddSecurityRequirement(new OpenApiSecurityRequirement
{
{
new OpenApiSecurityScheme
{
Reference = new OpenApiReference()
{
Id = "Bearer",
Type = ReferenceType.SecurityScheme
}
}, Array.Empty<string>()
}
});
});
return serviceCollection;
}
}
}

View File

@@ -0,0 +1,71 @@
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AntSK.Domain.Common.LLamaFactory
{
public class ProcessWrapper
{
private Process process;
public static bool isProcessComplete = false;
public void StartProcess(string arguments, string workingDirectory)
{
process = new Process
{
StartInfo = new ProcessStartInfo
{
FileName = "python",
Arguments = arguments,
UseShellExecute = false,
RedirectStandardOutput = true,
RedirectStandardError = true,
CreateNoWindow = true,
WorkingDirectory = workingDirectory
}
};
using (Process start = Process.Start(process.StartInfo))
{
using (StreamReader reader = start.StandardOutput)
{
string result = reader.ReadToEnd();
if (result != null)
{
if (result.Contains(":8000"))
{
isProcessComplete = true;
}
}
Console.WriteLine(result);
}
start.WaitForExit();
}
}
public string WaitForProcessExit()
{
process.WaitForExit();
return process.StandardOutput.ReadToEnd();
}
public void KillProcess()
{
try
{
if (!process.HasExited)
{
process.Kill();
}
}
catch (InvalidOperationException)
{
// Process already exited.
}
}
}
}

View File

@@ -0,0 +1,21 @@
using AntSK.LLamaFactory.Model;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static AntSK.Domain.Domain.Service.LLamaFactoryService;
namespace AntSK.Domain.Domain.Interface
{
public interface ILLamaFactoryService
{
public event LogMessageHandler LogMessageReceived;
Task PipInstall();
Task StartLLamaFactory(string modelName, string templateName);
void KillProcess();
List<LLamaModel> GetLLamaFactoryModels();
}
}

View File

@@ -0,0 +1,14 @@
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AntSK.Domain.Domain.Model.Constant
{
public class LLamaFactoryConstantcs
{
public const string LLamaFactorDic = "llamafactory";
public const string IsStartKey = "isstart";
}
}

View File

@@ -21,6 +21,9 @@ namespace AntSK.Domain.Domain.Model.Enum
[Display(Name = "灵积大模型")]
DashScope = 5,
[Display(Name = "LLamaFactory")]
LLamaFactory = 6,
[Display(Name = "模拟输出")]
Mock = 100,

View File

@@ -79,7 +79,7 @@ namespace AntSK.Domain.Domain.Service
if (relevantSourceList.Any())
{
relevantSources?.AddRange(relevantSourceList);
foreach (var item in relevantSources)
foreach (var item in relevantSourceList)
{
dataMsg.AppendLine(item.ToString());
}

View File

@@ -15,6 +15,7 @@ using System;
using ServiceLifetime = AntSK.Domain.Common.DependencyInjection.ServiceLifetime;
using AntSK.LLM.Mock;
using AntSK.Domain.Domain.Model.Enum;
using AntSK.LLM.LLamaFactory;
using System.Reflection;
using DocumentFormat.OpenXml.Drawing;
@@ -105,6 +106,13 @@ namespace AntSK.Domain.Domain.Service
case Model.Enum.AIType.Mock:
builder.Services.AddKeyedSingleton<ITextGenerationService>("mock", new MockTextCompletion());
break;
case Model.Enum.AIType.LLamaFactory:
builder.AddOpenAIChatCompletion(
modelId: chatModel.ModelName,
apiKey: "123",
httpClient: chatHttpClient
);
break;
}
}

View File

@@ -0,0 +1,164 @@
using AntSK.Domain.Common.DependencyInjection;
using AntSK.Domain.Domain.Interface;
using AntSK.Domain.Domain.Model.Dto;
using AntSK.Domain.Options;
using AntSK.LLamaFactory.Model;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Text.Json;
using System.Threading.Tasks;
namespace AntSK.Domain.Domain.Service
{
[ServiceDescription(typeof(ILLamaFactoryService), ServiceLifetime.Singleton)]
public class LLamaFactoryService : ILLamaFactoryService
{
private Process process;
public static bool isProcessComplete = false;
private readonly object _syncLock = new object();
private List<LLamaModel> modelList = new List<LLamaModel>();
public LLamaFactoryService() { }
public delegate Task LogMessageHandler(string message);
public event LogMessageHandler LogMessageReceived;
protected virtual async Task OnLogMessageReceived(string message)
{
LogMessageReceived?.Invoke(message);
}
public async Task PipInstall()
{
var cmdTask = Task.Factory.StartNew(() =>
{
var isProcessComplete = false;
process = new Process
{
StartInfo = new ProcessStartInfo
{
FileName = "pip",
Arguments = "install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple",
UseShellExecute = false,
RedirectStandardOutput = true,
RedirectStandardError = true,
WorkingDirectory = AppDomain.CurrentDomain.BaseDirectory,
}
};
process.OutputDataReceived += (sender, eventArgs) =>
{
Console.WriteLine($"{eventArgs.Data}");
OnLogMessageReceived(eventArgs.Data);
};
process.ErrorDataReceived += (sender, eventArgs) =>
{
Console.WriteLine($"{eventArgs.Data}");
OnLogMessageReceived(eventArgs.Data);
};
process.Start();
process.BeginOutputReadLine();
process.BeginErrorReadLine();
process.WaitForExit();
}, TaskCreationOptions.LongRunning);
}
public async Task StartLLamaFactory(string modelName, string templateName)
{
var cmdTask = Task.Factory.StartNew(() =>
{
var isProcessComplete = false;
process = new Process
{
StartInfo = new ProcessStartInfo
{
FileName = "python",
Arguments = "api_demo.py --model_name_or_path " + modelName + " --template " + templateName + " ",
UseShellExecute = false,
RedirectStandardOutput = true,
RedirectStandardError=true,
WorkingDirectory = Path.Combine(Path.GetDirectoryName(System.Reflection.Assembly.GetEntryAssembly().Location), "llamafactory"),
}
};
process.StartInfo.Environment["CUDA_VISIBLE_DEVICES"] = "0";
process.StartInfo.Environment["API_PORT"] = "8000";
process.StartInfo.EnvironmentVariables["USE_MODELSCOPE_HUB"] = "1";
process.OutputDataReceived += (sender, eventArgs) =>
{
Console.WriteLine($"{eventArgs.Data}");
OnLogMessageReceived(eventArgs.Data);
};
process.ErrorDataReceived += (sender, eventArgs) =>
{
Console.WriteLine($"{eventArgs.Data}");
OnLogMessageReceived(eventArgs.Data);
};
process.Start();
process.BeginOutputReadLine();
process.BeginErrorReadLine();
process.WaitForExit();
}, TaskCreationOptions.LongRunning);
}
private void Process_OutputDataReceived(object sender, DataReceivedEventArgs e)
{
throw new NotImplementedException();
}
public string WaitForProcessExit()
{
process.WaitForExit();
return process.StandardOutput.ReadToEnd();
}
public void KillProcess()
{
try
{
Process[] processes = Process.GetProcesses();
foreach (Process process1 in processes)
{
if (process1.ProcessName.ToLower() == "python")
{
process1.Kill();
System.Console.WriteLine("kill python");
}
}
}
catch (InvalidOperationException ex)
{
// Process already exited.
}
}
public List<LLamaModel> GetLLamaFactoryModels()
{
if (modelList.Count==0)
{
string jsonString = File.ReadAllText(Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "modelList.json"));
// 反序列化 JSON 字符串到相应的 C# 对象
var Models = JsonConvert.DeserializeObject<List<LLamaFactoryModel>>(jsonString);
foreach (var model in Models)
{
foreach (var m in model.Models)
{
modelList.Add(new LLamaModel() { Name=m.Key, ModelScope=m.Value.MODELSCOPE });
}
}
}
return modelList;
}
}
}

View File

@@ -0,0 +1,16 @@
using AntSK.Domain.Domain.Model.Enum;
using SqlSugar;
using System.ComponentModel.DataAnnotations;
namespace AntSK.Domain.Repositories
{
[SugarTable("Dics")]
public partial class Dics
{
[SugarColumn(IsPrimaryKey = true)]
public string Id { get; set; }
public string Type { get; set; }
public string Key { get; set; }
public string Value { get; set; }
}
}

View File

@@ -0,0 +1,11 @@

using AntSK.Domain.Common.DependencyInjection;
using AntSK.Domain.Repositories.Base;
namespace AntSK.Domain.Repositories
{
[ServiceDescription(typeof(IDics_Repositories), ServiceLifetime.Scoped)]
public class Dics_Repositories : Repository<Dics>, IDics_Repositories
{
}
}

View File

@@ -0,0 +1,8 @@
using AntSK.Domain.Repositories.Base;
namespace AntSK.Domain.Repositories
{
public interface IDics_Repositories : IRepository<Dics>
{
}
}

View File

@@ -0,0 +1,21 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<TargetFramework>net8.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<Content Include="llamafactory\**">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</Content>
</ItemGroup>
<ItemGroup>
<None Update="modelList.json">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>
<None Update="requirements.txt">
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
</None>
</ItemGroup>
</Project>

View File

@@ -0,0 +1,27 @@
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AntSK.LLamaFactory.Model
{
public class ModelInfo
{
public string DEFAULT { get; set; }
public string MODELSCOPE { get; set; }
}
public class LLamaFactoryModel
{
public Dictionary<string, ModelInfo> Models { get; set; }
public string Template { get; set; }
}
public class LLamaModel
{
public string Name { get; set; }
public string ModelScope { get; set; }
}
}

View File

@@ -0,0 +1,16 @@
import os
import uvicorn
from llmtuner import ChatModel, create_app
def main():
chat_model = ChatModel()
app = create_app(chat_model)
print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,27 @@
import subprocess
import shlex
import os
class Start(object):
def __init__(self,model_name_or_path):
self.model_name_or_path=model_name_or_path
def StartCommand(self):
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['API_PORT'] = '8000'
# 构建要执行的命令
command = (
'python api_demo.py'
' --model_name_or_path E:/model/Qwen1.5-0.5B-Chat_back'
' --template default '
)
# 使用shlex.split()去安全地分割命令字符串
command = shlex.split(command)
# 执行命令
subprocess.run(command, shell=True)
if __name__ == "__main__":
star= Start('model_name_or_path')
star.StartCommand()

View File

@@ -0,0 +1,49 @@
from llmtuner import ChatModel
from llmtuner.extras.misc import torch_gc
try:
import platform
if platform.system() != "Windows":
import readline # noqa: F401
except ImportError:
print("Install `readline` for a better experience.")
def main():
chat_model = ChatModel()
messages = []
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
while True:
try:
query = input("\nUser: ")
except UnicodeDecodeError:
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
continue
except Exception:
raise
if query.strip() == "exit":
break
if query.strip() == "clear":
messages = []
torch_gc()
print("History has been removed.")
continue
messages.append({"role": "user", "content": query})
print("Assistant: ", end="", flush=True)
response = ""
for new_text in chat_model.stream_chat(messages):
print(new_text, end="", flush=True)
response += new_text
print()
messages.append({"role": "assistant", "content": response})
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,10 @@
from llmtuner import Evaluator
def main():
evaluator = Evaluator()
evaluator.eval()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,9 @@
from llmtuner import export_model
def main():
export_model()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,11 @@
# Level: api, webui > chat, eval, train > data, model > extras, hparams
from .api import create_app
from .chat import ChatModel
from .eval import Evaluator
from .train import export_model, run_exp
from .webui import create_ui, create_web_demo
__version__ = "0.5.3"
__all__ = ["create_app", "ChatModel", "Evaluator", "export_model", "run_exp", "create_ui", "create_web_demo"]

View File

@@ -0,0 +1,4 @@
from .app import create_app
__all__ = ["create_app"]

View File

@@ -0,0 +1,224 @@
import json
import os
from contextlib import asynccontextmanager
from typing import Any, Dict, Sequence
from pydantic import BaseModel
from ..chat import ChatModel
from ..data import Role as DataRole
from ..extras.misc import torch_gc
from ..extras.packages import is_fastapi_availble, is_starlette_available, is_uvicorn_available
from .protocol import (
ChatCompletionMessage,
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionResponseUsage,
ChatCompletionStreamResponse,
Finish,
Function,
FunctionCall,
ModelCard,
ModelList,
Role,
ScoreEvaluationRequest,
ScoreEvaluationResponse,
)
if is_fastapi_availble():
from fastapi import FastAPI, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
if is_starlette_available():
from sse_starlette import EventSourceResponse
if is_uvicorn_available():
import uvicorn
@asynccontextmanager
async def lifespan(app: "FastAPI"): # collects GPU memory
yield
torch_gc()
def dictify(data: "BaseModel") -> Dict[str, Any]:
try: # pydantic v2
return data.model_dump(exclude_unset=True)
except AttributeError: # pydantic v1
return data.dict(exclude_unset=True)
def jsonify(data: "BaseModel") -> str:
try: # pydantic v2
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
except AttributeError: # pydantic v1
return data.json(exclude_unset=True, ensure_ascii=False)
def create_app(chat_model: "ChatModel") -> "FastAPI":
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
role_mapping = {
Role.USER: DataRole.USER.value,
Role.ASSISTANT: DataRole.ASSISTANT.value,
Role.SYSTEM: DataRole.SYSTEM.value,
Role.FUNCTION: DataRole.FUNCTION.value,
Role.TOOL: DataRole.OBSERVATION.value,
}
@app.get("/v1/models", response_model=ModelList)
async def list_models():
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK)
async def create_chat_completion(request: ChatCompletionRequest):
if not chat_model.engine.can_generate:
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
if len(request.messages) == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
if request.messages[0].role == Role.SYSTEM:
system = request.messages.pop(0).content
else:
system = ""
if len(request.messages) % 2 == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
input_messages = []
for i, message in enumerate(request.messages):
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
input_messages.append({"role": role_mapping[message.role], "content": message.content})
tool_list = request.tools
if isinstance(tool_list, list) and len(tool_list):
try:
tools = json.dumps([tool["function"] for tool in tool_list], ensure_ascii=False)
except Exception:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
else:
tools = ""
if request.stream:
if tools:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
generate = stream_chat_completion(input_messages, system, tools, request)
return EventSourceResponse(generate, media_type="text/event-stream")
responses = await chat_model.achat(
input_messages,
system,
tools,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
max_new_tokens=request.max_tokens,
num_return_sequences=request.n,
)
prompt_length, response_length = 0, 0
choices = []
for i, response in enumerate(responses):
if tools:
result = chat_model.engine.template.format_tools.extract(response.response_text)
else:
result = response.response_text
if isinstance(result, tuple):
name, arguments = result
function = Function(name=name, arguments=arguments)
response_message = ChatCompletionMessage(
role=Role.ASSISTANT, tool_calls=[FunctionCall(function=function)]
)
finish_reason = Finish.TOOL
else:
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
choices.append(
ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason)
)
prompt_length = response.prompt_length
response_length += response.response_length
usage = ChatCompletionResponseUsage(
prompt_tokens=prompt_length,
completion_tokens=response_length,
total_tokens=prompt_length + response_length,
)
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
async def stream_chat_completion(
messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest
):
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=ChatCompletionMessage(role=Role.ASSISTANT, content=""), finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield jsonify(chunk)
async for new_token in chat_model.astream_chat(
messages,
system,
tools,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
max_new_tokens=request.max_tokens,
):
if len(new_token) == 0:
continue
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=ChatCompletionMessage(content=new_token), finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield jsonify(chunk)
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield jsonify(chunk)
yield "[DONE]"
@app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK)
async def create_score_evaluation(request: ScoreEvaluationRequest):
if chat_model.engine.can_generate:
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
if len(request.messages) == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
return ScoreEvaluationResponse(model=request.model, scores=scores)
return app
if __name__ == "__main__":
chat_model = ChatModel()
app = create_app(chat_model)
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)

View File

@@ -0,0 +1,116 @@
import time
from enum import Enum, unique
from typing import List, Optional
from pydantic import BaseModel, Field
from typing_extensions import Literal
@unique
class Role(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
FUNCTION = "function"
TOOL = "tool"
@unique
class Finish(str, Enum):
STOP = "stop"
LENGTH = "length"
TOOL = "tool_calls"
class ModelCard(BaseModel):
id: str
object: Literal["model"] = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: Literal["owner"] = "owner"
class ModelList(BaseModel):
object: Literal["list"] = "list"
data: List[ModelCard] = []
class Function(BaseModel):
name: str
arguments: str
class FunctionCall(BaseModel):
id: Literal["call_default"] = "call_default"
type: Literal["function"] = "function"
function: Function
class ChatMessage(BaseModel):
role: Role
content: str
class ChatCompletionMessage(BaseModel):
role: Optional[Role] = None
content: Optional[str] = None
tool_calls: Optional[List[FunctionCall]] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
tools: list = []
do_sample: bool = True
temperature: Optional[float] = None
top_p: Optional[float] = None
n: int = 1
max_tokens: Optional[int] = None
stream: bool = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatCompletionMessage
finish_reason: Finish
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: ChatCompletionMessage
finish_reason: Optional[Finish] = None
class ChatCompletionResponseUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: Literal["chatcmpl-default"] = "chatcmpl-default"
object: Literal["chat.completion"] = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: ChatCompletionResponseUsage
class ChatCompletionStreamResponse(BaseModel):
id: Literal["chatcmpl-default"] = "chatcmpl-default"
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
class ScoreEvaluationRequest(BaseModel):
model: str
messages: List[str]
max_length: Optional[int] = None
class ScoreEvaluationResponse(BaseModel):
id: Literal["scoreeval-default"] = "scoreeval-default"
object: Literal["score.evaluation"] = "score.evaluation"
model: str
scores: List[float]

View File

@@ -0,0 +1,5 @@
from .base_engine import BaseEngine
from .chat_model import ChatModel
__all__ = ["BaseEngine", "ChatModel"]

View File

@@ -0,0 +1,69 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Optional, Sequence, Union
if TYPE_CHECKING:
from transformers import PreTrainedModel, PreTrainedTokenizer
from ..data import Template
from ..extras.packages import is_vllm_available
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
if is_vllm_available():
from vllm import AsyncLLMEngine
@dataclass
class Response:
response_text: str
response_length: int
prompt_length: int
finish_reason: Literal["stop", "length"]
class BaseEngine(ABC):
model: Union["PreTrainedModel", "AsyncLLMEngine"]
tokenizer: "PreTrainedTokenizer"
can_generate: bool
template: "Template"
generating_args: Dict[str, Any]
@abstractmethod
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None: ...
@abstractmethod
async def start(
self,
) -> None: ...
@abstractmethod
async def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]: ...
@abstractmethod
async def stream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]: ...
@abstractmethod
async def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]: ...

View File

@@ -0,0 +1,91 @@
import asyncio
from threading import Thread
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
from ..hparams import get_infer_args
from .hf_engine import HuggingfaceEngine
from .vllm_engine import VllmEngine
if TYPE_CHECKING:
from .base_engine import BaseEngine, Response
def _start_background_loop(loop: asyncio.AbstractEventLoop) -> None:
asyncio.set_event_loop(loop)
loop.run_forever()
class ChatModel:
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
model_args, data_args, finetuning_args, generating_args = get_infer_args(args)
if model_args.infer_backend == "huggingface":
self.engine: "BaseEngine" = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args)
elif model_args.infer_backend == "vllm":
self.engine: "BaseEngine" = VllmEngine(model_args, data_args, finetuning_args, generating_args)
else:
raise NotImplementedError("Unknown backend: {}".format(model_args.infer_backend))
self._loop = asyncio.new_event_loop()
self._thread = Thread(target=_start_background_loop, args=(self._loop,), daemon=True)
self._thread.start()
asyncio.run_coroutine_threadsafe(self.engine.start(), self._loop)
def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]:
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, **input_kwargs), self._loop)
return task.result()
async def achat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]:
return await self.engine.chat(messages, system, tools, **input_kwargs)
def stream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> Generator[str, None, None]:
generator = self.astream_chat(messages, system, tools, **input_kwargs)
while True:
try:
task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop)
yield task.result()
except StopAsyncIteration:
break
async def astream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
async for new_token in self.engine.stream_chat(messages, system, tools, **input_kwargs):
yield new_token
def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
task = asyncio.run_coroutine_threadsafe(self.aget_scores(batch_input, **input_kwargs), self._loop)
return task.result()
async def aget_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
return await self.engine.get_scores(batch_input, **input_kwargs)

View File

@@ -0,0 +1,263 @@
import asyncio
import concurrent.futures
import os
from threading import Thread
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple
import torch
from transformers import GenerationConfig, TextIteratorStreamer
from ..data import get_template_and_fix_tokenizer
from ..extras.misc import get_logits_processor
from ..model import load_model_and_tokenizer
from .base_engine import BaseEngine, Response
if TYPE_CHECKING:
from transformers import PreTrainedModel, PreTrainedTokenizer
from trl import PreTrainedModelWrapper
from ..data import Template
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
class HuggingfaceEngine(BaseEngine):
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None:
self.can_generate = finetuning_args.stage == "sft"
self.model, self.tokenizer = load_model_and_tokenizer(
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
)
self.tokenizer.padding_side = "left" if self.can_generate else "right"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
self.generating_args = generating_args.to_dict()
@staticmethod
def _process_args(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
template: "Template",
generating_args: Dict[str, Any],
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
input_kwargs: Optional[Dict[str, Any]] = {},
) -> Tuple[Dict[str, Any], int]:
paired_messages = messages + [{"role": "assistant", "content": ""}]
prompt_ids, _ = template.encode_oneturn(
tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools
)
prompt_length = len(prompt_ids)
inputs = torch.tensor([prompt_ids], device=model.device)
do_sample = input_kwargs.pop("do_sample", None)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
generating_args.update(
dict(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
pad_token_id=tokenizer.pad_token_id,
)
)
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
generating_args["do_sample"] = True
if max_length:
generating_args.pop("max_new_tokens", None)
generating_args["max_length"] = max_length
if max_new_tokens:
generating_args.pop("max_length", None)
generating_args["max_new_tokens"] = max_new_tokens
gen_kwargs = dict(
inputs=inputs,
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor(),
)
return gen_kwargs, prompt_length
@staticmethod
@torch.inference_mode()
def _chat(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
template: "Template",
generating_args: Dict[str, Any],
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
input_kwargs: Optional[Dict[str, Any]] = {},
) -> List["Response"]:
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
)
generate_output = model.generate(**gen_kwargs)
response_ids = generate_output[:, prompt_length:]
response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
results = []
for i in range(len(response)):
eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero()
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
results.append(
Response(
response_text=response[i],
response_length=response_length,
prompt_length=prompt_length,
finish_reason="stop" if len(eos_index) else "length",
)
)
return results
@staticmethod
@torch.inference_mode()
def _stream_chat(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
template: "Template",
generating_args: Dict[str, Any],
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
input_kwargs: Optional[Dict[str, Any]] = {},
) -> Callable[[], str]:
gen_kwargs, _ = HuggingfaceEngine._process_args(
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs["streamer"] = streamer
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
thread.start()
def stream():
try:
return streamer.__next__()
except StopIteration:
raise StopAsyncIteration()
return stream
@staticmethod
@torch.inference_mode()
def _get_scores(
model: "PreTrainedModelWrapper",
tokenizer: "PreTrainedTokenizer",
batch_input: List[str],
input_kwargs: Optional[Dict[str, Any]] = {},
) -> List[float]:
max_length = input_kwargs.pop("max_length", None)
device = getattr(model.pretrained_model, "device", "cuda")
inputs = tokenizer(
batch_input,
padding=True,
truncation=True,
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
return_tensors="pt",
add_special_tokens=True,
).to(device)
input_ids: torch.Tensor = inputs["input_ids"]
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
if getattr(model.config, "model_type", None) == "chatglm":
values = torch.transpose(values, 0, 1)
scores = []
for i in range(input_ids.size(0)):
end_indexes = (input_ids[i] != tokenizer.pad_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0
scores.append(values[i, end_index].nan_to_num().item())
return scores
async def start(self) -> None:
self._semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
async def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]:
if not self.can_generate:
raise ValueError("The current model does not support `chat`.")
loop = asyncio.get_running_loop()
input_args = (
self.model,
self.tokenizer,
self.template,
self.generating_args,
messages,
system,
tools,
input_kwargs,
)
async with self._semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
return await loop.run_in_executor(pool, self._chat, *input_args)
async def stream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
if not self.can_generate:
raise ValueError("The current model does not support `stream_chat`.")
loop = asyncio.get_running_loop()
input_args = (
self.model,
self.tokenizer,
self.template,
self.generating_args,
messages,
system,
tools,
input_kwargs,
)
async with self._semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
stream = self._stream_chat(*input_args)
while True:
try:
yield await loop.run_in_executor(pool, stream)
except StopAsyncIteration:
break
async def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
if self.can_generate:
raise ValueError("Cannot get scores using an auto-regressive model.")
loop = asyncio.get_running_loop()
input_args = (self.model, self.tokenizer, batch_input, input_kwargs)
async with self._semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
return await loop.run_in_executor(pool, self._get_scores, *input_args)

View File

@@ -0,0 +1,149 @@
import uuid
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
from transformers.utils.versions import require_version
from ..data import get_template_and_fix_tokenizer
from ..extras.misc import get_device_count
from ..extras.packages import is_vllm_available
from ..model import load_tokenizer
from .base_engine import BaseEngine, Response
if is_vllm_available():
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
if TYPE_CHECKING:
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
class VllmEngine(BaseEngine):
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None:
require_version("vllm>=0.3.3", "To fix: pip install vllm>=0.3.3")
self.can_generate = finetuning_args.stage == "sft"
engine_args = AsyncEngineArgs(
model=model_args.model_name_or_path,
trust_remote_code=True,
max_model_len=model_args.vllm_maxlen,
tensor_parallel_size=get_device_count() or 1,
gpu_memory_utilization=model_args.vllm_gpu_util,
disable_log_stats=True,
disable_log_requests=True,
enforce_eager=model_args.vllm_enforce_eager,
)
self.model = AsyncLLMEngine.from_engine_args(engine_args)
self.tokenizer = load_tokenizer(model_args)
self.tokenizer.padding_side = "left"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
self.generating_args = generating_args.to_dict()
async def _generate(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncIterator["RequestOutput"]:
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
paired_messages = messages + [{"role": "assistant", "content": ""}]
prompt_ids, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
)
prompt_length = len(prompt_ids)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
generating_args = self.generating_args.copy()
generating_args.update(
dict(
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
)
)
if max_length:
generating_args["max_new_tokens"] = max_length - prompt_length
if max_new_tokens:
generating_args["max_new_tokens"] = max_new_tokens
sampling_params = SamplingParams(
n=generating_args["num_return_sequences"],
repetition_penalty=generating_args["repetition_penalty"],
temperature=generating_args["temperature"],
top_p=generating_args["top_p"],
top_k=generating_args["top_k"],
use_beam_search=generating_args["num_beams"] > 1,
length_penalty=generating_args["length_penalty"],
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
max_tokens=generating_args["max_new_tokens"],
skip_special_tokens=True,
)
result_generator = self.model.generate(
prompt=None, sampling_params=sampling_params, request_id=request_id, prompt_token_ids=prompt_ids
)
return result_generator
async def start(self) -> None:
pass
async def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> List["Response"]:
final_output = None
generator = await self._generate(messages, system, tools, **input_kwargs)
async for request_output in generator:
final_output = request_output
results = []
for output in final_output.outputs:
results.append(
Response(
response_text=output.text,
response_length=len(output.token_ids),
prompt_length=len(final_output.prompt_token_ids),
finish_reason=output.finish_reason,
)
)
return results
async def stream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
generated_text = ""
generator = await self._generate(messages, system, tools, **input_kwargs)
async for result in generator:
delta_text = result.outputs[0].text[len(generated_text) :]
generated_text = result.outputs[0].text
yield delta_text
async def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
raise NotImplementedError("vLLM engine does not support get_scores.")

View File

@@ -0,0 +1,6 @@
from .loader import get_dataset
from .template import Template, get_template_and_fix_tokenizer, templates
from .utils import Role, split_dataset
__all__ = ["get_dataset", "Template", "get_template_and_fix_tokenizer", "templates", "Role", "split_dataset"]

View File

@@ -0,0 +1,133 @@
from functools import partial
from typing import TYPE_CHECKING, Any, Dict, List, Union
from datasets import Features
from .utils import Role
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from ..hparams import DataArguments
from .parser import DatasetAttr
def convert_alpaca(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
for i in range(len(examples[dataset_attr.prompt])):
prompt = []
if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list):
for old_prompt, old_response in examples[dataset_attr.history][i]:
prompt.append({"role": Role.USER.value, "content": old_prompt})
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
content = []
if dataset_attr.prompt and examples[dataset_attr.prompt][i]:
content.append(examples[dataset_attr.prompt][i])
if dataset_attr.query and examples[dataset_attr.query][i]:
content.append(examples[dataset_attr.query][i])
prompt.append({"role": Role.USER.value, "content": "\n".join(content)})
if dataset_attr.response and isinstance(examples[dataset_attr.response][i], list):
response = [
{"role": Role.ASSISTANT.value, "content": content} for content in examples[dataset_attr.response][i]
]
elif dataset_attr.response and isinstance(examples[dataset_attr.response][i], str):
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
else:
response = []
outputs["prompt"].append(prompt)
outputs["response"].append(response)
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
outputs["tools"].append("")
return outputs
def convert_sharegpt(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
tag_mapping = {
dataset_attr.user_tag: Role.USER.value,
dataset_attr.assistant_tag: Role.ASSISTANT.value,
dataset_attr.observation_tag: Role.OBSERVATION.value,
dataset_attr.function_tag: Role.FUNCTION.value,
dataset_attr.system_tag: Role.SYSTEM.value,
}
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
accept_tags = (odd_tags, even_tags)
for i, messages in enumerate(examples[dataset_attr.messages]):
if dataset_attr.system_tag and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag:
system = messages[0][dataset_attr.content_tag]
messages = messages[1:]
else:
system = examples[dataset_attr.system][i] if dataset_attr.system else ""
messages = messages[: len(messages) // 2 * 2] # should be multiples of 2
if len(messages) == 0:
continue
aligned_messages = []
for turn_idx, message in enumerate(messages):
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
raise ValueError("Invalid role tag in {}.".format(messages))
aligned_messages.append(
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
)
outputs["prompt"].append(aligned_messages[:-1])
outputs["response"].append(aligned_messages[-1:])
outputs["system"].append(system)
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
return outputs
def align_dataset(
dataset: Union["Dataset", "IterableDataset"], dataset_attr: "DatasetAttr", data_args: "DataArguments"
) -> Union["Dataset", "IterableDataset"]:
r"""
Aligned dataset:
prompt: [{"role": "user", "content": "..."}] * (2T - 1)
response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
system: "..."
tools: "..."
"""
if dataset_attr.formatting == "alpaca":
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr)
else:
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr)
column_names = list(next(iter(dataset)).keys())
features = Features.from_dict(
{
"prompt": [
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
],
"response": [
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
],
"system": {"dtype": "string", "_type": "Value"},
"tools": {"dtype": "string", "_type": "Value"},
}
)
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Converting format of dataset",
)
return dataset.map(
convert_func,
batched=True,
remove_columns=column_names,
features=features,
**kwargs,
)

View File

@@ -0,0 +1,187 @@
import json
import re
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any, Dict, List, Literal, Optional, Sequence, Set, Tuple, Union
SLOTS = Sequence[Union[str, Set[str], Dict[str, str]]]
JSON_FORMAT_PROMPT = (
""", in a JSON format representing the kwargs (e.g. ```{"input": "hello world", "num_beams": 5}```)"""
)
TOOL_SYSTEM_PROMPT = (
"You have access to the following tools:\n{tool_text}"
"Use the following format if using a tool:\n"
"```\n"
"Action: tool name (one of [{tool_names}]).\n"
"Action Input: the input to the tool{format_prompt}.\n"
"```\n"
)
def default_tool_formatter(tools: List[Dict[str, Any]]) -> str:
tool_text = ""
tool_names = []
for tool in tools:
param_text = ""
for name, param in tool["parameters"]["properties"].items():
required = ", required" if name in tool["parameters"].get("required", []) else ""
enum = ", should be one of [{}]".format(", ".join(param["enum"])) if param.get("enum", None) else ""
items = (
", where each item should be {}".format(param["items"].get("type", "")) if param.get("items") else ""
)
param_text += " - {name} ({type}{required}): {desc}{enum}{items}\n".format(
name=name,
type=param.get("type", ""),
required=required,
desc=param.get("description", ""),
enum=enum,
items=items,
)
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format(
name=tool["name"], desc=tool.get("description", ""), args=param_text
)
tool_names.append(tool["name"])
return TOOL_SYSTEM_PROMPT.format(
tool_text=tool_text, tool_names=", ".join(tool_names), format_prompt=JSON_FORMAT_PROMPT
)
def default_tool_extractor(content: str) -> Union[str, Tuple[str, str]]:
regex = re.compile(r"Action:\s*([a-zA-Z0-9_]+).*?Action Input:\s*(.*)", re.DOTALL)
action_match = re.search(regex, content)
if not action_match:
return content
tool_name = action_match.group(1).strip()
tool_input = action_match.group(2).strip().strip('"').strip("```")
try:
arguments = json.loads(tool_input)
except json.JSONDecodeError:
return content
return tool_name, json.dumps(arguments, ensure_ascii=False)
@dataclass
class Formatter(ABC):
slots: SLOTS = field(default_factory=list)
tool_format: Optional[Literal["default"]] = None
@abstractmethod
def apply(self, **kwargs) -> SLOTS: ...
def extract(self, content: str) -> Union[str, Tuple[str, str]]:
raise NotImplementedError
@dataclass
class EmptyFormatter(Formatter):
def __post_init__(self):
has_placeholder = False
for slot in filter(lambda s: isinstance(s, str), self.slots):
if re.search(r"\{\{[a-zA-Z_][a-zA-Z0-9_]*\}\}", slot):
has_placeholder = True
if has_placeholder:
raise ValueError("Empty formatter should not contain any placeholder.")
def apply(self, **kwargs) -> SLOTS:
return self.slots
@dataclass
class StringFormatter(Formatter):
def __post_init__(self):
has_placeholder = False
for slot in filter(lambda s: isinstance(s, str), self.slots):
if re.search(r"\{\{[a-zA-Z_][a-zA-Z0-9_]*\}\}", slot):
has_placeholder = True
if not has_placeholder:
raise ValueError("A placeholder is required in the string formatter.")
def apply(self, **kwargs) -> SLOTS:
elements = []
for slot in self.slots:
if isinstance(slot, str):
for name, value in kwargs.items():
if not isinstance(value, str):
raise RuntimeError("Expected a string, got {}".format(value))
slot = slot.replace("{{" + name + "}}", value, 1)
elements.append(slot)
elif isinstance(slot, (dict, set)):
elements.append(slot)
else:
raise RuntimeError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
return elements
@dataclass
class FunctionFormatter(Formatter):
def __post_init__(self):
has_name, has_args = False, False
for slot in filter(lambda s: isinstance(s, str), self.slots):
if "{{name}}" in slot:
has_name = True
if "{{arguments}}" in slot:
has_args = True
if not has_name or not has_args:
raise ValueError("Name and arguments placeholders are required in the function formatter.")
def apply(self, **kwargs) -> SLOTS:
content = kwargs.pop("content")
try:
function = json.loads(content)
name = function["name"]
arguments = json.dumps(function["arguments"], ensure_ascii=False)
except Exception:
name, arguments = "", ""
elements = []
for slot in self.slots:
if isinstance(slot, str):
slot = slot.replace("{{name}}", name).replace("{{arguments}}", arguments)
elements.append(slot)
elif isinstance(slot, (dict, set)):
elements.append(slot)
else:
raise RuntimeError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
return elements
@dataclass
class ToolFormatter(Formatter):
def __post_init__(self):
if self.tool_format is None:
raise ValueError("Tool format was not found.")
def apply(self, **kwargs) -> SLOTS:
content = kwargs.pop("content")
try:
tools = json.loads(content)
if not len(tools):
return [""]
if self.tool_format == "default":
return [default_tool_formatter(tools)]
else:
raise NotImplementedError
except Exception:
return [""]
def extract(self, content: str) -> Union[str, Tuple[str, str]]:
if self.tool_format == "default":
return default_tool_extractor(content)
else:
raise NotImplementedError

View File

@@ -0,0 +1,170 @@
import inspect
import os
from typing import TYPE_CHECKING, Literal, Union
from datasets import load_dataset, load_from_disk
from ..extras.constants import FILEEXT2TYPE
from ..extras.logging import get_logger
from .aligner import align_dataset
from .parser import get_dataset_list
from .preprocess import get_preprocess_and_print_func
from .template import get_template_and_fix_tokenizer
from .utils import checksum, merge_dataset
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer
from ..hparams import DataArguments, ModelArguments
from .parser import DatasetAttr
logger = get_logger(__name__)
def load_single_dataset(
dataset_attr: "DatasetAttr",
model_args: "ModelArguments",
data_args: "DataArguments",
) -> Union["Dataset", "IterableDataset"]:
logger.info("Loading dataset {}...".format(dataset_attr))
data_path, data_name, data_dir, data_files = None, None, None, None
if dataset_attr.load_from in ["hf_hub", "ms_hub"]:
data_path = dataset_attr.dataset_name
data_name = dataset_attr.subset
data_dir = dataset_attr.folder
elif dataset_attr.load_from == "script":
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
data_name = dataset_attr.subset
data_dir = dataset_attr.folder
elif dataset_attr.load_from == "file":
data_files = []
local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
if os.path.isdir(local_path): # is directory
for file_name in os.listdir(local_path):
data_files.append(os.path.join(local_path, file_name))
if data_path is None:
data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None)
elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None):
raise ValueError("File types should be identical.")
elif os.path.isfile(local_path): # is file
data_files.append(local_path)
data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None)
else:
raise ValueError("File not found.")
if data_path is None:
raise ValueError("File extension must be txt, csv, json or jsonl.")
checksum(data_files, dataset_attr.file_sha1)
else:
raise NotImplementedError
if dataset_attr.load_from == "ms_hub":
try:
from modelscope import MsDataset
from modelscope.utils.config_ds import MS_DATASETS_CACHE
cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
dataset = MsDataset.load(
dataset_name=data_path,
subset_name=data_name,
data_dir=data_dir,
data_files=data_files,
split=data_args.split,
cache_dir=cache_dir,
token=model_args.ms_hub_token,
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
).to_hf_dataset()
except ImportError:
raise ImportError("Please install modelscope via `pip install modelscope -U`")
else:
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0
kwargs = {"trust_remote_code": True}
else:
kwargs = {}
dataset = load_dataset(
path=data_path,
name=data_name,
data_dir=data_dir,
data_files=data_files,
split=data_args.split,
cache_dir=model_args.cache_dir,
token=model_args.hf_hub_token,
streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
**kwargs,
)
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter
if data_args.max_samples is not None: # truncate dataset
num_samples = min(data_args.max_samples, len(dataset))
dataset = dataset.select(range(num_samples))
return align_dataset(dataset, dataset_attr, data_args)
def get_dataset(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"],
# split: Optional[str] = "train", # TODO: add split
) -> Union["Dataset", "IterableDataset"]:
template = get_template_and_fix_tokenizer(tokenizer, data_args.template)
if data_args.train_on_prompt and template.efficient_eos:
raise ValueError("Current template does not support `train_on_prompt`.")
# Load from cache
if data_args.cache_path is not None:
if os.path.exists(data_args.cache_path):
logger.warning("Loading dataset from disk will ignore other data arguments.")
dataset = load_from_disk(data_args.cache_path)
if data_args.streaming:
dataset = dataset.to_iterable_dataset()
return dataset
if data_args.streaming:
raise ValueError("Turn off `streaming` when saving dataset to disk.")
with training_args.main_process_first(desc="load dataset"):
all_datasets = []
for dataset_attr in get_dataset_list(data_args):
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
dataset = merge_dataset(all_datasets, data_args, training_args)
with training_args.main_process_first(desc="pre-process dataset"):
preprocess_func, print_function = get_preprocess_and_print_func(
tokenizer, template, data_args, training_args, stage
)
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Running tokenizer on dataset",
)
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path):
if training_args.should_save:
dataset.save_to_disk(data_args.cache_path)
logger.info("Dataset cache saved at {}.".format(data_args.cache_path))
if training_args.should_log:
try:
print_function(next(iter(dataset)))
except StopIteration:
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
return dataset

View File

@@ -0,0 +1,119 @@
import json
import os
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional
from ..extras.constants import DATA_CONFIG
from ..extras.misc import use_modelscope
if TYPE_CHECKING:
from ..hparams import DataArguments
@dataclass
class DatasetAttr:
r"""
Dataset attributes.
"""
""" basic configs """
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
dataset_name: str
""" extra configs """
file_sha1: Optional[str] = None
subset: Optional[str] = None
folder: Optional[str] = None
ranking: bool = False
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
""" columns """
system: Optional[str] = None
""" columns for the alpaca format """
prompt: Optional[str] = "instruction"
query: Optional[str] = "input"
response: Optional[str] = "output"
history: Optional[str] = None
""" columns for the sharegpt format """
messages: Optional[str] = "conversations"
tools: Optional[str] = None
""" tags for the sharegpt format """
role_tag: Optional[str] = "from"
content_tag: Optional[str] = "value"
user_tag: Optional[str] = "human"
assistant_tag: Optional[str] = "gpt"
observation_tag: Optional[str] = "observation"
function_tag: Optional[str] = "function_call"
system_tag: Optional[str] = "system"
def __repr__(self) -> str:
return self.dataset_name
def set_attr(self, key: str, obj: Dict[str, Any], default: Optional[Any] = None) -> None:
setattr(self, key, obj.get(key, default))
def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")] if data_args.dataset is not None else []
try:
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f:
dataset_info = json.load(f)
except Exception as err:
if data_args.dataset is not None:
raise ValueError(
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
)
dataset_info = None
if data_args.interleave_probs is not None:
data_args.interleave_probs = [float(prob.strip()) for prob in data_args.interleave_probs.split(",")]
dataset_list: List[DatasetAttr] = []
for name in dataset_names:
if name not in dataset_info:
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
has_hf_url = "hf_hub_url" in dataset_info[name]
has_ms_url = "ms_hub_url" in dataset_info[name]
if has_hf_url or has_ms_url:
if (use_modelscope() and has_ms_url) or (not has_hf_url):
dataset_attr = DatasetAttr("ms_hub", dataset_name=dataset_info[name]["ms_hub_url"])
else:
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
else:
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
dataset_attr.set_attr("file_sha1", dataset_info[name])
dataset_attr.set_attr("subset", dataset_info[name])
dataset_attr.set_attr("folder", dataset_info[name])
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
if "columns" in dataset_info[name]:
column_names = ["system"]
if dataset_attr.formatting == "alpaca":
column_names.extend(["prompt", "query", "response", "history"])
else:
column_names.extend(["messages", "tools"])
for column_name in column_names:
dataset_attr.set_attr(column_name, dataset_info[name]["columns"])
if dataset_attr.formatting == "sharegpt" and "tags" in dataset_info[name]:
tag_names = (
"role_tag",
"content_tag",
"user_tag",
"assistant_tag",
"observation_tag",
"function_tag",
"system_tag",
)
for tag in tag_names:
dataset_attr.set_attr(tag, dataset_info[name]["tags"])
dataset_list.append(dataset_attr)
return dataset_list

View File

@@ -0,0 +1,276 @@
from functools import partial
from itertools import chain
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple
from ..extras.constants import IGNORE_INDEX
from ..extras.logging import get_logger
from .utils import Role
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer
from ..hparams import DataArguments
from .template import Template
logger = get_logger(__name__)
def preprocess_pretrain_dataset(
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
) -> Dict[str, List[List[int]]]:
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
if not data_args.packing:
return tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
if data_args.template == "gemma":
for i in range(len(result["input_ids"])):
result["input_ids"][i][0] = tokenizer.bos_token_id
return result
def preprocess_supervised_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
continue
messages = examples["prompt"][i] + examples["response"][i]
input_ids, labels = [], []
for turn_idx, (source_ids, target_ids) in enumerate(
template.encode_multiturn(
tokenizer,
messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_packed_supervised_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
input_ids, labels = [], []
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
continue
messages = examples["prompt"][i] + examples["response"][i]
for source_ids, target_ids in template.encode_multiturn(
tokenizer, messages, examples["system"][i], examples["tools"][i]
):
if data_args.train_on_prompt:
source_mask = source_ids
elif len(input_ids) != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
total_length = len(input_ids)
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
for i in range(0, total_length, block_size):
if not all(label == IGNORE_INDEX for label in labels[i : i + block_size]):
model_inputs["input_ids"].append(input_ids[i : i + block_size])
model_inputs["attention_mask"].append([1] * block_size)
model_inputs["labels"].append(labels[i : i + block_size])
return model_inputs
def preprocess_unsupervised_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X` and labels with format `Y <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) % 2 != 1:
continue
if len(examples["response"][i]) == 1:
messages = examples["prompt"][i] + examples["response"][i]
else:
messages = examples["prompt"][i] + [{"role": Role.ASSISTANT.value, "content": ""}]
input_ids, labels = template.encode_oneturn(
tokenizer,
messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
if template.efficient_eos:
labels += [tokenizer.eos_token_id]
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_pairwise_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []}
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
continue
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]]
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]
prompt_ids, chosen_ids = template.encode_oneturn(
tokenizer,
chosen_messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
_, rejected_ids = template.encode_oneturn(
tokenizer,
rejected_messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
if template.efficient_eos:
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
model_inputs["prompt_ids"].append(prompt_ids)
model_inputs["chosen_ids"].append(chosen_ids)
model_inputs["rejected_ids"].append(rejected_ids)
return model_inputs
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
print("label_ids:\n{}".format(example["labels"]))
print(
"labels:\n{}".format(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False)
)
)
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
print("prompt_ids:\n{}".format(example["prompt_ids"]))
print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False)))
print("chosen_ids:\n{}".format(example["chosen_ids"]))
print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False)))
print("rejected_ids:\n{}".format(example["rejected_ids"]))
print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False)))
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
def get_preprocess_and_print_func(
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"],
) -> Tuple[Callable, Callable]:
if stage == "pt":
preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args)
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
elif stage == "sft" and not training_args.predict_with_generate:
if data_args.packing:
preprocess_func = partial(
preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
else:
preprocess_func = partial(
preprocess_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
elif stage == "rm":
preprocess_func = partial(
preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
else:
preprocess_func = partial(
preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
return preprocess_func, print_function

View File

@@ -0,0 +1,773 @@
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
from ..extras.logging import get_logger
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter
from .utils import Role, infer_max_len
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
from .formatter import SLOTS, Formatter
logger = get_logger(__name__)
@dataclass
class Template:
format_user: "Formatter"
format_assistant: "Formatter"
format_system: "Formatter"
format_function: "Formatter"
format_observation: "Formatter"
format_tools: "Formatter"
format_separator: "Formatter"
default_system: str
stop_words: List[str]
efficient_eos: bool
replace_eos: bool
force_system: bool
def encode_oneturn(
self,
tokenizer: "PreTrainedTokenizer",
messages: List[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
cutoff_len: int = 1_000_000,
reserved_label_len: int = 1,
) -> Tuple[List[int], List[int]]:
r"""
Returns a single pair of token ids representing prompt and response respectively.
"""
encoded_pairs = self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len)
prompt_ids = []
for query_ids, resp_ids in encoded_pairs[:-1]:
prompt_ids += query_ids + resp_ids
prompt_ids = prompt_ids + encoded_pairs[-1][0]
answer_ids = encoded_pairs[-1][1]
return prompt_ids, answer_ids
def encode_multiturn(
self,
tokenizer: "PreTrainedTokenizer",
messages: List[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
cutoff_len: int = 1_000_000,
reserved_label_len: int = 1,
) -> Sequence[Tuple[List[int], List[int]]]:
r"""
Returns multiple pairs of token ids representing prompts and responses respectively.
"""
return self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len)
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
messages: List[Dict[str, str]],
system: str,
tools: str,
cutoff_len: int,
reserved_label_len: int,
) -> Sequence[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
Turn 0: system + query resp
Turn t: sep + query resp
"""
system = system or self.default_system
encoded_messages = []
for i, message in enumerate(messages):
elements = []
if i == 0 and (system or tools or self.force_system):
tool_text = self.format_tools.apply(content=tools)[0] if tools else ""
elements += self.format_system.apply(content=(system + tool_text))
elif i > 0 and i % 2 == 0:
elements += self.format_separator.apply()
if message["role"] == Role.USER.value:
elements += self.format_user.apply(content=message["content"], idx=str(i // 2))
elif message["role"] == Role.ASSISTANT.value:
elements += self.format_assistant.apply(content=message["content"])
elif message["role"] == Role.OBSERVATION.value:
elements += self.format_observation.apply(content=message["content"])
elif message["role"] == Role.FUNCTION.value:
elements += self.format_function.apply(content=message["content"])
else:
raise NotImplementedError("Unexpected role: {}".format(message["role"]))
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len)
def _convert_elements_to_ids(
self, tokenizer: "PreTrainedTokenizer", elements: List[Union[str, Dict[str, str]]]
) -> List[int]:
r"""
Converts elements to token ids.
"""
token_ids = []
for elem in elements:
if isinstance(elem, str):
if len(elem) != 0:
token_ids += tokenizer.encode(elem, add_special_tokens=False)
elif isinstance(elem, dict):
token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))]
elif isinstance(elem, set):
if "bos_token" in elem and tokenizer.bos_token_id is not None:
token_ids += [tokenizer.bos_token_id]
elif "eos_token" in elem and tokenizer.eos_token_id is not None:
token_ids += [tokenizer.eos_token_id]
else:
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem)))
return token_ids
def _make_pairs(
self,
encoded_messages: Sequence[List[int]],
cutoff_len: int,
reserved_label_len: int,
) -> Sequence[Tuple[List[int], List[int]]]:
encoded_pairs = []
total_length = 0
for i in range(0, len(encoded_messages), 2):
if total_length >= cutoff_len:
break
max_source_len, max_target_len = infer_max_len(
source_len=len(encoded_messages[i]),
target_len=len(encoded_messages[i + 1]),
max_len=(cutoff_len - total_length),
reserved_label_len=reserved_label_len,
)
source_ids = encoded_messages[i][:max_source_len]
target_ids = encoded_messages[i + 1][:max_target_len]
total_length += len(source_ids) + len(target_ids)
encoded_pairs.append((source_ids, target_ids))
return encoded_pairs
@dataclass
class Llama2Template(Template):
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
messages: List[Dict[str, str]],
system: str,
tools: str,
cutoff_len: int,
reserved_label_len: int,
) -> Sequence[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
Turn 0: system + query resp
Turn t: sep + query resp
"""
system = system or self.default_system
encoded_messages = []
for i, message in enumerate(messages):
elements = []
system_text = ""
if i == 0 and (system or tools or self.force_system):
tool_text = self.format_tools.apply(content=tools)[0] if tools else ""
system_text = self.format_system.apply(content=(system + tool_text))[0]
elif i > 0 and i % 2 == 0:
elements += self.format_separator.apply()
if message["role"] == Role.USER.value:
elements += self.format_user.apply(content=system_text + message["content"])
elif message["role"] == Role.ASSISTANT.value:
elements += self.format_assistant.apply(content=message["content"])
elif message["role"] == Role.OBSERVATION.value:
elements += self.format_observation.apply(content=message["content"])
elif message["role"] == Role.FUNCTION.value:
elements += self.format_function.apply(content=message["content"])
else:
raise NotImplementedError("Unexpected role: {}".format(message["role"]))
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len)
templates: Dict[str, Template] = {}
def _register_template(
name: str,
format_user: Optional["Formatter"] = None,
format_assistant: Optional["Formatter"] = None,
format_system: Optional["Formatter"] = None,
format_function: Optional["Formatter"] = None,
format_observation: Optional["Formatter"] = None,
format_tools: Optional["Formatter"] = None,
format_separator: Optional["Formatter"] = None,
default_system: str = "",
stop_words: List[str] = [],
efficient_eos: bool = False,
replace_eos: bool = False,
force_system: bool = False,
) -> None:
r"""
Registers a chat template.
To add the following chat template:
```
[HUMAN]:
user prompt here
[AI]:
model response here
[HUMAN]:
user prompt here
[AI]:
model response here
```
The corresponding code should be:
```
_register_template(
name="custom",
format_user=StringFormatter(slots=["[HUMAN]:\n{{content}}\n[AI]:\n"]),
format_separator=EmptyFormatter(slots=["\n\n"]),
efficient_eos=True,
)
```
"""
eos_slots = [] if efficient_eos else [{"eos_token"}]
template_class = Llama2Template if name.startswith("llama2") else Template
default_user_formatter = StringFormatter(slots=["{{content}}"])
default_assistant_formatter = StringFormatter(slots=["{{content}}"] + eos_slots)
default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots)
default_tool_formatter = ToolFormatter(tool_format="default")
default_separator_formatter = EmptyFormatter()
templates[name] = template_class(
format_user=format_user or default_user_formatter,
format_assistant=format_assistant or default_assistant_formatter,
format_system=format_system or default_user_formatter,
format_function=format_function or default_function_formatter,
format_observation=format_observation or format_user or default_user_formatter,
format_tools=format_tools or default_tool_formatter,
format_separator=format_separator or default_separator_formatter,
default_system=default_system,
stop_words=stop_words,
efficient_eos=efficient_eos,
replace_eos=replace_eos,
force_system=force_system,
)
def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str) -> None:
is_added = tokenizer.eos_token_id is None
num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token})
if is_added:
logger.info("Add eos token: {}".format(tokenizer.eos_token))
else:
logger.info("Replace eos token: {}".format(tokenizer.eos_token))
if num_added_tokens > 0:
logger.warning("New tokens have been added, make sure `resize_vocab` is True.")
def _jinja_escape(content: str) -> str:
return content.replace("\n", r"\n").replace("'", r"\'")
def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str:
slot_items = []
for slot in slots:
if isinstance(slot, str):
slot_pieces = slot.split("{{content}}")
if slot_pieces[0]:
slot_items.append("'" + _jinja_escape(slot_pieces[0]) + "'")
if len(slot_pieces) > 1:
slot_items.append(placeholder)
if slot_pieces[1]:
slot_items.append("'" + _jinja_escape(slot_pieces[1]) + "'")
elif isinstance(slot, set):
if "bos_token" in slot:
slot_items.append("'" + tokenizer.bos_token + "'")
elif "eos_token" in slot: # do not use {{ eos_token }} since it may be replaced
slot_items.append("'" + tokenizer.eos_token + "'")
elif isinstance(slot, dict):
raise ValueError("Dict is not supported.")
return " + ".join(slot_items)
def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer") -> str:
jinja_template = ""
if template.default_system:
jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}"
jinja_template += (
"{% if messages[0]['role'] == 'system' %}" "{% set system_message = messages[0]['content'] %}" "{% endif %}"
)
system_message = _convert_slots_to_jinja(template.format_system.apply(), tokenizer, placeholder="system_message")
if isinstance(template, Llama2Template):
pass
elif template.force_system:
jinja_template += "{{ " + system_message + " }}"
else:
jinja_template += "{% if system_message is defined %}{{ " + system_message + " }}{% endif %}"
jinja_template += "{% for message in messages %}"
jinja_template += "{% set content = message['content'] %}"
if isinstance(template, Llama2Template):
jinja_template += "{% if loop.index0 == 0 and system_message is defined %}"
jinja_template += "{% set content = " + system_message + " + message['content'] %}"
jinja_template += "{% endif %}"
jinja_template += "{% if message['role'] == 'user' %}"
user_message = _convert_slots_to_jinja(template.format_user.apply(), tokenizer)
jinja_template += "{{ " + user_message + " }}"
jinja_template += "{% elif message['role'] == 'assistant' %}"
assistant_message = _convert_slots_to_jinja(
template.format_assistant.apply() + template.format_separator.apply(), tokenizer
)
jinja_template += "{{ " + assistant_message + " }}"
jinja_template += "{% endif %}"
jinja_template += "{% endfor %}"
return jinja_template
def get_template_and_fix_tokenizer(
tokenizer: "PreTrainedTokenizer",
name: Optional[str] = None,
) -> Template:
if name is None:
template = templates["vanilla"] # placeholder
else:
template = templates.get(name, None)
if template is None:
raise ValueError("Template {} does not exist.".format(name))
stop_words = template.stop_words
if template.replace_eos:
if not stop_words:
raise ValueError("Stop words are required to replace the EOS token.")
_add_or_replace_eos_token(tokenizer, eos_token=stop_words[0])
stop_words = stop_words[1:]
if tokenizer.eos_token_id is None:
_add_or_replace_eos_token(tokenizer, eos_token="<|endoftext|>")
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
logger.info("Add pad token: {}".format(tokenizer.pad_token))
if stop_words:
num_added_tokens = tokenizer.add_special_tokens(
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False
)
logger.info("Add {} to stop words.".format(",".join(stop_words)))
if num_added_tokens > 0:
logger.warning("New tokens have been added, make sure `resize_vocab` is True.")
try:
tokenizer.chat_template = _get_jinja_template(template, tokenizer)
except ValueError:
logger.info("Cannot add this chat template to tokenizer.")
return template
_register_template(
name="alpaca",
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]),
format_separator=EmptyFormatter(slots=["\n\n"]),
default_system=(
"Below is an instruction that describes a task. " "Write a response that appropriately completes the request."
),
)
_register_template(
name="aquila",
format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]),
format_separator=EmptyFormatter(slots=["###"]),
default_system=(
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
),
stop_words=["</s>"],
efficient_eos=True,
)
_register_template(
name="atom",
format_user=StringFormatter(
slots=[{"bos_token"}, "Human: {{content}}\n", {"eos_token"}, {"bos_token"}, "Assistant:"]
),
format_assistant=StringFormatter(slots=["{{content}}\n", {"eos_token"}]),
)
_register_template(
name="baichuan",
format_user=StringFormatter(slots=["<reserved_102>{{content}}<reserved_103>"]),
efficient_eos=True,
)
_register_template(
name="baichuan2",
format_user=StringFormatter(slots=["<reserved_106>{{content}}<reserved_107>"]),
efficient_eos=True,
)
_register_template(
name="belle",
format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
format_separator=EmptyFormatter(slots=["\n\n"]),
force_system=True,
)
_register_template(
name="bluelm",
format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]),
)
_register_template(
name="chatglm2",
format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]),
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]),
format_separator=EmptyFormatter(slots=["\n\n"]),
efficient_eos=True,
force_system=True,
)
_register_template(
name="chatglm3",
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]),
format_assistant=StringFormatter(slots=["\n", "{{content}}"]),
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]),
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]),
format_observation=StringFormatter(
slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]
),
stop_words=["<|user|>", "<|observation|>"],
efficient_eos=True,
force_system=True,
)
_register_template(
name="chatglm3_system",
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]),
format_assistant=StringFormatter(slots=["\n", "{{content}}"]),
format_system=StringFormatter(
slots=[{"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{content}}"]
),
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]),
format_observation=StringFormatter(
slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]
),
default_system=(
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
"Follow the user's instructions carefully. Respond using markdown."
),
stop_words=["<|user|>", "<|observation|>"],
efficient_eos=True,
)
_register_template(
name="chatml",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
stop_words=["<|im_end|>", "<|im_start|>"],
replace_eos=True,
)
_register_template(
name="chatml_de",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.",
stop_words=["<|im_end|>", "<|im_start|>"],
replace_eos=True,
)
_register_template(
name="codegeex2",
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]),
force_system=True,
)
_register_template(
name="cpm",
format_user=StringFormatter(slots=["<用户>{{content}}<AI>"]),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
force_system=True,
)
_register_template(
name="deepseek",
format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
force_system=True,
)
_register_template(
name="deepseekcoder",
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:"]),
format_assistant=StringFormatter(slots=["\n", "{{content}}"]),
format_separator=EmptyFormatter(slots=["\n<|EOT|>\n"]),
default_system=(
"You are an AI programming assistant, utilizing the Deepseek Coder model, "
"developed by Deepseek Company, and you only answer questions related to computer science. "
"For politically sensitive questions, security and privacy issues, "
"and other non-computer science questions, you will refuse to answer\n"
),
stop_words=["<|EOT|>"],
efficient_eos=True,
)
_register_template(
name="default",
format_user=StringFormatter(slots=["Human: {{content}}\nAssistant: "]),
format_system=StringFormatter(slots=["{{content}}\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
)
_register_template(
name="falcon",
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]),
format_separator=EmptyFormatter(slots=["\n"]),
efficient_eos=True,
)
_register_template(
name="gemma",
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
format_separator=EmptyFormatter(slots=["<end_of_turn>\n"]),
efficient_eos=True,
force_system=True,
)
_register_template(
name="intern",
format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]),
format_separator=EmptyFormatter(slots=[{"token": "<eoa>"}, "\n"]),
stop_words=["<eoa>"],
efficient_eos=True,
)
_register_template(
name="intern2",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_system=StringFormatter(slots=[{"bos_token"}, "<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
default_system=(
"You are an AI assistant whose name is InternLM (书生·浦语).\n"
"- InternLM (书生·浦语) is a conversational language model that is developed "
"by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen "
"by the user such as English and 中文."
),
stop_words=["<|im_end|>"],
efficient_eos=True, # internlm2 tokenizer cannot set eos_token_id
)
_register_template(
name="llama2",
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
default_system=(
"You are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
)
_register_template(
name="llama2_zh",
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
default_system="You are a helpful assistant. 你是一个乐于助人的助手。",
)
_register_template(
name="mistral",
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
force_system=True,
)
_register_template(
name="olmo",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
format_system=StringFormatter(slots=[{"eos_token"}, "{{content}}"]),
force_system=True,
)
_register_template(
name="openchat",
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]),
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
force_system=True,
)
_register_template(
name="orion",
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
force_system=True,
)
_register_template(
name="qwen",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
default_system="You are a helpful assistant.",
stop_words=["<|im_end|>"],
replace_eos=True,
)
_register_template(
name="solar",
format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]),
format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]),
efficient_eos=True,
)
_register_template(
name="starchat",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>"]),
format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
stop_words=["<|end|>"],
replace_eos=True,
force_system=True,
)
_register_template(
name="vanilla",
)
_register_template(
name="vicuna",
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
default_system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
)
_register_template(
name="xuanyuan",
format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]),
default_system=(
"以下是用户和人工智能助手之间的对话。用户以Human开头人工智能助手以Assistant开头"
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、"
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
),
)
_register_template(
name="xverse",
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "]),
)
_register_template(
name="yayi",
format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]),
format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]),
format_separator=EmptyFormatter(slots=["\n\n"]),
default_system=(
"You are a helpful, respectful and honest assistant named YaYi "
"developed by Beijing Wenge Technology Co.,Ltd. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
stop_words=["<|End|>"],
)
_register_template(
name="yi",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
stop_words=["<|im_end|>"],
replace_eos=True,
)
_register_template(
name="yuan",
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
format_separator=EmptyFormatter(slots=["\n"]),
stop_words=["<eod>"],
replace_eos=True,
)
_register_template(
name="zephyr",
format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]),
format_assistant=StringFormatter(slots=["\n{{content}}", {"eos_token"}]),
format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]),
default_system="You are a friendly chatbot who always responds in the style of a pirate",
)
_register_template(
name="ziya",
format_user=StringFormatter(slots=["<human>:{{content}}\n<bot>:"]),
format_separator=EmptyFormatter(slots=["\n"]),
)

View File

@@ -0,0 +1,94 @@
import hashlib
from enum import Enum, unique
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from datasets import concatenate_datasets, interleave_datasets
from ..extras.logging import get_logger
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments
from llmtuner.hparams import DataArguments
logger = get_logger(__name__)
@unique
class Role(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
FUNCTION = "function"
OBSERVATION = "observation"
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
if file_sha1 is None:
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
return
if len(data_files) != 1:
logger.warning("Checksum failed: too many files.")
return
with open(data_files[0], "rb") as f:
sha1 = hashlib.sha1(f.read()).hexdigest()
if sha1 != file_sha1:
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
max_target_len = int(max_len * (target_len / (source_len + target_len)))
max_target_len = max(max_target_len, reserved_label_len)
max_source_len = max_len - max_target_len
return max_source_len, max_target_len
def merge_dataset(
all_datasets: List[Union["Dataset", "IterableDataset"]],
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
if len(all_datasets) == 1:
return all_datasets[0]
elif data_args.mix_strategy == "concat":
if data_args.streaming:
logger.warning("The samples between different datasets will not be mixed in streaming mode.")
return concatenate_datasets(all_datasets)
elif data_args.mix_strategy.startswith("interleave"):
if not data_args.streaming:
logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
return interleave_datasets(
datasets=all_datasets,
probabilities=data_args.interleave_probs,
seed=training_args.seed,
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
)
else:
raise ValueError("Unknown mixing strategy.")
def split_dataset(
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments"
) -> Dict[str, "Dataset"]:
if training_args.do_train:
if data_args.val_size > 1e-6: # Split the dataset
if data_args.streaming:
val_set = dataset.take(int(data_args.val_size))
train_set = dataset.skip(int(data_args.val_size))
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
return {"train_dataset": train_set, "eval_dataset": val_set}
else:
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed)
return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
else:
if data_args.streaming:
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
return {"train_dataset": dataset}
else: # do_eval or do_predict
return {"eval_dataset": dataset}

View File

@@ -0,0 +1,4 @@
from .evaluator import Evaluator
__all__ = ["Evaluator"]

View File

@@ -0,0 +1,122 @@
# Inspired by: https://github.com/hendrycks/test/blob/master/evaluate_flan.py
import inspect
import json
import os
from typing import Any, Dict, List, Optional
import numpy as np
import torch
from datasets import load_dataset
from tqdm import tqdm, trange
from transformers.utils import cached_file
from ..data import get_template_and_fix_tokenizer
from ..extras.constants import CHOICES, SUBJECTS
from ..hparams import get_eval_args
from ..model import load_model_and_tokenizer
from .template import get_eval_template
class Evaluator:
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
self.model, self.tokenizer = load_model_and_tokenizer(self.model_args, finetuning_args)
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2
self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args.template)
self.eval_template = get_eval_template(self.eval_args.lang)
self.choice_inputs = [
self.tokenizer.encode(self.eval_template.prefix + ch, add_special_tokens=False)[-1] for ch in CHOICES
]
@torch.inference_mode()
def batch_inference(self, batch_input: Dict[str, torch.Tensor]) -> List[str]:
logits = self.model(**batch_input).logits
lengths = torch.sum(batch_input["attention_mask"], dim=-1)
word_probs = torch.stack([logits[i, lengths[i] - 1] for i in range(len(lengths))], dim=0)
choice_probs = torch.nn.functional.softmax(word_probs[:, self.choice_inputs], dim=-1).detach()
return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)]
def eval(self) -> None:
mapping = cached_file(
path_or_repo_id=os.path.join(self.eval_args.task_dir, self.eval_args.task),
filename="mapping.json",
cache_dir=self.model_args.cache_dir,
token=self.model_args.hf_hub_token,
)
with open(mapping, "r", encoding="utf-8") as f:
categorys: Dict[str, Dict[str, str]] = json.load(f)
category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS}
pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0)
results = {}
for subject in pbar:
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0
kwargs = {"trust_remote_code": True}
else:
kwargs = {}
dataset = load_dataset(
path=os.path.join(self.eval_args.task_dir, self.eval_args.task),
name=subject,
cache_dir=self.model_args.cache_dir,
download_mode=self.eval_args.download_mode,
token=self.model_args.hf_hub_token,
**kwargs,
)
pbar.set_postfix_str(categorys[subject]["name"])
inputs, outputs, labels = [], [], []
for i in trange(len(dataset[self.data_args.split]), desc="Formatting batches", position=1, leave=False):
support_set = (
dataset["train"].shuffle().select(range(min(self.eval_args.n_shot, len(dataset["train"]))))
)
messages = self.eval_template.format_example(
target_data=dataset[self.data_args.split][i],
support_set=support_set,
subject_name=categorys[subject]["name"],
)
input_ids, _ = self.template.encode_oneturn(tokenizer=self.tokenizer, messages=messages)
inputs.append({"input_ids": input_ids, "attention_mask": [1] * len(input_ids)})
labels.append(messages[-1]["content"])
for i in trange(
0, len(inputs), self.eval_args.batch_size, desc="Predicting batches", position=1, leave=False
):
batch_input = self.tokenizer.pad(
inputs[i : i + self.eval_args.batch_size], return_attention_mask=True, return_tensors="pt"
).to(self.model.device)
preds = self.batch_inference(batch_input)
outputs += preds
corrects = np.array(outputs) == np.array(labels)
category_name = categorys[subject]["category"]
category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0)
category_corrects["Average"] = np.concatenate([category_corrects["Average"], corrects], axis=0)
results[subject] = {str(i): outputs[i] for i in range(len(outputs))}
pbar.close()
self._save_results(category_corrects, results)
def _save_results(self, category_corrects: Dict[str, np.ndarray], results: Dict[str, Dict[int, str]]) -> None:
score_info = "\n".join(
[
"{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct))
for category_name, category_correct in category_corrects.items()
if len(category_correct)
]
)
print(score_info)
if self.eval_args.save_dir is not None:
os.makedirs(self.eval_args.save_dir, exist_ok=False)
with open(os.path.join(self.eval_args.save_dir, "results.json"), "w", encoding="utf-8", newline="\n") as f:
json.dump(results, f, indent=2)
with open(os.path.join(self.eval_args.save_dir, "results.log"), "w", encoding="utf-8", newline="\n") as f:
f.write(score_info)
if __name__ == "__main__":
evaluator = Evaluator()
evaluator.eval()

View File

@@ -0,0 +1,67 @@
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Tuple
from ..data import Role
from ..extras.constants import CHOICES
if TYPE_CHECKING:
from datasets import Dataset
@dataclass
class EvalTemplate:
system: str
choice: str
answer: str
prefix: str
def parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in CHOICES if ch in example]
return "".join([example["question"]] + candidates + [self.answer]), example["answer"]
def format_example(
self, target_data: Dict[str, str], support_set: "Dataset", subject_name: str
) -> List[Dict[str, str]]:
messages = []
for k in range(len(support_set)):
prompt, response = self.parse_example(support_set[k])
messages.append({"role": Role.USER, "content": prompt})
messages.append({"role": Role.ASSISTANT, "content": response})
prompt, response = self.parse_example(target_data)
messages.append({"role": Role.USER, "content": prompt})
messages.append({"role": Role.ASSISTANT, "content": response})
messages[0]["content"] = self.system.format(subject=subject_name) + messages[0]["content"]
return messages
eval_templates: Dict[str, "EvalTemplate"] = {}
def register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
eval_templates[name] = EvalTemplate(system=system, choice=choice, answer=answer, prefix=prefix)
def get_eval_template(name: str) -> "EvalTemplate":
eval_template = eval_templates.get(name, None)
assert eval_template is not None, "Template {} does not exist.".format(name)
return eval_template
register_eval_template(
name="en",
system="The following are multiple choice questions (with answers) about {subject}.\n\n",
choice="\n{choice}. {content}",
answer="\nAnswer: ",
prefix=" ",
)
register_eval_template(
name="zh",
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
choice="\n{choice}. {content}",
answer="\n答案:",
prefix="\n",
)

View File

@@ -0,0 +1,153 @@
import json
import os
import time
from datetime import timedelta
from typing import TYPE_CHECKING
from transformers import TrainerCallback
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
from .constants import LOG_FILE_NAME
from .logging import get_logger
from .misc import fix_valuehead_checkpoint
if TYPE_CHECKING:
from transformers import TrainerControl, TrainerState, TrainingArguments
logger = get_logger(__name__)
class FixValueHeadModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a checkpoint save.
"""
if args.should_save:
fix_valuehead_checkpoint(
model=kwargs.pop("model"),
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
safe_serialization=args.save_safetensors,
)
class LogCallback(TrainerCallback):
def __init__(self, runner=None):
self.runner = runner
self.in_training = False
self.start_time = time.time()
self.cur_steps = 0
self.max_steps = 0
self.elapsed_time = ""
self.remaining_time = ""
def timing(self):
cur_time = time.time()
elapsed_time = cur_time - self.start_time
avg_time_per_step = elapsed_time / self.cur_steps if self.cur_steps != 0 else 0
remaining_time = (self.max_steps - self.cur_steps) * avg_time_per_step
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the beginning of training.
"""
if state.is_local_process_zero:
self.in_training = True
self.start_time = time.time()
self.max_steps = state.max_steps
if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)) and args.overwrite_output_dir:
logger.warning("Previous log file in this folder will be deleted.")
os.remove(os.path.join(args.output_dir, LOG_FILE_NAME))
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if state.is_local_process_zero:
self.in_training = False
self.cur_steps = 0
self.max_steps = 0
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of an substep during gradient accumulation.
"""
if state.is_local_process_zero and self.runner is not None and self.runner.aborted:
control.should_epoch_stop = True
control.should_training_stop = True
def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of a training step.
"""
if state.is_local_process_zero:
self.cur_steps = state.global_step
self.timing()
if self.runner is not None and self.runner.aborted:
control.should_epoch_stop = True
control.should_training_stop = True
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after an evaluation phase.
"""
if state.is_local_process_zero and not self.in_training:
self.cur_steps = 0
self.max_steps = 0
def on_predict(
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", *other, **kwargs
):
r"""
Event called after a successful prediction.
"""
if state.is_local_process_zero and not self.in_training:
self.cur_steps = 0
self.max_steps = 0
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs) -> None:
r"""
Event called after logging the last logs.
"""
if not state.is_local_process_zero:
return
logs = dict(
current_steps=self.cur_steps,
total_steps=self.max_steps,
loss=state.log_history[-1].get("loss", None),
eval_loss=state.log_history[-1].get("eval_loss", None),
predict_loss=state.log_history[-1].get("predict_loss", None),
reward=state.log_history[-1].get("reward", None),
learning_rate=state.log_history[-1].get("learning_rate", None),
epoch=state.log_history[-1].get("epoch", None),
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
elapsed_time=self.elapsed_time,
remaining_time=self.remaining_time,
)
if self.runner is not None:
logger.info(
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}}}".format(
logs["loss"] or 0, logs["learning_rate"] or 0, logs["epoch"] or 0
)
)
os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f:
f.write(json.dumps(logs) + "\n")
def on_prediction_step(
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
):
r"""
Event called after a prediction step.
"""
eval_dataloader = kwargs.pop("eval_dataloader", None)
if state.is_local_process_zero and has_length(eval_dataloader) and not self.in_training:
if self.max_steps == 0:
self.max_steps = len(eval_dataloader)
self.cur_steps += 1
self.timing()

View File

@@ -0,0 +1,952 @@
from collections import OrderedDict, defaultdict
from enum import Enum
from typing import Dict, Optional
CHOICES = ["A", "B", "C", "D"]
DATA_CONFIG = "dataset_info.json"
DEFAULT_MODULE = defaultdict(str)
DEFAULT_TEMPLATE = defaultdict(str)
FILEEXT2TYPE = {
"arrow": "arrow",
"csv": "csv",
"json": "json",
"jsonl": "json",
"parquet": "parquet",
"txt": "text",
}
IGNORE_INDEX = -100
LAYERNORM_NAMES = {"norm", "ln"}
LOG_FILE_NAME = "trainer_log.jsonl"
METHODS = ["full", "freeze", "lora"]
PEFT_METHODS = ["lora"]
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
SUPPORTED_MODELS = OrderedDict()
TRAINING_STAGES = {
"Supervised Fine-Tuning": "sft",
"Reward Modeling": "rm",
"PPO": "ppo",
"DPO": "dpo",
"Pre-Training": "pt",
}
V_HEAD_WEIGHTS_NAME = "value_head.bin"
V_HEAD_SAFE_WEIGHTS_NAME = "value_head.safetensors"
class DownloadSource(str, Enum):
DEFAULT = "hf"
MODELSCOPE = "ms"
def register_model_group(
models: Dict[str, Dict[DownloadSource, str]],
module: Optional[str] = None,
template: Optional[str] = None,
) -> None:
prefix = None
for name, path in models.items():
if prefix is None:
prefix = name.split("-")[0]
else:
assert prefix == name.split("-")[0], "prefix should be identical."
SUPPORTED_MODELS[name] = path
if module is not None:
DEFAULT_MODULE[prefix] = module
if template is not None:
DEFAULT_TEMPLATE[prefix] = template
register_model_group(
models={
"Baichuan-7B-Base": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan-7B",
DownloadSource.MODELSCOPE: "baichuan-inc/baichuan-7B",
},
"Baichuan-13B-Base": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Base",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Base",
},
"Baichuan-13B-Chat": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Chat",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Chat",
},
},
module="W_pack",
template="baichuan",
)
register_model_group(
models={
"Baichuan2-7B-Base": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Base",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Base",
},
"Baichuan2-13B-Base": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Base",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Base",
},
"Baichuan2-7B-Chat": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Chat",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Chat",
},
"Baichuan2-13B-Chat": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Chat",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Chat",
},
},
module="W_pack",
template="baichuan2",
)
register_model_group(
models={
"BLOOM-560M": {
DownloadSource.DEFAULT: "bigscience/bloom-560m",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-560m",
},
"BLOOM-3B": {
DownloadSource.DEFAULT: "bigscience/bloom-3b",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-3b",
},
"BLOOM-7B1": {
DownloadSource.DEFAULT: "bigscience/bloom-7b1",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-7b1",
},
},
module="query_key_value",
)
register_model_group(
models={
"BLOOMZ-560M": {
DownloadSource.DEFAULT: "bigscience/bloomz-560m",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-560m",
},
"BLOOMZ-3B": {
DownloadSource.DEFAULT: "bigscience/bloomz-3b",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-3b",
},
"BLOOMZ-7B1-mt": {
DownloadSource.DEFAULT: "bigscience/bloomz-7b1-mt",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-7b1-mt",
},
},
module="query_key_value",
)
register_model_group(
models={
"BlueLM-7B-Base": {
DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Base",
DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Base",
},
"BlueLM-7B-Chat": {
DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Chat",
DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Chat",
},
},
template="bluelm",
)
register_model_group(
models={
"ChatGLM2-6B-Chat": {
DownloadSource.DEFAULT: "THUDM/chatglm2-6b",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm2-6b",
}
},
module="query_key_value",
template="chatglm2",
)
register_model_group(
models={
"ChatGLM3-6B-Base": {
DownloadSource.DEFAULT: "THUDM/chatglm3-6b-base",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b-base",
},
"ChatGLM3-6B-Chat": {
DownloadSource.DEFAULT: "THUDM/chatglm3-6b",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b",
},
},
module="query_key_value",
template="chatglm3",
)
register_model_group(
models={
"ChineseLLaMA2-1.3B": {
DownloadSource.DEFAULT: "hfl/chinese-llama-2-1.3b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-1.3b",
},
"ChineseLLaMA2-7B": {
DownloadSource.DEFAULT: "hfl/chinese-llama-2-7b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-7b",
},
"ChineseLLaMA2-13B": {
DownloadSource.DEFAULT: "hfl/chinese-llama-2-13b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-13b",
},
"ChineseLLaMA2-1.3B-Chat": {
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-1.3b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-1.3b",
},
"ChineseLLaMA2-7B-Chat": {
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-7b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-7b",
},
"ChineseLLaMA2-13B-Chat": {
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-13b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-13b",
},
},
template="llama2_zh",
)
register_model_group(
models={
"DeepSeek-LLM-7B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-base",
},
"DeepSeek-LLM-67B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-base",
},
"DeepSeek-LLM-7B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-chat",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-chat",
},
"DeepSeek-LLM-67B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-chat",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-chat",
},
"DeepSeek-Math-7B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-base",
},
"DeepSeek-Math-7B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-instruct",
},
"DeepSeek-MoE-16B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-base",
},
"DeepSeek-MoE-16B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-chat",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-chat",
},
},
template="deepseek",
)
register_model_group(
models={
"DeepSeekCoder-6.7B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-base",
},
"DeepSeekCoder-7B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-base-v1.5",
},
"DeepSeekCoder-33B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-base",
},
"DeepSeekCoder-6.7B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-instruct",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-instruct",
},
"DeepSeekCoder-7B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
},
"DeepSeekCoder-33B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-instruct",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-instruct",
},
},
template="deepseekcoder",
)
register_model_group(
models={
"Falcon-7B": {
DownloadSource.DEFAULT: "tiiuae/falcon-7b",
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b",
},
"Falcon-40B": {
DownloadSource.DEFAULT: "tiiuae/falcon-40b",
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b",
},
"Falcon-180B": {
DownloadSource.DEFAULT: "tiiuae/falcon-180b",
DownloadSource.MODELSCOPE: "modelscope/falcon-180B",
},
"Falcon-7B-Chat": {
DownloadSource.DEFAULT: "tiiuae/falcon-7b-instruct",
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b-instruct",
},
"Falcon-40B-Chat": {
DownloadSource.DEFAULT: "tiiuae/falcon-40b-instruct",
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b-instruct",
},
"Falcon-180B-Chat": {
DownloadSource.DEFAULT: "tiiuae/falcon-180b-chat",
DownloadSource.MODELSCOPE: "modelscope/falcon-180B-chat",
},
},
module="query_key_value",
template="falcon",
)
register_model_group(
models={
"Gemma-2B": {
DownloadSource.DEFAULT: "google/gemma-2b",
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-2b",
},
"Gemma-7B": {
DownloadSource.DEFAULT: "google/gemma-7b",
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-2b-it",
},
"Gemma-2B-Chat": {
DownloadSource.DEFAULT: "google/gemma-2b-it",
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b",
},
"Gemma-7B-Chat": {
DownloadSource.DEFAULT: "google/gemma-7b-it",
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b-it",
},
},
template="gemma",
)
register_model_group(
models={
"InternLM-7B": {
DownloadSource.DEFAULT: "internlm/internlm-7b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-7b",
},
"InternLM-20B": {
DownloadSource.DEFAULT: "internlm/internlm-20b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-20b",
},
"InternLM-7B-Chat": {
DownloadSource.DEFAULT: "internlm/internlm-chat-7b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-7b",
},
"InternLM-20B-Chat": {
DownloadSource.DEFAULT: "internlm/internlm-chat-20b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-20b",
},
},
template="intern",
)
register_model_group(
models={
"InternLM2-7B": {
DownloadSource.DEFAULT: "internlm/internlm2-7b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-7b",
},
"InternLM2-20B": {
DownloadSource.DEFAULT: "internlm/internlm2-20b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-20b",
},
"InternLM2-7B-Chat": {
DownloadSource.DEFAULT: "internlm/internlm2-chat-7b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-7b",
},
"InternLM2-20B-Chat": {
DownloadSource.DEFAULT: "internlm/internlm2-chat-20b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-20b",
},
},
module="wqkv",
template="intern2",
)
register_model_group(
models={
"LingoWhale-8B": {
DownloadSource.DEFAULT: "deeplang-ai/LingoWhale-8B",
DownloadSource.MODELSCOPE: "DeepLang/LingoWhale-8B",
}
},
module="qkv_proj",
)
register_model_group(
models={
"LLaMA-7B": {
DownloadSource.DEFAULT: "huggyllama/llama-7b",
DownloadSource.MODELSCOPE: "skyline2006/llama-7b",
},
"LLaMA-13B": {
DownloadSource.DEFAULT: "huggyllama/llama-13b",
DownloadSource.MODELSCOPE: "skyline2006/llama-13b",
},
"LLaMA-30B": {
DownloadSource.DEFAULT: "huggyllama/llama-30b",
DownloadSource.MODELSCOPE: "skyline2006/llama-30b",
},
"LLaMA-65B": {
DownloadSource.DEFAULT: "huggyllama/llama-65b",
DownloadSource.MODELSCOPE: "skyline2006/llama-65b",
},
}
)
register_model_group(
models={
"LLaMA2-7B": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-ms",
},
"LLaMA2-13B": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-ms",
},
"LLaMA2-70B": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-ms",
},
"LLaMA2-7B-Chat": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-chat-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-chat-ms",
},
"LLaMA2-13B-Chat": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-chat-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-chat-ms",
},
"LLaMA2-70B-Chat": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-chat-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-chat-ms",
},
},
template="llama2",
)
register_model_group(
models={
"Mistral-7B": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.1",
},
"Mistral-7B-Chat": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1",
},
"Mistral-7B-v0.2-Chat": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.2",
},
},
template="mistral",
)
register_model_group(
models={
"Mixtral-8x7B": {
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-v0.1",
},
"Mixtral-8x7B-Chat": {
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1",
},
},
template="mistral",
)
register_model_group(
models={
"OLMo-1B": {
DownloadSource.DEFAULT: "allenai/OLMo-1B",
},
"OLMo-7B": {
DownloadSource.DEFAULT: "allenai/OLMo-7B",
DownloadSource.MODELSCOPE: "AI-ModelScope/OLMo-7B",
},
"OLMo-7B-Chat": {
DownloadSource.DEFAULT: "allenai/OLMo-7B-Instruct",
},
},
module="att_proj",
template="olmo",
)
register_model_group(
models={
"OpenChat3.5-7B-Chat": {
DownloadSource.DEFAULT: "openchat/openchat-3.5-0106",
DownloadSource.MODELSCOPE: "myxiongmodel/openchat_3.5",
}
},
template="openchat",
)
register_model_group(
models={
"Orion-14B-Base": {
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Base",
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Base",
},
"Orion-14B-Chat": {
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat",
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat",
},
"Orion-14B-Long-Chat": {
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-LongChat",
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-LongChat",
},
"Orion-14B-RAG-Chat": {
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat-RAG",
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat-RAG",
},
"Orion-14B-Plugin-Chat": {
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat-Plugin",
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat-Plugin",
},
},
template="orion",
)
register_model_group(
models={
"Phi-1.5-1.3B": {
DownloadSource.DEFAULT: "microsoft/phi-1_5",
DownloadSource.MODELSCOPE: "allspace/PHI_1-5",
},
"Phi-2-2.7B": {
DownloadSource.DEFAULT: "microsoft/phi-2",
DownloadSource.MODELSCOPE: "AI-ModelScope/phi-2",
},
}
)
register_model_group(
models={
"Qwen-1.8B": {
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B",
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B",
},
"Qwen-7B": {
DownloadSource.DEFAULT: "Qwen/Qwen-7B",
DownloadSource.MODELSCOPE: "qwen/Qwen-7B",
},
"Qwen-14B": {
DownloadSource.DEFAULT: "Qwen/Qwen-14B",
DownloadSource.MODELSCOPE: "qwen/Qwen-14B",
},
"Qwen-72B": {
DownloadSource.DEFAULT: "Qwen/Qwen-72B",
DownloadSource.MODELSCOPE: "qwen/Qwen-72B",
},
"Qwen-1.8B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat",
},
"Qwen-7B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat",
},
"Qwen-14B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat",
},
"Qwen-72B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat",
},
"Qwen-1.8B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int8",
},
"Qwen-1.8B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int4",
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int4",
},
"Qwen-7B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int8",
},
"Qwen-7B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int4",
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int4",
},
"Qwen-14B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int8",
},
"Qwen-14B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int4",
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int4",
},
"Qwen-72B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int8",
},
"Qwen-72B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int4",
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int4",
},
},
module="c_attn",
template="qwen",
)
register_model_group(
models={
"Qwen1.5-0.5B": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B",
},
"Qwen1.5-1.8B": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B",
},
"Qwen1.5-4B": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B",
},
"Qwen1.5-7B": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B",
},
"Qwen1.5-14B": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B",
},
"Qwen1.5-72B": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B",
},
"Qwen1.5-0.5B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat",
},
"Qwen1.5-1.8B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat",
},
"Qwen1.5-4B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat",
},
"Qwen1.5-7B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat",
},
"Qwen1.5-14B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat",
},
"Qwen1.5-72B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat",
},
"Qwen1.5-0.5B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
},
"Qwen1.5-0.5B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-AWQ",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-AWQ",
},
"Qwen1.5-1.8B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8",
},
"Qwen1.5-1.8B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-AWQ",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-AWQ",
},
"Qwen1.5-4B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-GPTQ-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-GPTQ-Int8",
},
"Qwen1.5-4B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-AWQ",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-AWQ",
},
"Qwen1.5-7B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-GPTQ-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-GPTQ-Int8",
},
"Qwen1.5-7B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-AWQ",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-AWQ",
},
"Qwen1.5-14B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-GPTQ-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-GPTQ-Int8",
},
"Qwen1.5-14B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-AWQ",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-AWQ",
},
"Qwen1.5-72B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
},
"Qwen1.5-72B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-AWQ",
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-AWQ",
},
},
template="qwen",
)
register_model_group(
models={
"SOLAR-10.7B": {
DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-v1.0",
},
"SOLAR-10.7B-Chat": {
DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-Instruct-v1.0",
DownloadSource.MODELSCOPE: "AI-ModelScope/SOLAR-10.7B-Instruct-v1.0",
},
},
template="solar",
)
register_model_group(
models={
"Skywork-13B-Base": {
DownloadSource.DEFAULT: "Skywork/Skywork-13B-base",
DownloadSource.MODELSCOPE: "skywork/Skywork-13B-base",
}
}
)
register_model_group(
models={
"StarCoder2-3B": {
DownloadSource.DEFAULT: "bigcode/starcoder2-3b",
},
"StarCoder2-7B": {
DownloadSource.DEFAULT: "bigcode/starcoder2-7b",
},
"StarCoder2-15B": {
DownloadSource.DEFAULT: "bigcode/starcoder2-15b",
},
}
)
register_model_group(
models={
"Vicuna1.5-7B-Chat": {
DownloadSource.DEFAULT: "lmsys/vicuna-7b-v1.5",
DownloadSource.MODELSCOPE: "Xorbits/vicuna-7b-v1.5",
},
"Vicuna1.5-13B-Chat": {
DownloadSource.DEFAULT: "lmsys/vicuna-13b-v1.5",
DownloadSource.MODELSCOPE: "Xorbits/vicuna-13b-v1.5",
},
},
template="vicuna",
)
register_model_group(
models={
"XuanYuan-70B": {
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B",
},
"XuanYuan-70B-Chat": {
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat",
},
"XuanYuan-70B-int8-Chat": {
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
},
"XuanYuan-70B-int4-Chat": {
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
},
},
template="xuanyuan",
)
register_model_group(
models={
"XVERSE-7B": {
DownloadSource.DEFAULT: "xverse/XVERSE-7B",
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B",
},
"XVERSE-13B": {
DownloadSource.DEFAULT: "xverse/XVERSE-13B",
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B",
},
"XVERSE-65B": {
DownloadSource.DEFAULT: "xverse/XVERSE-65B",
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B",
},
"XVERSE-65B-2": {
DownloadSource.DEFAULT: "xverse/XVERSE-65B-2",
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-2",
},
"XVERSE-7B-Chat": {
DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat",
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat",
},
"XVERSE-13B-Chat": {
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat",
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat",
},
"XVERSE-65B-Chat": {
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat",
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat",
},
},
template="xverse",
)
register_model_group(
models={
"Yayi-7B": {
DownloadSource.DEFAULT: "wenge-research/yayi-7b-llama2",
DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-7b-llama2",
},
"Yayi-13B": {
DownloadSource.DEFAULT: "wenge-research/yayi-13b-llama2",
DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-13b-llama2",
},
},
template="yayi",
)
register_model_group(
models={
"Yi-6B": {
DownloadSource.DEFAULT: "01-ai/Yi-6B",
DownloadSource.MODELSCOPE: "01ai/Yi-6B",
},
"Yi-9B": {
DownloadSource.DEFAULT: "01-ai/Yi-9B",
DownloadSource.MODELSCOPE: "01ai/Yi-9B",
},
"Yi-34B": {
DownloadSource.DEFAULT: "01-ai/Yi-34B",
DownloadSource.MODELSCOPE: "01ai/Yi-34B",
},
"Yi-6B-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat",
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat",
},
"Yi-34B-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat",
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat",
},
"Yi-6B-int8-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-8bits",
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-8bits",
},
"Yi-6B-int4-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-4bits",
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-4bits",
},
"Yi-34B-int8-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits",
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits",
},
"Yi-34B-int4-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-4bits",
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-4bits",
},
},
template="yi",
)
register_model_group(
models={
"Yuan2-2B-Chat": {
DownloadSource.DEFAULT: "IEITYuan/Yuan2-2B-hf",
DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-2B-hf",
},
"Yuan2-51B-Chat": {
DownloadSource.DEFAULT: "IEITYuan/Yuan2-51B-hf",
DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-51B-hf",
},
"Yuan2-102B-Chat": {
DownloadSource.DEFAULT: "IEITYuan/Yuan2-102B-hf",
DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-102B-hf",
},
},
template="yuan",
)
register_model_group(
models={
"Zephyr-7B-Alpha-Chat": {
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-alpha",
DownloadSource.MODELSCOPE: "AI-ModelScope/zephyr-7b-alpha",
},
"Zephyr-7B-Beta-Chat": {
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-beta",
DownloadSource.MODELSCOPE: "modelscope/zephyr-7b-beta",
},
},
template="zephyr",
)
register_model_group(
models={
"Atom-7B": {
DownloadSource.DEFAULT: "FlagAlpha/Atom-7B",
DownloadSource.MODELSCOPE: "FlagAlpha/Atom-7B",
},
"Atom-7B-Chat": {
DownloadSource.DEFAULT: "FlagAlpha/Atom-7B-Chat",
DownloadSource.MODELSCOPE: "FlagAlpha/Atom-7B-Chat",
},
},
template="atom",
)

View File

@@ -0,0 +1,48 @@
import logging
import sys
class LoggerHandler(logging.Handler):
r"""
Logger handler used in Web UI.
"""
def __init__(self):
super().__init__()
self.log = ""
def reset(self):
self.log = ""
def emit(self, record):
if record.name == "httpx":
return
log_entry = self.format(record)
self.log += log_entry
self.log += "\n\n"
def get_logger(name: str) -> logging.Logger:
r"""
Gets a standard logger with a stream hander to stdout.
"""
formatter = logging.Formatter(
fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
)
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
logger.addHandler(handler)
return logger
def reset_logging() -> None:
r"""
Removes basic config of root logger. (unused in script)
"""
root = logging.getLogger()
list(map(root.removeHandler, root.handlers))
list(map(root.removeFilter, root.filters))

View File

@@ -0,0 +1,216 @@
import gc
import os
from typing import TYPE_CHECKING, Dict, Tuple
import torch
from peft import PeftModel
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList, PreTrainedModel
from transformers.utils import (
SAFE_WEIGHTS_NAME,
WEIGHTS_NAME,
is_torch_bf16_gpu_available,
is_torch_cuda_available,
is_torch_mps_available,
is_torch_npu_available,
is_torch_xpu_available,
)
from transformers.utils.versions import require_version
from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from .logging import get_logger
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
try:
_is_bf16_available = is_torch_bf16_gpu_available()
except Exception:
_is_bf16_available = False
if TYPE_CHECKING:
from trl import AutoModelForCausalLMWithValueHead
from llmtuner.hparams import ModelArguments
logger = get_logger(__name__)
class AverageMeter:
r"""
Computes and stores the average and current value.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def check_dependencies() -> None:
if int(os.environ.get("DISABLE_VERSION_CHECK", "0")):
logger.warning("Version checking has been disabled, may lead to unexpected behaviors.")
else:
require_version("transformers>=4.37.2", "To fix: pip install transformers>=4.37.2")
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
require_version("accelerate>=0.27.2", "To fix: pip install accelerate>=0.27.2")
require_version("peft>=0.9.0", "To fix: pip install peft>=0.9.0")
require_version("trl>=0.7.11", "To fix: pip install trl>=0.7.11")
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
r"""
Returns the number of trainable parameters and number of all parameters in the model.
"""
trainable_params, all_param = 0, 0
for param in model.parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2
if param.__class__.__name__ == "Params4bit":
num_params = num_params * 2
all_param += num_params
if param.requires_grad:
trainable_params += num_params
return trainable_params, all_param
def fix_valuehead_checkpoint(
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool
) -> None:
r"""
The model is already unwrapped.
There are three cases:
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
We assume `stage3_gather_16bit_weights_on_model_save=true`.
"""
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
return
if safe_serialization:
from safetensors import safe_open
from safetensors.torch import save_file
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
decoder_state_dict = {}
v_head_state_dict = {}
for name, param in state_dict.items():
if name.startswith("v_head."):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace("pretrained_model.", "")] = param
os.remove(path_to_checkpoint)
model.pretrained_model.save_pretrained(
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization
)
if safe_serialization:
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
logger.info("Value head model saved at: {}".format(output_dir))
def get_current_device() -> torch.device:
r"""
Gets the current available device.
"""
if is_torch_xpu_available():
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_npu_available():
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_mps_available():
device = "mps:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_cuda_available():
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
else:
device = "cpu"
return torch.device(device)
def get_device_count() -> int:
r"""
Gets the number of available GPU devices.
"""
if not torch.cuda.is_available():
return 0
return torch.cuda.device_count()
def get_logits_processor() -> "LogitsProcessorList":
r"""
Gets logits processor that removes NaN and Inf logits.
"""
logits_processor = LogitsProcessorList()
logits_processor.append(InfNanRemoveLogitsProcessor())
return logits_processor
def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
r"""
Infers the optimal dtype according to the model_dtype and device compatibility.
"""
if _is_bf16_available and model_dtype == torch.bfloat16:
return torch.bfloat16
elif _is_fp16_available:
return torch.float16
else:
return torch.float32
def torch_gc() -> None:
r"""
Collects GPU memory.
"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def try_download_model_from_ms(model_args: "ModelArguments") -> None:
if not use_modelscope() or os.path.exists(model_args.model_name_or_path):
return
try:
from modelscope import snapshot_download
revision = "master" if model_args.model_revision == "main" else model_args.model_revision
model_args.model_name_or_path = snapshot_download(
model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir
)
except ImportError:
raise ImportError("Please install modelscope via `pip install modelscope -U`")
def use_modelscope() -> bool:
return bool(int(os.environ.get("USE_MODELSCOPE_HUB", "0")))

View File

@@ -0,0 +1,61 @@
import importlib.metadata
import importlib.util
def _is_package_available(name: str) -> bool:
return importlib.util.find_spec(name) is not None
def _get_package_version(name: str) -> str:
try:
return importlib.metadata.version(name)
except Exception:
return "0.0.0"
def is_fastapi_availble():
return _is_package_available("fastapi")
def is_flash_attn2_available():
return _is_package_available("flash_attn") and _get_package_version("flash_attn").startswith("2")
def is_galore_available():
return _is_package_available("galore_torch")
def is_jieba_available():
return _is_package_available("jieba")
def is_matplotlib_available():
return _is_package_available("matplotlib")
def is_nltk_available():
return _is_package_available("nltk")
def is_requests_available():
return _is_package_available("requests")
def is_rouge_available():
return _is_package_available("rouge_chinese")
def is_starlette_available():
return _is_package_available("sse_starlette")
def is_unsloth_available():
return _is_package_available("unsloth")
def is_uvicorn_available():
return _is_package_available("uvicorn")
def is_vllm_available():
return _is_package_available("vllm")

View File

@@ -0,0 +1,197 @@
import math
from typing import Optional, Tuple
import torch
import torch.nn as nn
from transformers.models.llama.modeling_llama import (
Cache,
LlamaAttention,
LlamaFlashAttention2,
apply_rotary_pos_emb,
repeat_kv,
)
from transformers.utils import logging
logger = logging.get_logger(__name__)
# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def llama_torch_attn_forward(
self: "LlamaAttention",
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional["Cache"] = None,
output_attentions: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
state = torch.cat(
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
dim=2,
)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :)
attn_output = attn_output.transpose(1, 2).contiguous()
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat(
(
attn_output[:, :, : self.num_heads // 2],
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
)
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def llama_flash_attn_forward(
self: "LlamaFlashAttention2",
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# LlamaFlashAttention2 attention does not support output_attentions
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
dropout_rate = self.attention_dropout if self.training else 0.0
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once("The input hidden states seems to be silently casted in float32.")
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = torch.cat(
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
dim=2,
)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
attn_output: torch.Tensor = self._flash_attention_forward(
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat(
(
attn_output[:, :, : self.num_heads // 2],
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
)
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def apply_llama_patch() -> None:
LlamaAttention.forward = llama_torch_attn_forward
LlamaFlashAttention2.forward = llama_flash_attn_forward

View File

@@ -0,0 +1,38 @@
import torch
import torch.nn.functional as F
from transformers.models.mixtral.modeling_mixtral import MixtralBLockSparseTop2MLP, MixtralSparseMoeBlock
def mlp_forward(self: "MixtralBLockSparseTop2MLP", hidden_states: torch.Tensor) -> torch.Tensor:
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
# Modified from: https://huggingface.co/deepseek-ai/deepseek-moe-16b-base/blob/main/modeling_deepseek.py
def moe_forward(self: "MixtralSparseMoeBlock", hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
topk_weight = topk_weight.to(hidden_states.dtype)
hidden_states = hidden_states.repeat_interleave(self.top_k, dim=0)
y = torch.empty_like(hidden_states)
flat_topk_idx = topk_idx.view(-1)
for i in range(self.num_experts):
expert = self.experts[i]
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
def patch_mixtral_replace_moe_impl() -> None:
MixtralBLockSparseTop2MLP.forward = mlp_forward
MixtralSparseMoeBlock.forward = moe_forward

View File

@@ -0,0 +1,57 @@
import json
import math
import os
from typing import List
from transformers.trainer import TRAINER_STATE_NAME
from .logging import get_logger
from .packages import is_matplotlib_available
if is_matplotlib_available():
import matplotlib.pyplot as plt
logger = get_logger(__name__)
def smooth(scalars: List[float]) -> List[float]:
r"""
EMA implementation according to TensorBoard.
"""
last = scalars[0]
smoothed = list()
weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function
for next_val in scalars:
smoothed_val = last * weight + (1 - weight) * next_val
smoothed.append(smoothed_val)
last = smoothed_val
return smoothed
def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None:
with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
data = json.load(f)
for key in keys:
steps, metrics = [], []
for i in range(len(data["log_history"])):
if key in data["log_history"][i]:
steps.append(data["log_history"][i]["step"])
metrics.append(data["log_history"][i][key])
if len(metrics) == 0:
logger.warning(f"No metric {key} to plot.")
continue
plt.figure()
plt.plot(steps, metrics, color="#1f77b4", alpha=0.4, label="original")
plt.plot(steps, smooth(metrics), color="#1f77b4", label="smoothed")
plt.title("training {} of {}".format(key, save_dictionary))
plt.xlabel("step")
plt.ylabel(key)
plt.legend()
figure_path = os.path.join(save_dictionary, "training_{}.png".format(key.replace(os.path.sep, "_")))
plt.savefig(figure_path, format="png", dpi=100)
print("Figure saved at:", figure_path)

View File

@@ -0,0 +1,18 @@
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
from .generating_args import GeneratingArguments
from .model_args import ModelArguments
from .parser import get_eval_args, get_infer_args, get_train_args
__all__ = [
"DataArguments",
"EvaluationArguments",
"FinetuningArguments",
"GeneratingArguments",
"ModelArguments",
"get_eval_args",
"get_infer_args",
"get_train_args",
]

View File

@@ -0,0 +1,100 @@
from dataclasses import dataclass, field
from typing import Literal, Optional
@dataclass
class DataArguments:
r"""
Arguments pertaining to what data we are going to input our model for training and evaluation.
"""
template: Optional[str] = field(
default=None,
metadata={"help": "Which template to use for constructing prompts in training and inference."},
)
dataset: Optional[str] = field(
default=None,
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
)
dataset_dir: str = field(
default="data",
metadata={"help": "Path to the folder containing the datasets."},
)
split: str = field(
default="train",
metadata={"help": "Which dataset split to use for training and evaluation."},
)
cutoff_len: int = field(
default=1024,
metadata={"help": "The cutoff length of the model inputs after tokenization."},
)
reserved_label_len: int = field(
default=1,
metadata={"help": "The minimum cutoff length reserved for label after tokenization."},
)
train_on_prompt: bool = field(
default=False,
metadata={"help": "Whether to disable the mask on the prompt or not."},
)
streaming: bool = field(
default=False,
metadata={"help": "Enable dataset streaming."},
)
buffer_size: int = field(
default=16384,
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."},
)
mix_strategy: Literal["concat", "interleave_under", "interleave_over"] = field(
default="concat",
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."},
)
interleave_probs: Optional[str] = field(
default=None,
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets."},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the pre-processing."},
)
max_samples: Optional[int] = field(
default=None,
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."},
)
eval_num_beams: Optional[int] = field(
default=None,
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether or not to ignore the tokens corresponding to padded labels in the loss computation."
},
)
val_size: float = field(
default=0.0,
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."},
)
packing: Optional[bool] = field(
default=None,
metadata={
"help": "Whether or not to pack the sequences in training. Will automatically enable in pre-training."
},
)
cache_path: Optional[str] = field(
default=None,
metadata={"help": "Path to save or load the pre-processed datasets."},
)
def __post_init__(self):
if self.reserved_label_len >= self.cutoff_len:
raise ValueError("`reserved_label_len` must be smaller than `cutoff_len`.")
if self.streaming and self.val_size > 1e-6 and self.val_size < 1:
raise ValueError("Streaming mode should have an integer val size.")
if self.streaming and self.max_samples is not None:
raise ValueError("`max_samples` is incompatible with `streaming`.")

View File

@@ -0,0 +1,48 @@
import os
from dataclasses import dataclass, field
from typing import Literal, Optional
from datasets import DownloadMode
@dataclass
class EvaluationArguments:
r"""
Arguments pertaining to specify the evaluation parameters.
"""
task: str = field(
metadata={"help": "Name of the evaluation task."},
)
task_dir: str = field(
default="evaluation",
metadata={"help": "Path to the folder containing the evaluation datasets."},
)
batch_size: int = field(
default=4,
metadata={"help": "The batch size per GPU for evaluation."},
)
seed: int = field(
default=42,
metadata={"help": "Random seed to be used with data loaders."},
)
lang: Literal["en", "zh"] = field(
default="en",
metadata={"help": "Language used at evaluation."},
)
n_shot: int = field(
default=5,
metadata={"help": "Number of examplars for few-shot learning."},
)
save_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to save the evaluation results."},
)
download_mode: DownloadMode = field(
default=DownloadMode.REUSE_DATASET_IF_EXISTS,
metadata={"help": "Download mode used for the evaluation datasets."},
)
def __post_init__(self):
if self.save_dir is not None and os.path.exists(self.save_dir):
raise ValueError("`save_dir` already exists, use another one.")

View File

@@ -0,0 +1,257 @@
import json
from dataclasses import asdict, dataclass, field
from typing import Literal, Optional
@dataclass
class FreezeArguments:
r"""
Arguments pertaining to the freeze (partial-parameter) training.
"""
name_module_trainable: str = field(
default="all",
metadata={
"help": """Name of trainable modules for partial-parameter (freeze) fine-tuning. \
Use commas to separate multiple modules. \
Use "all" to specify all the available modules. \
LLaMA choices: ["mlp", "self_attn"], \
BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \
Qwen choices: ["mlp", "attn"], \
InternLM2 choices: ["feed_forward", "attention"], \
Others choices: the same as LLaMA."""
},
)
num_layer_trainable: int = field(
default=2,
metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."},
)
@dataclass
class LoraArguments:
r"""
Arguments pertaining to the LoRA training.
"""
additional_target: Optional[str] = field(
default=None,
metadata={
"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."
},
)
lora_alpha: Optional[int] = field(
default=None,
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."},
)
lora_dropout: float = field(
default=0.0,
metadata={"help": "Dropout rate for the LoRA fine-tuning."},
)
lora_rank: int = field(
default=8,
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."},
)
lora_target: str = field(
default="all",
metadata={
"help": """Name(s) of target modules to apply LoRA. \
Use commas to separate multiple modules. \
Use "all" to specify all the available modules. \
LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \
BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \
Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \
Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \
InternLM2 choices: ["wqkv", "wo", "w1", "w2", "w3"], \
Others choices: the same as LLaMA."""
},
)
use_rslora: bool = field(
default=False,
metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."},
)
use_dora: bool = field(
default=False,
metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."},
)
create_new_adapter: bool = field(
default=False,
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
)
@dataclass
class RLHFArguments:
r"""
Arguments pertaining to the PPO and DPO training.
"""
dpo_beta: float = field(
default=0.1,
metadata={"help": "The beta parameter for the DPO loss."},
)
dpo_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair"] = field(
default="sigmoid",
metadata={"help": "The type of DPO loss to use."},
)
dpo_ftx: float = field(
default=0.0,
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
)
ppo_buffer_size: int = field(
default=1,
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
)
ppo_epochs: int = field(
default=4,
metadata={"help": "The number of epochs to perform in a PPO optimization step."},
)
ppo_logger: Optional[str] = field(
default=None,
metadata={"help": 'Log with either "wandb" or "tensorboard" in PPO training.'},
)
ppo_score_norm: bool = field(
default=False,
metadata={"help": "Use score normalization in PPO training."},
)
ppo_target: float = field(
default=6.0,
metadata={"help": "Target KL value for adaptive KL control in PPO training."},
)
ppo_whiten_rewards: bool = field(
default=False,
metadata={"help": "Whiten the rewards before compute advantages in PPO training."},
)
ref_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the reference model used for the PPO or DPO training."},
)
ref_model_adapters: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapters of the reference model."},
)
ref_model_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the reference model."},
)
reward_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the reward model used for the PPO training."},
)
reward_model_adapters: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapters of the reward model."},
)
reward_model_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the reward model."},
)
reward_model_type: Literal["lora", "full", "api"] = field(
default="lora",
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
)
@dataclass
class GaloreArguments:
r"""
Arguments pertaining to the GaLore algorithm.
"""
use_galore: bool = field(
default=False,
metadata={"help": "Whether or not to use gradient low-Rank projection."},
)
galore_target: str = field(
default="mlp,attn",
metadata={"help": "Name(s) of modules to apply GaLore. Use commas to separate multiple modules."},
)
galore_rank: int = field(
default=16,
metadata={"help": "The rank of GaLore gradients."},
)
galore_update_interval: int = field(
default=200,
metadata={"help": "Number of steps to update the GaLore projection."},
)
galore_scale: float = field(
default=0.25,
metadata={"help": "GaLore scaling coefficient."},
)
galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field(
default="std",
metadata={"help": "Type of GaLore projection."},
)
galore_layerwise: bool = field(
default=False,
metadata={"help": "Whether or not to enable layer-wise update to further save memory."},
)
@dataclass
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments):
r"""
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
pure_bf16: bool = field(
default=False,
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
)
stage: Literal["pt", "sft", "rm", "ppo", "dpo"] = field(
default="sft",
metadata={"help": "Which stage will be performed in training."},
)
finetuning_type: Literal["lora", "freeze", "full"] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."},
)
use_llama_pro: bool = field(
default=False,
metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
)
plot_loss: bool = field(
default=False,
metadata={"help": "Whether or not to save the training loss curves."},
)
def __post_init__(self):
def split_arg(arg):
if isinstance(arg, str):
return [item.strip() for item in arg.split(",")]
return arg
self.name_module_trainable = split_arg(self.name_module_trainable)
self.lora_alpha = self.lora_alpha or self.lora_rank * 2
self.lora_target = split_arg(self.lora_target)
self.additional_target = split_arg(self.additional_target)
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
if self.stage == "ppo" and self.reward_model is None:
raise ValueError("`reward_model` is necessary for PPO training.")
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")
if self.use_llama_pro and self.finetuning_type == "full":
raise ValueError("`use_llama_pro` is only valid for the Freeze or LoRA method.")
if self.use_galore and self.finetuning_type == "lora":
raise ValueError("Cannot use LoRA with GaLore together.")
def save_to_json(self, json_path: str):
r"""Saves the content of this instance in JSON format inside `json_path`."""
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"
with open(json_path, "w", encoding="utf-8") as f:
f.write(json_string)
@classmethod
def load_from_json(cls, json_path: str):
r"""Creates an instance from the content of `json_path`."""
with open(json_path, "r", encoding="utf-8") as f:
text = f.read()
return cls(**json.loads(text))

View File

@@ -0,0 +1,56 @@
from dataclasses import asdict, dataclass, field
from typing import Any, Dict
@dataclass
class GeneratingArguments:
r"""
Arguments pertaining to specify the decoding parameters.
"""
do_sample: bool = field(
default=True,
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."},
)
temperature: float = field(
default=0.95,
metadata={"help": "The value used to modulate the next token probabilities."},
)
top_p: float = field(
default=0.7,
metadata={
"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."
},
)
top_k: int = field(
default=50,
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."},
)
num_beams: int = field(
default=1,
metadata={"help": "Number of beams for beam search. 1 means no beam search."},
)
max_length: int = field(
default=512,
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."},
)
max_new_tokens: int = field(
default=512,
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."},
)
repetition_penalty: float = field(
default=1.0,
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."},
)
length_penalty: float = field(
default=1.0,
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."},
)
def to_dict(self) -> Dict[str, Any]:
args = asdict(self)
if args.get("max_new_tokens", -1) > 0:
args.pop("max_length", None)
else:
args.pop("max_new_tokens", None)
return args

View File

@@ -0,0 +1,171 @@
from dataclasses import asdict, dataclass, field
from typing import Any, Dict, Literal, Optional
@dataclass
class ModelArguments:
r"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
"""
model_name_or_path: str = field(
metadata={
"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
},
)
adapter_name_or_path: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
)
use_fast_tokenizer: bool = field(
default=False,
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
)
resize_vocab: bool = field(
default=False,
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
)
split_special_tokens: bool = field(
default=False,
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
low_cpu_mem_usage: bool = field(
default=True,
metadata={"help": "Whether or not to use memory-efficient model loading."},
)
quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the model using bitsandbytes."},
)
quantization_type: Literal["fp4", "nf4"] = field(
default="nf4",
metadata={"help": "Quantization data type to use in int4 training."},
)
double_quantization: bool = field(
default=True,
metadata={"help": "Whether or not to use double quantization in int4 training."},
)
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
default=None,
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
)
flash_attn: bool = field(
default=False,
metadata={"help": "Enable FlashAttention-2 for faster training."},
)
shift_attn: bool = field(
default=False,
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
)
use_unsloth: bool = field(
default=False,
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
)
disable_gradient_checkpointing: bool = field(
default=False,
metadata={"help": "Whether or not to disable gradient checkpointing."},
)
upcast_layernorm: bool = field(
default=False,
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
)
upcast_lmhead_output: bool = field(
default=False,
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
)
infer_backend: Literal["huggingface", "vllm"] = field(
default="huggingface",
metadata={"help": "Backend engine used at inference."},
)
vllm_maxlen: int = field(
default=2048,
metadata={"help": "Maximum input length of the vLLM engine."},
)
vllm_gpu_util: float = field(
default=0.9,
metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
)
vllm_enforce_eager: bool = field(
default=False,
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
)
offload_folder: str = field(
default="offload",
metadata={"help": "Path to offload model weights."},
)
use_cache: bool = field(
default=True,
metadata={"help": "Whether or not to use KV cache in generation."},
)
hf_hub_token: Optional[str] = field(
default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."},
)
ms_hub_token: Optional[str] = field(
default=None,
metadata={"help": "Auth token to log in with ModelScope Hub."},
)
export_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory to save the exported model."},
)
export_size: int = field(
default=1,
metadata={"help": "The file shard size (in GB) of the exported model."},
)
export_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the exported model."},
)
export_quantization_dataset: Optional[str] = field(
default=None,
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
)
export_quantization_nsamples: int = field(
default=128,
metadata={"help": "The number of samples used for quantization."},
)
export_quantization_maxlen: int = field(
default=1024,
metadata={"help": "The maximum length of the model inputs used for quantization."},
)
export_legacy_format: bool = field(
default=False,
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
)
export_hub_model_id: Optional[str] = field(
default=None,
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
)
print_param_status: bool = field(
default=False,
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
)
def __post_init__(self):
self.compute_dtype = None
self.device_map = None
self.model_max_length = None
if self.split_special_tokens and self.use_fast_tokenizer:
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
if self.adapter_name_or_path is not None: # support merging multiple lora weights
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization."
if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
raise ValueError("Quantization dataset is necessary for exporting.")
def to_dict(self) -> Dict[str, Any]:
return asdict(self)

View File

@@ -0,0 +1,297 @@
import logging
import os
import sys
from typing import Any, Dict, Optional, Tuple
import torch
import transformers
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import is_torch_bf16_gpu_available
from transformers.utils.versions import require_version
from ..extras.logging import get_logger
from ..extras.misc import check_dependencies
from ..extras.packages import is_unsloth_available
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
from .generating_args import GeneratingArguments
from .model_args import ModelArguments
logger = get_logger(__name__)
check_dependencies()
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if args is not None:
return parser.parse_dict(args)
if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
return parser.parse_json_file(os.path.abspath(sys.argv[1]))
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True)
if unknown_args:
print(parser.format_help())
print("Got unknown args, potentially deprecated arguments: {}".format(unknown_args))
raise ValueError("Some specified arguments are not used by the HfArgumentParser: {}".format(unknown_args))
return (*parsed_args,)
def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None:
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None:
if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Adapter is only valid for the LoRA method.")
if model_args.quantization_bit is not None:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter:
raise ValueError("Cannot create new adapter upon a quantized model.")
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
parser = HfArgumentParser(_TRAIN_ARGS)
return _parse_args(parser, args)
def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
parser = HfArgumentParser(_INFER_ARGS)
return _parse_args(parser, args)
def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
parser = HfArgumentParser(_EVAL_ARGS)
return _parse_args(parser, args)
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
# Setup logging
if training_args.should_log:
_set_transformers_logging()
# Check arguments
if finetuning_args.stage != "pt" and data_args.template is None:
raise ValueError("Please specify which `template` to use.")
if finetuning_args.stage != "sft" and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True except SFT.")
if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end:
raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.")
if finetuning_args.stage == "ppo" and not training_args.do_train:
raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.")
if finetuning_args.stage == "ppo" and model_args.shift_attn:
raise ValueError("PPO training is incompatible with S^2-Attn.")
if finetuning_args.stage == "ppo" and finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
raise ValueError("Unsloth does not support lora reward model.")
if training_args.max_steps == -1 and data_args.streaming:
raise ValueError("Please specify `max_steps` in streaming mode.")
if training_args.do_train and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True while training.")
if training_args.do_train and model_args.use_unsloth and not is_unsloth_available():
raise ValueError("Unsloth was not installed: https://github.com/unslothai/unsloth")
if finetuning_args.use_dora:
if model_args.quantization_bit is not None:
require_version("peft>=0.9.1.dev0", "To fix: pip install git+https://github.com/huggingface/peft.git")
if model_args.use_unsloth:
raise ValueError("Unsloth does not support DoRA.")
if finetuning_args.pure_bf16:
if not is_torch_bf16_gpu_available():
raise ValueError("This device does not support `pure_bf16`.")
if training_args.fp16 or training_args.bf16:
raise ValueError("Turn off mixed precision training when using `pure_bf16`.")
if (
finetuning_args.use_galore
and finetuning_args.galore_layerwise
and training_args.parallel_mode.value == "distributed"
):
raise ValueError("Distributed training does not support layer-wise GaLore.")
if model_args.infer_backend == "vllm":
raise ValueError("vLLM backend is only available for API, CLI and Web.")
_verify_model_args(model_args, finetuning_args)
if (
training_args.do_train
and finetuning_args.finetuning_type == "lora"
and model_args.resize_vocab
and finetuning_args.additional_target is None
):
logger.warning("Add token embeddings to `additional_target` to make the added tokens trainable.")
if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
logger.warning("We recommend enable mixed precision training.")
if training_args.do_train and finetuning_args.use_galore and not finetuning_args.pure_bf16:
logger.warning("Using GaLore with mixed precision training may significantly increases GPU memory usage.")
if (not training_args.do_train) and model_args.quantization_bit is not None:
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None:
logger.warning("Specify `ref_model` for computing rewards at evaluation.")
# Post-process training arguments
if (
training_args.parallel_mode.value == "distributed"
and training_args.ddp_find_unused_parameters is None
and finetuning_args.finetuning_type == "lora"
):
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
training_args.ddp_find_unused_parameters = False
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
can_resume_from_checkpoint = False
if training_args.resume_from_checkpoint is not None:
logger.warning("Cannot resume from checkpoint in current stage.")
training_args.resume_from_checkpoint = None
else:
can_resume_from_checkpoint = True
if (
training_args.resume_from_checkpoint is None
and training_args.do_train
and os.path.isdir(training_args.output_dir)
and not training_args.overwrite_output_dir
and can_resume_from_checkpoint
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
if last_checkpoint is not None:
training_args.resume_from_checkpoint = last_checkpoint
logger.info(
"Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format(
training_args.resume_from_checkpoint
)
)
if (
finetuning_args.stage in ["rm", "ppo"]
and finetuning_args.finetuning_type == "lora"
and training_args.resume_from_checkpoint is not None
):
logger.warning(
"Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
training_args.resume_from_checkpoint
)
)
# Post-process model arguments
if training_args.bf16 or finetuning_args.pure_bf16:
model_args.compute_dtype = torch.bfloat16
elif training_args.fp16:
model_args.compute_dtype = torch.float16
model_args.model_max_length = data_args.cutoff_len
data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt"
# Log on each process the small summary:
logger.info(
"Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format(
training_args.local_rank,
training_args.device,
training_args.n_gpu,
training_args.parallel_mode.value == "distributed",
str(model_args.compute_dtype),
)
)
transformers.set_seed(training_args.seed)
return model_args, data_args, training_args, finetuning_args, generating_args
def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)
_set_transformers_logging()
if data_args.template is None:
raise ValueError("Please specify which `template` to use.")
if model_args.infer_backend == "vllm":
if finetuning_args.stage != "sft":
raise ValueError("vLLM engine only supports auto-regressive models.")
if model_args.adapter_name_or_path is not None:
raise ValueError("vLLM engine does not support LoRA adapters. Merge them first.")
if model_args.quantization_bit is not None:
raise ValueError("vLLM engine does not support quantization.")
if model_args.rope_scaling is not None:
raise ValueError("vLLM engine does not support RoPE scaling.")
_verify_model_args(model_args, finetuning_args)
model_args.device_map = "auto"
return model_args, data_args, finetuning_args, generating_args
def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)
_set_transformers_logging()
if data_args.template is None:
raise ValueError("Please specify which `template` to use.")
if model_args.infer_backend == "vllm":
raise ValueError("vLLM backend is only available for API, CLI and Web.")
_verify_model_args(model_args, finetuning_args)
model_args.device_map = "auto"
transformers.set_seed(eval_args.seed)
return model_args, data_args, eval_args, finetuning_args

View File

@@ -0,0 +1,10 @@
from .loader import load_model, load_model_and_tokenizer, load_tokenizer
from .utils import load_valuehead_params
__all__ = [
"load_model",
"load_model_and_tokenizer",
"load_tokenizer",
"load_valuehead_params",
]

View File

@@ -0,0 +1,162 @@
from typing import TYPE_CHECKING
import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
from transformers.integrations import is_deepspeed_zero3_enabled
from ..extras.logging import get_logger
from .utils import find_all_linear_modules, find_expanded_modules
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
from ..hparams import FinetuningArguments, ModelArguments
logger = get_logger(__name__)
def init_adapter(
model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool
) -> "PreTrainedModel":
r"""
Initializes the adapters.
Support full-parameter, freeze and LoRA training.
Note that the trainable parameters must be cast to float32.
"""
if (not is_trainable) and model_args.adapter_name_or_path is None:
logger.info("Adapter is not found at evaluation, load the base model.")
return model
if finetuning_args.finetuning_type == "full" and is_trainable:
logger.info("Fine-tuning method: Full")
if not finetuning_args.pure_bf16:
model = model.float()
if finetuning_args.finetuning_type == "freeze" and is_trainable:
logger.info("Fine-tuning method: Freeze")
num_layers = (
getattr(model.config, "num_hidden_layers", None)
or getattr(model.config, "num_layers", None)
or getattr(model.config, "n_layer", None)
)
if not num_layers:
raise ValueError("Current model does not support freeze tuning.")
if finetuning_args.use_llama_pro:
if num_layers % finetuning_args.num_layer_trainable != 0:
raise ValueError(
"`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(
num_layers, finetuning_args.num_layer_trainable
)
)
stride = num_layers // finetuning_args.num_layer_trainable
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
elif finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = range(num_layers - finetuning_args.num_layer_trainable, num_layers)
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = range(-finetuning_args.num_layer_trainable)
freeze_modules = {"all"}
for name, _ in model.named_modules():
if ".0." in name:
freeze_modules.add(name.split(".0.")[-1].split(".")[0])
trainable_layers = []
for module_name in finetuning_args.name_module_trainable:
if module_name not in freeze_modules:
raise ValueError(
"Module {} is not found, please choose from {}".format(module_name, ", ".join(freeze_modules))
)
for idx in trainable_layer_ids:
trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))
for name, param in model.named_parameters():
if any(trainable_layer in name for trainable_layer in trainable_layers):
if not finetuning_args.pure_bf16:
param.data = param.data.to(torch.float32)
else:
param.requires_grad_(False)
logger.info("Set trainable layers: {}".format(",".join(map(str, trainable_layer_ids))))
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
is_mergeable = True
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False
if is_deepspeed_zero3_enabled():
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
is_mergeable = False
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else:
adapter_to_merge = model_args.adapter_name_or_path
for adapter in adapter_to_merge:
model: "LoraModel" = PeftModel.from_pretrained(model, adapter)
model = model.merge_and_unload()
if len(adapter_to_merge) > 0:
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if adapter_to_resume is not None: # resume lora training
model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable)
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model)
else:
target_modules = finetuning_args.lora_target
if finetuning_args.use_llama_pro:
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
if finetuning_args.use_dora:
if getattr(model, "quantization_method", None):
raise ValueError("DoRA is currently not compatible with quantized models.")
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
"use_rslora": finetuning_args.use_rslora,
}
if model_args.use_unsloth:
from unsloth import FastLanguageModel # type: ignore
unsloth_peft_kwargs = {"model": model, "max_seq_length": model_args.model_max_length}
model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
else:
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
modules_to_save=finetuning_args.additional_target,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
if not finetuning_args.pure_bf16:
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model

View File

@@ -0,0 +1,151 @@
from typing import TYPE_CHECKING, Any, Dict, Tuple
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
from ..extras.logging import get_logger
from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms
from .adapter import init_adapter
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
from .utils import load_valuehead_params, register_autoclass
if TYPE_CHECKING:
from transformers import PreTrainedModel, PreTrainedTokenizer
from ..hparams import FinetuningArguments, ModelArguments
logger = get_logger(__name__)
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
return {
"trust_remote_code": True,
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.hf_hub_token,
}
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
r"""
Loads pretrained tokenizer. Must before load_model.
Note: including inplace operation of model_args.
"""
try_download_model_from_ms(model_args)
init_kwargs = _get_init_kwargs(model_args)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
split_special_tokens=model_args.split_special_tokens,
padding_side="right",
**init_kwargs,
)
patch_tokenizer(tokenizer)
return tokenizer
def load_model(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
) -> "PreTrainedModel":
r"""
Loads pretrained model. Must after load_tokenizer.
"""
init_kwargs = _get_init_kwargs(model_args)
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
model = None
if is_trainable and model_args.use_unsloth:
from unsloth import FastLanguageModel # type: ignore
unsloth_kwargs = {
"model_name": model_args.model_name_or_path,
"max_seq_length": model_args.model_max_length,
"dtype": model_args.compute_dtype,
"load_in_4bit": model_args.quantization_bit == 4,
"token": model_args.hf_hub_token,
"device_map": {"": get_current_device()},
"rope_scaling": getattr(config, "rope_scaling", None),
}
try:
model, _ = FastLanguageModel.from_pretrained(**unsloth_kwargs)
except NotImplementedError:
logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
model_args.use_unsloth = False
if model_args.adapter_name_or_path:
model_args.adapter_name_or_path = None
logger.warning("Unsloth does not support loading adapters.")
if model is None:
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **init_kwargs)
patch_model(model, tokenizer, model_args, is_trainable)
register_autoclass(config, model, tokenizer)
model = init_adapter(model, model_args, finetuning_args, is_trainable)
if add_valuehead:
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
patch_valuehead_model(model)
if model_args.adapter_name_or_path is not None:
vhead_path = model_args.adapter_name_or_path[-1]
else:
vhead_path = model_args.model_name_or_path
vhead_params = load_valuehead_params(vhead_path, model_args)
if vhead_params is not None:
model.load_state_dict(vhead_params, strict=False)
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))
if not is_trainable:
model.requires_grad_(False)
if not getattr(model, "quantization_method", None):
for param in filter(lambda p: p.device.type == "cuda", model.parameters()):
param.data = param.data.to(model_args.compute_dtype)
model.eval()
else:
model.train()
trainable_params, all_param = count_parameters(model)
if is_trainable:
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
trainable_params, all_param, 100 * trainable_params / all_param
)
else:
param_stats = "all params: {:d}".format(all_param)
logger.info(param_stats)
if model_args.print_param_status:
for name, param in model.named_parameters():
print(
"name: {}, dtype: {}, device: {}, trainable: {}".format(
name, param.dtype, param.device, param.requires_grad
)
)
return model
def load_model_and_tokenizer(
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
r"""
Loads pretrained model and tokenizer.
"""
tokenizer = load_tokenizer(model_args)
model = load_model(tokenizer, model_args, finetuning_args, is_trainable, add_valuehead)
return model, tokenizer

View File

@@ -0,0 +1,352 @@
import math
import os
import random
from contextlib import nullcontext
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Tuple
import torch
from datasets import load_dataset
from peft import PeftModel
from transformers import BitsAndBytesConfig, GPTQConfig, PreTrainedModel, PreTrainedTokenizerBase
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.utils.versions import require_version
from ..extras.constants import FILEEXT2TYPE, LAYERNORM_NAMES
from ..extras.logging import get_logger
from ..extras.misc import get_current_device, infer_optim_dtype
from ..extras.packages import is_flash_attn2_available
from ..extras.patches.llama_patch import apply_llama_patch
from ..extras.patches.mixtral_patch import patch_mixtral_replace_moe_impl
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
from trl import AutoModelForCausalLMWithValueHead
from ..hparams import ModelArguments
logger = get_logger(__name__)
SUPPORTED_CLASS_FOR_S2ATTN = ["llama"]
def _noisy_mean_initialization(embed_weight: torch.Tensor, num_new_tokens: int):
embedding_dim = embed_weight.size(1)
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True)
noise_weight = torch.empty_like(embed_weight[-num_new_tokens:])
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim)))
embed_weight[-num_new_tokens:] = avg_weight + noise_weight
def _resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None:
r"""
Resize token embeddings.
"""
if is_deepspeed_zero3_enabled():
import deepspeed # type: ignore
params = [model.get_input_embeddings().weight]
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings:
params.append(model.get_output_embeddings().weight)
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
else:
context_maybe_zero3 = nullcontext()
with context_maybe_zero3:
current_embedding_size = model.get_input_embeddings().weight.size(0)
if len(tokenizer) > current_embedding_size:
if not isinstance(model.get_output_embeddings(), torch.nn.Linear):
logger.warning("Current model does not support resizing token embeddings.")
return
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
with context_maybe_zero3:
new_embedding_size = model.get_input_embeddings().weight.size(0)
num_new_tokens = new_embedding_size - current_embedding_size
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens)
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]:
r"""
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600
"""
if os.path.isfile(model_args.export_quantization_dataset):
data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None)
data_files = model_args.export_quantization_dataset
else:
data_path = model_args.export_quantization_dataset
data_files = None
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir)
maxlen = model_args.export_quantization_maxlen
samples = []
for _ in range(model_args.export_quantization_nsamples):
while True:
sample_idx = random.randint(0, len(dataset) - 1)
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
if sample["input_ids"].size(1) >= maxlen:
break # TODO: fix large maxlen
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen]
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True))
return samples
def _configure_attn_implementation(model_args: "ModelArguments", init_kwargs: Dict[str, Any]) -> None:
if model_args.flash_attn:
if is_flash_attn2_available():
logger.info("Using FlashAttention-2 for faster training and inference.")
init_kwargs["attn_implementation"] = "flash_attention_2"
else:
logger.warning("FlashAttention2 is not installed.")
init_kwargs["attn_implementation"] = None
else:
init_kwargs["attn_implementation"] = "eager"
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if model_args.rope_scaling is None:
return
if not hasattr(config, "rope_scaling"):
logger.warning("Current model does not support RoPE scaling.")
return
if is_trainable:
if model_args.rope_scaling == "dynamic":
logger.warning(
"Dynamic NTK scaling may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if current_max_length and model_args.model_max_length > current_max_length:
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
else:
logger.warning("Input length is smaller than max length. Consider increase input length.")
scaling_factor = 1.0
else:
scaling_factor = 2.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
logger.info(
"Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor)
)
def _configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if not is_trainable or not model_args.shift_attn:
return
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
setattr(config, "group_size_ratio", 0.25)
apply_llama_patch()
logger.info("Using shift short attention with group_size_ratio=1/4.")
else:
logger.warning("Current model does not support shift short attention.")
def _configure_quantization(
config: "PretrainedConfig",
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
init_kwargs: Dict[str, Any],
) -> None:
r"""
Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
"""
if getattr(config, "quantization_config", None): # ptq
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
init_kwargs["device_map"] = {"": get_current_device()}
quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None)
quant_method = quantization_config.get("quant_method", "")
if quant_method == "gptq":
quantization_config["use_exllama"] = False # disable exllama
if quant_method == "aqlm":
require_version(
"transformers>=4.39.0.dev0", "To fix: pip install git+https://github.com/huggingface/transformers.git"
)
require_version("aqlm>=1.1.0", "To fix: pip install aqlm[gpu]>=1.1.0")
quantization_config["bits"] = 2
quant_bits = quantization_config.get("bits", "?")
logger.info("Loading {}-bit {}-quantized model.".format(quant_bits, quant_method.upper()))
elif model_args.export_quantization_bit is not None: # auto-gptq
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
from accelerate.utils import get_max_memory
if getattr(config, "model_type", None) == "chatglm":
raise ValueError("ChatGLM model is not supported.")
init_kwargs["quantization_config"] = GPTQConfig(
bits=model_args.export_quantization_bit,
tokenizer=tokenizer,
dataset=_get_quantization_dataset(tokenizer, model_args),
)
init_kwargs["device_map"] = "auto"
init_kwargs["max_memory"] = get_max_memory()
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
elif model_args.quantization_bit is not None: # bnb
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
elif model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
init_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quantization,
bnb_4bit_quant_type=model_args.quantization_type,
)
init_kwargs["device_map"] = {"": get_current_device()}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
def _prepare_model_for_training(
model: "PreTrainedModel", model_args: "ModelArguments", output_layer_name: str = "lm_head"
) -> None:
r"""
Includes:
(1) cast the layernorm in fp32
(2) make output embedding layer require grads
(3) add the upcasting of the lm_head in fp32
Inspired by: https://github.com/huggingface/peft/blob/v0.7.1/src/peft/utils/other.py#L72
"""
if model_args.upcast_layernorm:
logger.info("Upcasting layernorm weights in float32.")
for name, param in model.named_parameters():
if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES):
param.data = param.data.to(torch.float32)
if not model_args.disable_gradient_checkpointing:
if not getattr(model, "supports_gradient_checkpointing", False):
logger.warning("Current model does not support gradient checkpointing.")
else:
# use_reentrant=False might increase VRAM usage (have not been empirically verified yet)
# According to: https://github.com/huggingface/transformers/issues/28339
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": True})
model.enable_input_require_grads()
setattr(model.config, "use_cache", False) # turn off when gradient checkpointing is enabled
logger.info("Gradient checkpointing enabled.")
if hasattr(model, output_layer_name) and model_args.upcast_lmhead_output:
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
return output.to(torch.float32)
logger.info("Upcasting lm_head outputs in float32.")
output_layer = getattr(model, output_layer_name)
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
output_layer.register_forward_hook(fp32_forward_post_hook)
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
def patch_config(
config: "PretrainedConfig",
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
init_kwargs: Dict[str, Any],
is_trainable: bool,
) -> None:
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
if getattr(config, "model_type", None) == "qwen":
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, model_args.compute_dtype == dtype)
_configure_attn_implementation(model_args, init_kwargs)
_configure_rope(config, model_args, is_trainable)
_configure_longlora(config, model_args, is_trainable)
_configure_quantization(config, tokenizer, model_args, init_kwargs)
if model_args.use_cache and not is_trainable:
setattr(config, "use_cache", True)
logger.info("Using KV cache for faster generation.")
init_kwargs["torch_dtype"] = model_args.compute_dtype
if not is_deepspeed_zero3_enabled():
init_kwargs["low_cpu_mem_usage"] = model_args.low_cpu_mem_usage
if "device_map" not in init_kwargs: # quant models cannot use auto device map
init_kwargs["device_map"] = model_args.device_map or {"": get_current_device()}
if init_kwargs["device_map"] == "auto":
init_kwargs["offload_folder"] = model_args.offload_folder
def patch_model(
model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", is_trainable: bool
) -> None:
if "GenerationMixin" not in str(model.generate.__func__):
model.generate = MethodType(PreTrainedModel.generate, model)
if getattr(model.config, "model_type", None) == "chatglm":
setattr(model, "lm_head", model.transformer.output_layer)
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
if model_args.resize_vocab:
_resize_embedding_layer(model, tokenizer)
if is_trainable:
_prepare_model_for_training(model, model_args)
if getattr(model.config, "model_type", None) == "mixtral" and is_deepspeed_zero3_enabled():
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0")
from deepspeed.utils import set_z3_leaf_modules # type: ignore
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
if is_trainable:
patch_mixtral_replace_moe_impl()
try:
model.add_model_tags(["llama-factory"])
except Exception:
logger.warning("Cannot properly tag the model.")
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None:
def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None:
if isinstance(self.pretrained_model, PreTrainedModel):
self.pretrained_model.tie_weights()
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
if isinstance(self.pretrained_model, PreTrainedModel):
return self.pretrained_model.get_input_embeddings()
def create_or_update_model_card(self: "AutoModelForCausalLMWithValueHead", output_dir: str) -> None:
if isinstance(self.pretrained_model, PeftModel):
self.pretrained_model.create_or_update_model_card(output_dir)
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
setattr(model, "tie_weights", MethodType(tie_weights, model))
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
setattr(model, "create_or_update_model_card", MethodType(create_or_update_model_card, model))

View File

@@ -0,0 +1,108 @@
from typing import TYPE_CHECKING, Dict, List
import torch
from transformers import PreTrainedModel
from transformers.utils import cached_file
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ..extras.logging import get_logger
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
from ..hparams import ModelArguments
logger = get_logger(__name__)
def find_all_linear_modules(model: "PreTrainedModel") -> List[str]:
r"""
Finds all available modules to apply lora.
"""
quantization_method = getattr(model, "quantization_method", None)
if quantization_method is None:
linear_cls = torch.nn.Linear
elif quantization_method == "bitsandbytes":
import bitsandbytes as bnb
linear_cls = bnb.nn.Linear4bit if getattr(model, "is_loaded_in_4bit", False) else bnb.nn.Linear8bitLt
else:
raise ValueError("Finding linear modules for {} models is not supported.".format(quantization_method))
output_layer_names = ["lm_head"]
if model.config.model_type == "chatglm":
output_layer_names.append("output_layer")
module_names = set()
for name, module in model.named_modules():
if isinstance(module, linear_cls) and not any(output_layer in name for output_layer in output_layer_names):
module_names.add(name.split(".")[-1])
logger.info("Found linear modules: {}".format(",".join(module_names)))
return list(module_names)
def find_expanded_modules(model: "PreTrainedModel", target_modules: List[str], num_layer_trainable: int) -> List[str]:
r"""
Finds the modules in the expanded blocks to apply lora.
"""
num_layers = getattr(model.config, "num_hidden_layers", None)
if not num_layers:
raise ValueError("Model was not supported.")
if num_layers % num_layer_trainable != 0:
raise ValueError(
"`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(num_layers, num_layer_trainable)
)
stride = num_layers // num_layer_trainable
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
trainable_layers = [".{:d}.".format(idx) for idx in trainable_layer_ids]
module_names = []
for name, _ in model.named_modules():
if any(target_module in name for target_module in target_modules) and any(
trainable_layer in name for trainable_layer in trainable_layers
):
module_names.append(name)
logger.info("Apply lora to layers: {}".format(",".join(map(str, trainable_layer_ids))))
return module_names
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
r"""
Loads value head parameters from Hugging Face Hub or local disk.
Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
"""
kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token}
try:
from safetensors import safe_open
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
with safe_open(vhead_file, framework="pt", device="cpu") as f:
return {key: f.get_tensor(key) for key in f.keys()}
except Exception as err:
logger.info("Failed to load {}: {}".format(V_HEAD_SAFE_WEIGHTS_NAME, str(err)))
try:
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
return torch.load(vhead_file, map_location="cpu")
except Exception as err:
logger.info("Failed to load {}: {}".format(V_HEAD_WEIGHTS_NAME, str(err)))
logger.info("Provided path ({}) does not contain value head weights.".format(path_or_repo_id))
logger.info("Ignore these messages if you are not resuming the training of a value head model.")
return None
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
if "AutoConfig" in getattr(config, "auto_map", {}):
config.__class__.register_for_auto_class()
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
model.__class__.register_for_auto_class()
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
tokenizer.__class__.register_for_auto_class()

View File

@@ -0,0 +1,4 @@
from .tuner import export_model, run_exp
__all__ = ["export_model", "run_exp"]

View File

@@ -0,0 +1,4 @@
from .workflow import run_dpo
__all__ = ["run_dpo"]

View File

@@ -0,0 +1,54 @@
from dataclasses import dataclass
from typing import Any, Dict, List, Sequence, Tuple
import torch
from transformers import DataCollatorForSeq2Seq
@dataclass
class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
r"""
Data collator for pairwise data.
"""
def _pad_labels(self, batch: torch.Tensor, positions: List[Tuple[int, int]]) -> torch.Tensor:
padded_labels = []
for feature, (prompt_len, answer_len) in zip(batch, positions):
if self.tokenizer.padding_side == "left":
start, end = feature.size(0) - answer_len, feature.size(0)
else:
start, end = prompt_len, prompt_len + answer_len
padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
padded_tensor[start:end] = feature[start:end]
padded_labels.append(padded_tensor)
return torch.stack(padded_labels, dim=0).contiguous() # in contiguous memory
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
r"""
Pads batched data to the longest sequence in the batch.
We generate 2 * n examples where the first n examples represent chosen examples and
the last n examples represent rejected examples.
"""
concatenated_features = []
label_positions = []
for key in ("chosen_ids", "rejected_ids"):
for feature in features:
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature[key])
concatenated_features.append(
{
"input_ids": feature["prompt_ids"] + feature[key],
"attention_mask": [1] * (prompt_len + answer_len),
}
)
label_positions.append((prompt_len, answer_len))
batch = self.tokenizer.pad(
concatenated_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch["labels"] = self._pad_labels(batch["input_ids"], label_positions)
return batch

View File

@@ -0,0 +1,149 @@
from collections import defaultdict
from contextlib import nullcontext
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
import torch
from transformers import BatchEncoding, Trainer
from trl import DPOTrainer
from trl.trainer.utils import disable_dropout_in_model
from ...extras.constants import IGNORE_INDEX
if TYPE_CHECKING:
from transformers import PreTrainedModel
class CustomDPOTrainer(DPOTrainer):
def __init__(
self,
beta: float,
loss_type: Literal["sigmoid", "hinge", "ipo", "kto_pair"],
ftx_gamma: float,
model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
disable_dropout: bool = True,
**kwargs,
):
if disable_dropout:
disable_dropout_in_model(model)
if ref_model is not None:
disable_dropout_in_model(ref_model)
self.reference_free = False
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0
self.is_encoder_decoder = model.config.is_encoder_decoder
self.precompute_ref_log_probs = False
self._precomputed_train_ref_log_probs = False
self._precomputed_eval_ref_log_probs = False
self._peft_has_been_casted_to_bf16 = False
self.ref_model = ref_model
self.beta = beta
self.label_smoothing = 0
self.loss_type = loss_type
self.ftx_gamma = ftx_gamma
self._stored_metrics = defaultdict(lambda: defaultdict(list))
Trainer.__init__(self, model=model, **kwargs)
if not hasattr(self, "accelerator"):
raise AttributeError("Please update `transformers`.")
if ref_model is not None:
if self.is_deepspeed_enabled:
if not (
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
): # quantized models are already set on the correct device
self.ref_model = self._prepare_deepspeed(self.ref_model)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
def sft_loss(self, chosen_logits: torch.FloatTensor, chosen_labels: torch.LongTensor) -> torch.Tensor:
r"""
Computes supervised cross-entropy loss of given labels under the given logits.
Returns:
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
"""
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
return -all_logps
def concatenated_forward(
self, model: "PreTrainedModel", batch: Dict[str, torch.Tensor]
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
all_logits = model(
input_ids=batch_copied["input_ids"], attention_mask=batch_copied["attention_mask"], return_dict=True
).logits.to(torch.float32)
all_logps = self.get_batch_logps(
all_logits,
batch["labels"],
average_log_prob=False,
label_pad_token_id=self.label_pad_token_id,
)
batch_size = batch["input_ids"].size(0) // 2
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
def get_batch_loss_metrics(
self,
model: "PreTrainedModel",
batch: Dict[str, torch.Tensor],
train_eval: Literal["train", "eval"] = "train",
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
r"""
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
"""
metrics = {}
(
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits,
policy_rejected_logits,
) = self.concatenated_forward(model, batch)
with torch.no_grad():
if self.ref_model is None:
ref_model = self.model
ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
else:
ref_model = self.ref_model
ref_context = nullcontext()
with ref_context:
(
reference_chosen_logps,
reference_rejected_logps,
_,
_,
) = self.concatenated_forward(ref_model, batch)
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
policy_chosen_logps,
policy_rejected_logps,
reference_chosen_logps,
reference_rejected_logps,
)
if self.ftx_gamma > 1e-6:
batch_size = batch["input_ids"].size(0) // 2
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)
reward_accuracies = (chosen_rewards > rejected_rewards).float()
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.cpu().mean()
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.cpu().mean()
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.cpu().mean()
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).cpu().mean()
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().cpu().mean()
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().cpu().mean()
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().cpu().mean()
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().cpu().mean()
return losses.mean(), metrics

View File

@@ -0,0 +1,83 @@
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
from typing import TYPE_CHECKING, List, Optional
from ...data import get_dataset, split_dataset
from ...extras.constants import IGNORE_INDEX
from ...extras.ploting import plot_loss
from ...hparams import ModelArguments
from ...model import load_model, load_tokenizer
from ..utils import create_custom_optimzer, create_modelcard_and_push, create_ref_model
from .collator import DPODataCollatorWithPadding
from .trainer import CustomDPOTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments
def run_dpo(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
tokenizer = load_tokenizer(model_args)
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
data_collator = DPODataCollatorWithPadding(
tokenizer=tokenizer,
pad_to_multiple_of=8,
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
)
# Create reference model
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself
ref_model = model
else:
ref_model = create_ref_model(model_args, finetuning_args)
# Update arguments
training_args.remove_unused_columns = False # important for pairwise dataset
# Initialize our Trainer
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
trainer = CustomDPOTrainer(
beta=finetuning_args.dpo_beta,
loss_type=finetuning_args.dpo_loss,
ftx_gamma=finetuning_args.dpo_ftx,
model=model,
ref_model=ref_model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
optimizers=(optimizer, None),
**split_dataset(dataset, data_args, training_args),
)
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval")
if id(model) == id(ref_model): # unable to compute rewards without a reference model
remove_keys = [key for key in metrics.keys() if "rewards" in key]
for key in remove_keys:
metrics.pop(key)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Create model card
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)

View File

@@ -0,0 +1,4 @@
from .workflow import run_ppo
__all__ = ["run_ppo"]

View File

@@ -0,0 +1,376 @@
import math
import os
import sys
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
import torch
from tqdm import tqdm
from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState
from transformers.trainer_pt_utils import remove_dummy_checkpoint
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
from trl import PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits
from ...extras.callbacks import FixValueHeadModelCallback, LogCallback
from ...extras.logging import get_logger
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
from .utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from trl import AutoModelForCausalLMWithValueHead
from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments
logger = get_logger(__name__)
class CustomPPOTrainer(PPOTrainer, Trainer):
r"""
Inherits PPOTrainer.
"""
def __init__(
self,
model_args: "ModelArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: List["TrainerCallback"],
reward_model: "AutoModelForCausalLMWithValueHead",
**kwargs,
):
PPOTrainer.__init__(self, **kwargs)
self.args = training_args
self.model_args = model_args
self.finetuning_args = finetuning_args
self.reward_model = reward_model
self.current_device = get_current_device() # patch for deepspeed training
self.generation_config = GenerationConfig(
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
**generating_args.to_dict(),
)
self.state = TrainerState()
self.control = TrainerControl()
self.is_deepspeed_enabled = self.accelerator.distributed_type == "DEEPSPEED" and hasattr(
self.accelerator.state, "deepspeed_plugin"
)
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
if self.args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
if finetuning_args.reward_model_type == "full":
if self.is_deepspeed_enabled:
if not (
getattr(reward_model.pretrained_model, "is_loaded_in_8bit", False)
or getattr(reward_model.pretrained_model, "is_loaded_in_4bit", False)
): # quantized models are already set on the correct device
self.reward_model = self._prepare_deepspeed(self.reward_model)
else:
self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
r"""
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
"""
if resume_from_checkpoint is not None:
raise ValueError("`resume_from_checkpoint` will be supported in the future version.")
total_train_batch_size = (
self.args.per_device_train_batch_size
* self.args.gradient_accumulation_steps
* self.finetuning_args.ppo_buffer_size
* self.args.world_size
)
if self.args.max_steps > 0:
num_examples = total_train_batch_size * self.args.max_steps
num_train_epochs = sys.maxsize
max_steps = self.args.max_steps
steps_in_epoch = self.args.max_steps
else:
len_dataloader = len(self.dataloader)
num_examples = len(self.dataset)
num_train_epochs = self.args.num_train_epochs
max_steps = math.ceil(num_train_epochs * len_dataloader)
steps_in_epoch = len_dataloader
self.state.max_steps = max_steps
self.state.num_train_epochs = num_train_epochs
self.state.is_local_process_zero = self.is_local_process_zero()
self.state.is_world_process_zero = self.is_world_process_zero()
if self.is_world_process_zero():
logger.info("***** Running training *****")
logger.info(" Num examples = {}".format(num_examples))
logger.info(" Num Epochs = {}".format(num_train_epochs))
logger.info(" Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size))
logger.info(
" Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format(
total_train_batch_size
)
)
logger.info(" Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps))
logger.info(" Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs))
logger.info(" Total training steps = {}".format(max_steps))
logger.info(" Number of trainable parameters = {}".format(count_parameters(self.model)[0]))
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
dataiter = iter(self.dataloader)
loss_meter = AverageMeter()
reward_meter = AverageMeter()
self.log_callback.on_train_begin(self.args, self.state, self.control)
for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()):
try:
batch = next(dataiter)
except StopIteration:
dataiter = iter(self.dataloader)
batch = next(dataiter)
# Cast to inference mode
unwrapped_model.gradient_checkpointing_disable()
unwrapped_model.config.use_cache = True
self.model.eval()
# Get inputs
self.tokenizer.padding_side = "right" # change padding side
queries, responses, rewards = [], [], []
for idx in range(0, self.config.batch_size, self.config.mini_batch_size):
mini_batch_queries, mini_batch_responses = self.get_inputs(
batch[idx : idx + self.config.mini_batch_size]
)
mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses, unwrapped_model)
queries.extend(mini_batch_queries)
responses.extend(mini_batch_responses)
rewards.extend(mini_batch_rewards)
# Cast to training mode
unwrapped_model.gradient_checkpointing_enable()
unwrapped_model.config.use_cache = False
self.model.train()
# Run PPO step
stats = self.step(queries, responses, rewards)
self.tokenizer.padding_side = "left" # restore padding side
loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards))
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))
if self.config.log_with is not None:
try:
batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True)
batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True)
self.log_stats(stats, batch, rewards)
except Exception:
logger.warning("Failed to save stats due to unknown errors.")
self.state.global_step += 1
self.log_callback.on_step_end(self.args, self.state, self.control)
if self.is_local_process_zero() and (step + 1) % self.args.logging_steps == 0:
logs = dict(
loss=round(loss_meter.avg, 4),
reward=round(reward_meter.avg, 4),
learning_rate=stats["ppo/learning_rate"],
epoch=round(step / steps_in_epoch, 2),
)
tqdm.write(str(logs))
logs["step"] = step
self.state.log_history.append(logs)
self.log_callback.on_log(self.args, self.state, self.control)
loss_meter.reset()
reward_meter.reset()
if (step + 1) % self.args.save_steps == 0: # save checkpoint
self.save_model(
os.path.join(self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step))
)
self.save_callback.on_save(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
if self.control.should_epoch_stop or self.control.should_training_stop:
break
self.log_callback.on_train_end(self.args, self.state, self.control)
self.save_callback.on_train_end(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
@torch.no_grad()
def get_inputs(self, batch: Dict[str, torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
r"""
Generates model's responses given queries.
"""
if self.model_args.upcast_layernorm:
layernorm_params = dump_layernorm(self.model)
if batch["input_ids"].size(0) == 1: # handle llama2 ppo with gradient accumulation > 1
start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item()
for k, v in batch.items():
batch[k] = v[:, start_index:]
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
generate_output: torch.Tensor = unwrapped_model.generate(
generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch
)
if self.model_args.upcast_layernorm:
restore_layernorm(self.model, layernorm_params)
query = batch["input_ids"].detach().cpu()
response = generate_output[:, batch["input_ids"].size(-1) :].detach().cpu()
queries, responses = [], []
for i in range(len(query)):
query_start_index = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item()
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()
if len(response_index) == 0:
response_length = 1 # allow empty response
else:
response_length = response_index[-1].item() + 1
queries.append(query[i, query_start_index:]) # remove padding from left
responses.append(response[i, :response_length]) # remove padding from right
return queries, responses
@torch.no_grad()
def get_rewards(
self,
queries: List[torch.Tensor],
responses: List[torch.Tensor],
unwrapped_model: "AutoModelForCausalLMWithValueHead",
) -> List[torch.Tensor]:
r"""
Computes scores using given reward model.
Both inputs and outputs are put on CPU.
"""
if self.finetuning_args.reward_model_type == "api":
token_ids = [torch.cat((q, r), dim=-1).tolist() for q, r in zip(queries, responses)]
messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True)
return get_rewards_from_server(self.reward_model, messages)
if self.finetuning_args.reward_model_type == "lora":
replace_model(unwrapped_model, target="reward")
reward_model = self.model
else:
reward_model = self.reward_model
batch = self.prepare_model_inputs(queries, responses)
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
_, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True)
if getattr(unwrapped_model.config, "model_type", None) == "chatglm": # assume same architecture
values = torch.transpose(values, 0, 1)
rewards = []
for i in range(values.size(0)):
end_indexes = (batch["input_ids"][i] != self.tokenizer.pad_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
if self.finetuning_args.reward_model_type == "lora":
replace_model(unwrapped_model, target="default")
return rewards
@PPODecorators.empty_device_cache()
def batched_forward_pass(
self,
model: "AutoModelForCausalLMWithValueHead",
queries: torch.Tensor,
responses: torch.Tensor,
model_inputs: dict,
return_logits: bool = False,
response_masks: Optional[torch.Tensor] = None,
):
r"""
Calculates model outputs in multiple batches.
Subclass and override to inject custom behavior.
"""
bs = len(queries)
fbs = self.config.mini_batch_size
all_logprobs = []
all_logits = []
all_masks = []
all_values = []
for i in range(math.ceil(bs / fbs)):
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
query_batch = queries[i * fbs : (i + 1) * fbs]
response_batch = responses[i * fbs : (i + 1) * fbs]
if response_masks is not None:
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
input_ids = input_kwargs["input_ids"]
attention_mask = input_kwargs["attention_mask"]
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
logits, _, values = model(**input_kwargs)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
if getattr(unwrapped_model.config, "model_type", None) == "chatglm":
values = torch.transpose(values, 0, 1)
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
masks = torch.zeros_like(attention_mask)
masks[:, :-1] = attention_mask[:, 1:]
for j in range(len(query_batch)):
start = len(query_batch[j]) - 1
if attention_mask[j, 0] == 0: # offset left padding
start += attention_mask[j, :].nonzero()[0].item()
end = start + len(response_batch[j])
if response_masks is not None:
response_masks_batch = torch.cat((torch.zeros_like(query_batch[j]), response_masks_batch[j]))[1:]
masks[j, :start] = 0
masks[j, end:] = 0
if response_masks is not None:
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]
if return_logits:
all_logits.append(logits)
else:
del logits
all_values.append(values)
all_logprobs.append(logprobs)
all_masks.append(masks)
return (
torch.cat(all_logprobs),
torch.cat(all_logits)[:, :-1] if return_logits else None,
torch.cat(all_values)[:, :-1],
torch.cat(all_masks)[:, :-1],
)
def save_model(self, output_dir: Optional[str] = None) -> None:
r"""
Saves model checkpoint.
Subclass and override to inject custom behavior.
"""
if self.args.should_save:
try:
self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model))
except ValueError:
logger.warning(
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
" use zero_to_fp32.py to recover weights"
)
self._save(output_dir, state_dict={})
remove_dummy_checkpoint(True, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
self.model.save_checkpoint(output_dir)

View File

@@ -0,0 +1,59 @@
import json
from contextlib import nullcontext
from typing import TYPE_CHECKING, Dict, List, Literal, Optional
import torch
from transformers.integrations import is_deepspeed_zero3_enabled
from ...extras.packages import is_requests_available
if TYPE_CHECKING:
from transformers import PreTrainedModel
from trl import AutoModelForCausalLMWithValueHead
if is_requests_available():
import requests
def get_rewards_from_server(server_url: str, messages: List[str]) -> List[torch.Tensor]:
headers = {"Content-Type": "application/json"}
payload = {"model": "model", "messages": messages}
response = requests.post(server_url, json=payload, headers=headers)
rewards = json.loads(response.text)["scores"]
return torch.Tensor(rewards)
def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None:
if is_deepspeed_zero3_enabled():
import deepspeed # type: ignore
params = [model.v_head.summary.weight, model.v_head.summary.bias]
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
else:
context_maybe_zero3 = nullcontext()
with context_maybe_zero3:
if target == "reward": # save default head temporarily
setattr(model, "default_head_weight", model.v_head.summary.weight.data.detach().clone())
setattr(model, "default_head_bias", model.v_head.summary.bias.data.detach().clone())
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
model.v_head.summary.weight.data = model.get_buffer("{}_head_weight".format(target)).detach().clone()
model.v_head.summary.bias.data = model.get_buffer("{}_head_bias".format(target)).detach().clone()
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
layer_norm_params = {}
for name, param in model.named_parameters():
if param.data.dtype == torch.float32:
layer_norm_params[name] = param.data.detach().clone()
param.data = param.data.to(model.config.torch_dtype)
return layer_norm_params
def restore_layernorm(model: "PreTrainedModel", layernorm_params: Optional[Dict[str, torch.Tensor]] = None) -> None:
for name, param in model.named_parameters():
if name in layernorm_params:
param.data = layernorm_params[name]

View File

@@ -0,0 +1,110 @@
# Inspired by: https://github.com/lvwerra/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py
import math
from typing import TYPE_CHECKING, List, Optional
from torch.optim import AdamW
from transformers import DataCollatorWithPadding
from transformers.optimization import get_scheduler
from trl import PPOConfig
from ...data import get_dataset
from ...extras.callbacks import FixValueHeadModelCallback
from ...extras.misc import fix_valuehead_checkpoint
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ..utils import create_custom_optimzer, create_ref_model, create_reward_model
from .trainer import CustomPPOTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
def run_ppo(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
tokenizer = load_tokenizer(model_args)
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="ppo")
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Create reference model and reward model
ref_model = create_ref_model(model_args, finetuning_args, add_valuehead=True)
reward_model = create_reward_model(model, model_args, finetuning_args)
# Create ppo config
backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
ppo_config = PPOConfig(
model_name=model_args.model_name_or_path,
learning_rate=training_args.learning_rate,
mini_batch_size=training_args.per_device_train_batch_size,
batch_size=backward_batch_size * finetuning_args.ppo_buffer_size,
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
ppo_epochs=finetuning_args.ppo_epochs,
max_grad_norm=training_args.max_grad_norm,
seed=training_args.seed,
optimize_device_cache=True,
target=finetuning_args.ppo_target,
log_with=finetuning_args.ppo_logger,
use_score_scaling=finetuning_args.ppo_score_norm,
use_score_norm=finetuning_args.ppo_score_norm,
whiten_rewards=finetuning_args.ppo_whiten_rewards,
accelerator_kwargs={"step_scheduler_with_optimizer": False},
project_kwargs={"logging_dir": training_args.logging_dir},
)
# Create optimizer and scheduler
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
if optimizer is None:
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=training_args.learning_rate)
if training_args.max_steps > 0:
num_training_steps = training_args.max_steps
else:
total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
lr_scheduler = get_scheduler(
training_args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
# Initialize our Trainer
ppo_trainer = CustomPPOTrainer(
model_args=model_args,
training_args=training_args,
finetuning_args=finetuning_args,
generating_args=generating_args,
callbacks=callbacks + [FixValueHeadModelCallback()],
reward_model=reward_model,
config=ppo_config,
model=model,
ref_model=ref_model,
tokenizer=tokenizer,
dataset=dataset,
data_collator=data_collator,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
# Training
if training_args.do_train:
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint)
ppo_trainer.save_model()
if training_args.should_save:
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
ppo_trainer.save_state() # must be called after save_model to have a folder
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "reward"])

View File

@@ -0,0 +1,4 @@
from .workflow import run_pt
__all__ = ["run_pt"]

View File

@@ -0,0 +1,67 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/language-modeling/run_clm.py
import math
from typing import TYPE_CHECKING, List, Optional
from transformers import DataCollatorForLanguageModeling, Trainer
from ...data import get_dataset, split_dataset
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ..utils import create_custom_optimzer, create_modelcard_and_push
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
def run_pt(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
tokenizer = load_tokenizer(model_args)
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="pt")
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Initialize our Trainer
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
trainer = Trainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
optimizers=(optimizer, None),
**split_dataset(dataset, data_args, training_args),
)
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval")
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Create model card
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)

View File

@@ -0,0 +1,4 @@
from .workflow import run_rm
__all__ = ["run_rm"]

View File

@@ -0,0 +1,29 @@
from dataclasses import dataclass
from typing import Any, Dict, Sequence
import torch
from transformers import DataCollatorWithPadding
@dataclass
class PairwiseDataCollatorWithPadding(DataCollatorWithPadding):
r"""
Data collator for pairwise data.
"""
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
r"""
Pads batched data to the longest sequence in the batch.
We generate 2 * n examples where the first n examples represent chosen examples and
the last n examples represent rejected examples.
"""
features = [
{
"input_ids": feature["prompt_ids"] + feature[key],
"attention_mask": [1] * (len(feature["prompt_ids"]) + len(feature[key])),
}
for key in ("chosen_ids", "rejected_ids")
for feature in features
]
return super().__call__(features)

View File

@@ -0,0 +1,8 @@
from typing import Dict, Sequence, Tuple, Union
import numpy as np
def compute_accuracy(eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
preds, _ = eval_preds
return {"accuracy": (preds[0] > preds[1]).sum() / len(preds[0])}

View File

@@ -0,0 +1,99 @@
import json
import os
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
import torch
from transformers import Trainer
from ...extras.logging import get_logger
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
from transformers.trainer import PredictionOutput
logger = get_logger(__name__)
class PairwiseTrainer(Trainer):
r"""
Inherits PeftTrainer to compute pairwise loss.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.can_return_loss = True # override property to return eval_loss
def compute_loss(
self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
r"""
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
Subclass and override to inject custom behavior.
Note that the first element will be removed from the output tuple.
See: https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/trainer.py#L3509
"""
# Compute rewards
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
unwrapped_model: "PreTrainedModel" = self.accelerator.unwrap_model(self.model)
if getattr(unwrapped_model.config, "model_type", None) == "chatglm":
values = torch.transpose(values, 0, 1)
# Split the inputs and rewards into two parts, chosen and rejected
batch_size = inputs["input_ids"].size(0) // 2
chosen_input_ids, rejected_input_ids = inputs["input_ids"][:batch_size], inputs["input_ids"][batch_size:]
chosen_rewards, rejected_rewards = values[:batch_size], values[batch_size:]
chosen_scores, rejected_scores = [], []
# Compute pairwise loss. Only backprop on the different tokens before padding
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/reward_model.py
loss = 0
for i in range(batch_size):
chosen_length = (chosen_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
rejected_length = (rejected_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
check_divergence = (chosen_input_ids[i] != rejected_input_ids[i]).nonzero()
if len(check_divergence) == 0:
end_index = chosen_length
div_index = end_index - 1
else:
end_index = max(chosen_length, rejected_length)
div_index = check_divergence[0]
assert div_index > 0
chosen_trunc_rewards = chosen_rewards[i, div_index:end_index]
rejected_trunc_rewards = rejected_rewards[i, div_index:end_index]
if return_outputs: # use the score on the last token except pad token for inference
chosen_scores.append(chosen_rewards[i, chosen_length - 1])
rejected_scores.append(rejected_rewards[i, rejected_length - 1])
loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean()
loss = loss / batch_size
if return_outputs:
chosen_scores, rejected_scores = torch.stack(chosen_scores), torch.stack(rejected_scores)
return loss, [loss, chosen_scores, rejected_scores]
return loss
def save_predictions(self, predict_results: "PredictionOutput") -> None:
r"""
Saves model predictions to `output_dir`.
A custom behavior that not contained in Seq2SeqTrainer.
"""
if not self.is_world_process_zero():
return
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
chosen_scores, rejected_scores = predict_results.predictions
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for c_score, r_score in zip(chosen_scores, rejected_scores):
res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
writer.write("\n".join(res))

View File

@@ -0,0 +1,76 @@
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
from typing import TYPE_CHECKING, List, Optional
from ...data import get_dataset, split_dataset
from ...extras.callbacks import FixValueHeadModelCallback
from ...extras.misc import fix_valuehead_checkpoint
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ..utils import create_custom_optimzer, create_modelcard_and_push
from .collator import PairwiseDataCollatorWithPadding
from .metric import compute_accuracy
from .trainer import PairwiseTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
def run_rm(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
tokenizer = load_tokenizer(model_args)
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
# Update arguments
training_args.remove_unused_columns = False # important for pairwise dataset
# Initialize our Trainer
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
trainer = PairwiseTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks + [FixValueHeadModelCallback()],
optimizers=(optimizer, None),
compute_metrics=compute_accuracy,
**split_dataset(dataset, data_args, training_args),
)
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
if training_args.should_save:
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval")
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
predict_results = trainer.predict(dataset, metric_key_prefix="predict")
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
# Create model card
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)

View File

@@ -0,0 +1,4 @@
from .workflow import run_sft
__all__ = ["run_sft"]

View File

@@ -0,0 +1,61 @@
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union
import numpy as np
from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_available
if TYPE_CHECKING:
from transformers.tokenization_utils import PreTrainedTokenizer
if is_jieba_available():
import jieba # type: ignore
if is_nltk_available():
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
if is_rouge_available():
from rouge_chinese import Rouge
@dataclass
class ComputeMetrics:
r"""
Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer.
"""
tokenizer: "PreTrainedTokenizer"
def __call__(self, eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
r"""
Uses the model predictions to compute metrics.
"""
preds, labels = eval_preds
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
for pred, label in zip(decoded_preds, decoded_labels):
hypothesis = list(jieba.cut(pred))
reference = list(jieba.cut(label))
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
else:
rouge = Rouge()
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
result = scores[0]
for k, v in result.items():
score_dict[k].append(round(v["f"] * 100, 4))
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
return {k: float(np.mean(v)) for k, v in score_dict.items()}

View File

@@ -0,0 +1,100 @@
import json
import os
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from transformers import Seq2SeqTrainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
logger = get_logger(__name__)
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits PeftTrainer to compute generative metrics such as BLEU and ROUGE.
"""
def prediction_step(
self,
model: nn.Module,
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
r"""
Removes the prompt part in the generated tokens.
Subclass and override to inject custom behavior.
"""
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
inputs["labels"] = inputs["labels"][:, :prompt_len]
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
if generated_tokens is not None and self.args.predict_with_generate:
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
generated_tokens = generated_tokens.contiguous()
return loss, generated_tokens, labels
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
r"""
Pads the tensor to the same length as the target tensor.
"""
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory
def save_predictions(self, predict_results: "PredictionOutput") -> None:
r"""
Saves model predictions to `output_dir`.
A custom behavior that not contained in Seq2SeqTrainer.
"""
if not self.is_world_process_zero():
return
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
labels = np.where(
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
)
preds = np.where(
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
)
for i in range(len(preds)):
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
if len(pad_len):
preds[i] = np.concatenate(
(preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1
) # move pad token to last
decoded_labels = self.tokenizer.batch_decode(
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for label, pred in zip(decoded_labels, decoded_preds):
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
writer.write("\n".join(res))

View File

@@ -0,0 +1,99 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
from typing import TYPE_CHECKING, List, Optional
from transformers import DataCollatorForSeq2Seq
from ...data import get_dataset, split_dataset
from ...extras.constants import IGNORE_INDEX
from ...extras.misc import get_logits_processor
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ...train.sft.metric import ComputeMetrics
from ...train.sft.trainer import CustomSeq2SeqTrainer
from ...train.utils import create_modelcard_and_push
from ..utils import create_custom_optimzer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
def run_sft(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
tokenizer = load_tokenizer(model_args)
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
if training_args.predict_with_generate:
tokenizer.padding_side = "left" # use left-padding in generation
if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
# Initialize our Trainer
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
optimizers=(optimizer, None),
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
**split_dataset(dataset, data_args, training_args),
)
# Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
metrics.pop("eval_loss", None)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
predict_results.metrics.pop("predict_loss", None)
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
# Create model card
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)

View File

@@ -0,0 +1,93 @@
from typing import TYPE_CHECKING, Any, Dict, List, Optional
import torch
from transformers import PreTrainedModel
from ..data import get_template_and_fix_tokenizer
from ..extras.callbacks import LogCallback
from ..extras.logging import get_logger
from ..hparams import get_infer_args, get_train_args
from ..model import load_model_and_tokenizer
from .dpo import run_dpo
from .ppo import run_ppo
from .pt import run_pt
from .rm import run_rm
from .sft import run_sft
if TYPE_CHECKING:
from transformers import TrainerCallback
logger = get_logger(__name__)
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None):
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
callbacks = [LogCallback()] if callbacks is None else callbacks
if finetuning_args.stage == "pt":
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "sft":
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "rm":
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "ppo":
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "dpo":
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
else:
raise ValueError("Unknown task.")
def export_model(args: Optional[Dict[str, Any]] = None):
model_args, data_args, finetuning_args, _ = get_infer_args(args)
if model_args.export_dir is None:
raise ValueError("Please specify `export_dir`.")
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
raise ValueError("Please merge adapters before quantizing the model.")
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
get_template_and_fix_tokenizer(tokenizer, data_args.template)
if getattr(model, "quantization_method", None) and model_args.adapter_name_or_path is not None:
raise ValueError("Cannot merge adapters to a quantized model.")
if not isinstance(model, PreTrainedModel):
raise ValueError("The model is not a `PreTrainedModel`, export aborted.")
if getattr(model, "quantization_method", None):
model = model.to("cpu")
elif hasattr(model.config, "torch_dtype"):
model = model.to(getattr(model.config, "torch_dtype")).to("cpu")
else:
model = model.to(torch.float16).to("cpu")
setattr(model.config, "torch_dtype", torch.float16)
model.save_pretrained(
save_directory=model_args.export_dir,
max_shard_size="{}GB".format(model_args.export_size),
safe_serialization=(not model_args.export_legacy_format),
)
if model_args.export_hub_model_id is not None:
model.push_to_hub(
model_args.export_hub_model_id,
token=model_args.hf_hub_token,
max_shard_size="{}GB".format(model_args.export_size),
safe_serialization=(not model_args.export_legacy_format),
)
try:
tokenizer.padding_side = "left" # restore padding side
tokenizer.init_kwargs["padding_side"] = "left"
tokenizer.save_pretrained(model_args.export_dir)
if model_args.export_hub_model_id is not None:
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token)
except Exception:
logger.warning("Cannot save tokenizer, please copy the files manually.")
if __name__ == "__main__":
run_exp()

View File

@@ -0,0 +1,246 @@
import math
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union
import torch
from transformers.optimization import get_scheduler
from transformers.utils.versions import require_version
from ..extras.logging import get_logger
from ..extras.packages import is_galore_available
from ..hparams import FinetuningArguments, ModelArguments
from ..model import load_model_and_tokenizer, load_valuehead_params
if is_galore_available():
from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments, Trainer
from transformers.modeling_utils import PreTrainedModel
from trl import AutoModelForCausalLMWithValueHead
from ..hparams import DataArguments
logger = get_logger(__name__)
class DummyOptimizer(torch.optim.Optimizer):
def __init__(self, *args, **kwargs):
dummy_tensor = torch.randn(1, 1)
super().__init__([dummy_tensor], {"lr": 1e-3})
def zero_grad(self, set_to_none: bool = True) -> None:
pass
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
pass
def create_modelcard_and_push(
trainer: "Trainer",
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
) -> None:
kwargs = {
"tasks": "text-generation",
"finetuned_from": model_args.model_name_or_path,
"dataset": [dataset.strip() for dataset in data_args.dataset.split(",")],
"tags": ["llama-factory", finetuning_args.finetuning_type],
}
if not training_args.do_train:
pass
elif training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(license="other", **kwargs) # prevent from connecting to hub
def create_ref_model(
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
) -> Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]:
r"""
Creates reference model for PPO/DPO training. Evaluation mode is not supported.
The valuehead parameter is randomly initialized since it is useless for PPO training.
"""
if finetuning_args.ref_model is not None:
ref_model_args_dict = model_args.to_dict()
ref_model_args_dict.update(
dict(
model_name_or_path=finetuning_args.ref_model,
adapter_name_or_path=finetuning_args.ref_model_adapters,
quantization_bit=finetuning_args.ref_model_quantization_bit,
)
)
ref_model_args = ModelArguments(**ref_model_args_dict)
ref_finetuning_args = FinetuningArguments(finetuning_type="lora")
ref_model, _ = load_model_and_tokenizer(
ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
)
logger.info("Created reference model from {}".format(finetuning_args.ref_model))
else:
if finetuning_args.finetuning_type == "lora":
ref_model = None
else:
ref_model, _ = load_model_and_tokenizer(
model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead
)
logger.info("Created reference model from the model itself.")
return ref_model
def create_reward_model(
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
) -> "AutoModelForCausalLMWithValueHead":
r"""
Creates reward model for PPO training.
"""
if finetuning_args.reward_model_type == "api":
assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
logger.info("Use reward server {}".format(finetuning_args.reward_model))
return finetuning_args.reward_model
elif finetuning_args.reward_model_type == "lora":
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090
if "default" in name:
param.data = param.data.to(torch.float32) # trainable params should in fp32
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
assert vhead_params is not None, "Reward model is not correctly loaded."
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
model.register_buffer(
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
)
model.register_buffer(
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
)
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model))
return None
else:
reward_model_args_dict = model_args.to_dict()
reward_model_args_dict.update(
dict(
model_name_or_path=finetuning_args.reward_model,
adapter_name_or_path=finetuning_args.reward_model_adapters,
quantization_bit=finetuning_args.reward_model_quantization_bit,
)
)
reward_model_args = ModelArguments(**reward_model_args_dict)
reward_finetuning_args = FinetuningArguments(finetuning_type="lora")
reward_model, _ = load_model_and_tokenizer(
reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
)
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model))
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
return reward_model
def create_custom_optimzer(
model: "PreTrainedModel",
dataset: Union["Dataset", "IterableDataset"],
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
) -> Optional["torch.optim.Optimizer"]:
if not finetuning_args.use_galore:
return None
require_version("galore_torch", "To fix: pip install git+https://github.com/hiyouga/GaLore.git")
galore_params: List[torch.nn.Parameter] = []
galore_targets = finetuning_args.galore_target.split(",")
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
for param in module.parameters():
if param.requires_grad and len(param.shape) > 1:
galore_params.append(param)
id_galore_params = {id(param) for param in galore_params}
trainable_params = filter(lambda param: param.requires_grad, model.parameters())
non_galore_params = [param for param in trainable_params if id(param) not in id_galore_params]
if training_args.optim == "adamw_torch":
optim_class = GaLoreAdamW
optim_kwargs = {
"lr": training_args.learning_rate,
"eps": training_args.adam_epsilon,
"betas": (training_args.adam_beta1, training_args.adam_beta2),
"weight_decay": training_args.weight_decay,
}
elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
optim_class = GaLoreAdamW8bit
optim_kwargs = {
"lr": training_args.learning_rate,
"eps": training_args.adam_epsilon,
"betas": (training_args.adam_beta1, training_args.adam_beta2),
"weight_decay": training_args.weight_decay,
"optim_bits": 8,
"is_paged": "paged" in training_args.optim,
}
elif training_args.optim == "adafactor":
optim_class = GaLoreAdafactor
optim_kwargs = {
"lr": training_args.learning_rate,
"weight_decay": training_args.weight_decay,
}
else:
raise NotImplementedError("Unknow optim: {}".format(training_args.optim))
galore_kwargs = {
"rank": finetuning_args.galore_rank,
"update_proj_gap": finetuning_args.galore_update_interval,
"scale": finetuning_args.galore_scale,
"proj_type": finetuning_args.galore_proj_type,
}
if finetuning_args.galore_layerwise:
if training_args.gradient_accumulation_steps != 1:
raise ValueError("Per-layer GaLore does not support gradient accumulation.")
if training_args.max_steps > 0:
num_training_steps = training_args.max_steps
else:
total_train_batch_size = training_args.per_device_train_batch_size * training_args.world_size
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {}
for param in non_galore_params:
param_groups = [dict(params=[param])]
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
for param in galore_params:
param_groups = [dict(params=[param], **galore_kwargs)]
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
scheduler_dict: Dict["torch.Tensor", "torch.optim.lr_scheduler.LRScheduler"] = {}
for param in non_galore_params + galore_params:
scheduler_dict[param] = get_scheduler(
training_args.lr_scheduler_type,
optimizer=optimizer_dict[param],
num_warmup_steps=training_args.get_warmup_steps(num_training_steps) * 2,
num_training_steps=num_training_steps * 2,
)
def optimizer_hook(param: "torch.Tensor"):
if param.grad is not None:
optimizer_dict[param].step()
optimizer_dict[param].zero_grad()
scheduler_dict[param].step()
for param in non_galore_params + galore_params:
param.register_post_accumulate_grad_hook(optimizer_hook)
optimizer = DummyOptimizer()
else:
param_groups = [dict(params=non_galore_params), dict(params=galore_params, **galore_kwargs)]
optimizer = optim_class(param_groups, **optim_kwargs)
logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
return optimizer

View File

@@ -0,0 +1,4 @@
from .interface import create_ui, create_web_demo
__all__ = ["create_ui", "create_web_demo"]

View File

@@ -0,0 +1,137 @@
import json
import os
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple
import gradio as gr
from gradio.components import Component # cannot use TYPE_CHECKING here
from ..chat import ChatModel
from ..data import Role
from ..extras.misc import torch_gc
from .common import get_save_dir
from .locales import ALERTS
if TYPE_CHECKING:
from ..chat import BaseEngine
from .manager import Manager
class WebChatModel(ChatModel):
def __init__(self, manager: "Manager", demo_mode: bool = False, lazy_init: bool = True) -> None:
self.manager = manager
self.demo_mode = demo_mode
self.engine: Optional["BaseEngine"] = None
if not lazy_init: # read arguments from command line
super().__init__()
if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"): # load demo model
model_name_or_path = os.environ.get("DEMO_MODEL")
template = os.environ.get("DEMO_TEMPLATE")
super().__init__(dict(model_name_or_path=model_name_or_path, template=template))
@property
def loaded(self) -> bool:
return self.engine is not None
def load_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
get = lambda name: data[self.manager.get_elem_by_name(name)]
lang = get("top.lang")
error = ""
if self.loaded:
error = ALERTS["err_exists"][lang]
elif not get("top.model_name"):
error = ALERTS["err_no_model"][lang]
elif not get("top.model_path"):
error = ALERTS["err_no_path"][lang]
elif self.demo_mode:
error = ALERTS["err_demo"][lang]
if error:
gr.Warning(error)
yield error
return
if get("top.adapter_path"):
adapter_name_or_path = ",".join(
[
get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
for adapter in get("top.adapter_path")
]
)
else:
adapter_name_or_path = None
yield ALERTS["info_loading"][lang]
args = dict(
model_name_or_path=get("top.model_path"),
adapter_name_or_path=adapter_name_or_path,
finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"),
flash_attn=(get("top.booster") == "flash_attn"),
use_unsloth=(get("top.booster") == "unsloth"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
infer_backend=get("infer.infer_backend"),
)
super().__init__(args)
yield ALERTS["info_loaded"][lang]
def unload_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
lang = data[self.manager.get_elem_by_name("top.lang")]
if self.demo_mode:
gr.Warning(ALERTS["err_demo"][lang])
yield ALERTS["err_demo"][lang]
return
yield ALERTS["info_unloading"][lang]
self.engine = None
torch_gc()
yield ALERTS["info_unloaded"][lang]
def predict(
self,
chatbot: List[Tuple[str, str]],
role: str,
query: str,
messages: Sequence[Tuple[str, str]],
system: str,
tools: str,
max_new_tokens: int,
top_p: float,
temperature: float,
) -> Generator[Tuple[Sequence[Tuple[str, str]], Sequence[Tuple[str, str]]], None, None]:
chatbot.append([query, ""])
query_messages = messages + [{"role": role, "content": query}]
response = ""
for new_text in self.stream_chat(
query_messages, system, tools, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
):
response += new_text
if tools:
result = self.engine.template.format_tools.extract(response)
else:
result = response
if isinstance(result, tuple):
name, arguments = result
arguments = json.loads(arguments)
tool_call = json.dumps({"name": name, "arguments": arguments}, ensure_ascii=False)
output_messages = query_messages + [{"role": Role.FUNCTION.value, "content": tool_call}]
bot_text = "```json\n" + tool_call + "\n```"
else:
output_messages = query_messages + [{"role": Role.ASSISTANT.value, "content": result}]
bot_text = result
chatbot[-1] = [query, self.postprocess(bot_text)]
yield chatbot, output_messages
def postprocess(self, response: str) -> str:
blocks = response.split("```")
for i, block in enumerate(blocks):
if i % 2 == 0:
blocks[i] = block.replace("<", "&lt;").replace(">", "&gt;")
return "```".join(blocks)

View File

@@ -0,0 +1,115 @@
import json
import os
from collections import defaultdict
from typing import Any, Dict, Optional
import gradio as gr
from peft.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME
from ..extras.constants import (
DATA_CONFIG,
DEFAULT_MODULE,
DEFAULT_TEMPLATE,
PEFT_METHODS,
SUPPORTED_MODELS,
TRAINING_STAGES,
DownloadSource,
)
from ..extras.misc import use_modelscope
ADAPTER_NAMES = {WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME}
DEFAULT_CACHE_DIR = "cache"
DEFAULT_DATA_DIR = "data"
DEFAULT_SAVE_DIR = "saves"
USER_CONFIG = "user.config"
def get_save_dir(*args) -> os.PathLike:
return os.path.join(DEFAULT_SAVE_DIR, *args)
def get_config_path() -> os.PathLike:
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG)
def load_config() -> Dict[str, Any]:
try:
with open(get_config_path(), "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None:
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
user_config = load_config()
user_config["lang"] = lang or user_config["lang"]
if model_name:
user_config["last_model"] = model_name
user_config["path_dict"][model_name] = model_path
with open(get_config_path(), "w", encoding="utf-8") as f:
json.dump(user_config, f, indent=2, ensure_ascii=False)
def get_model_path(model_name: str) -> str:
user_config = load_config()
path_dict: Dict[DownloadSource, str] = SUPPORTED_MODELS.get(model_name, defaultdict(str))
model_path = user_config["path_dict"].get(model_name, None) or path_dict.get(DownloadSource.DEFAULT, None)
if (
use_modelscope()
and path_dict.get(DownloadSource.MODELSCOPE)
and model_path == path_dict.get(DownloadSource.DEFAULT)
): # replace path
model_path = path_dict.get(DownloadSource.MODELSCOPE)
return model_path
def get_prefix(model_name: str) -> str:
return model_name.split("-")[0]
def get_module(model_name: str) -> str:
return DEFAULT_MODULE.get(get_prefix(model_name), "q_proj,v_proj")
def get_template(model_name: str) -> str:
if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE:
return DEFAULT_TEMPLATE[get_prefix(model_name)]
return "default"
def list_adapters(model_name: str, finetuning_type: str) -> Dict[str, Any]:
if finetuning_type not in PEFT_METHODS:
return gr.update(value=[], choices=[], interactive=False)
adapters = []
if model_name and finetuning_type == "lora":
save_dir = get_save_dir(model_name, finetuning_type)
if save_dir and os.path.isdir(save_dir):
for adapter in os.listdir(save_dir):
if os.path.isdir(os.path.join(save_dir, adapter)) and any(
os.path.isfile(os.path.join(save_dir, adapter, name)) for name in ADAPTER_NAMES
):
adapters.append(adapter)
return gr.update(value=[], choices=adapters, interactive=True)
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:
try:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
return json.load(f)
except Exception as err:
print("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err)))
return {}
def list_dataset(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> Dict[str, Any]:
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
ranking = TRAINING_STAGES[training_stage] in ["rm", "dpo"]
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
return gr.update(value=[], choices=datasets)
def autoset_packing(training_stage: str = list(TRAINING_STAGES.keys())[0]) -> Dict[str, Any]:
return gr.update(value=(TRAINING_STAGES[training_stage] == "pt"))

View File

@@ -0,0 +1,16 @@
from .chatbot import create_chat_box
from .eval import create_eval_tab
from .export import create_export_tab
from .infer import create_infer_tab
from .top import create_top
from .train import create_train_tab
__all__ = [
"create_chat_box",
"create_eval_tab",
"create_export_tab",
"create_infer_tab",
"create_top",
"create_train_tab",
]

View File

@@ -0,0 +1,62 @@
from typing import TYPE_CHECKING, Dict, Tuple
import gradio as gr
from ...data import Role
from ..utils import check_json_schema
if TYPE_CHECKING:
from gradio.blocks import Block
from gradio.components import Component
from ..engine import Engine
def create_chat_box(
engine: "Engine", visible: bool = False
) -> Tuple["Block", "Component", "Component", Dict[str, "Component"]]:
with gr.Box(visible=visible) as chat_box:
chatbot = gr.Chatbot()
messages = gr.State([])
with gr.Row():
with gr.Column(scale=4):
role = gr.Dropdown(choices=[Role.USER.value, Role.OBSERVATION.value], value=Role.USER.value)
system = gr.Textbox(show_label=False)
tools = gr.Textbox(show_label=False, lines=2)
query = gr.Textbox(show_label=False, lines=8)
submit_btn = gr.Button(variant="primary")
with gr.Column(scale=1):
max_new_tokens = gr.Slider(8, 4096, value=512, step=1)
top_p = gr.Slider(0.01, 1.0, value=0.7, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01)
clear_btn = gr.Button()
tools.input(check_json_schema, [tools, engine.manager.get_elem_by_name("top.lang")])
submit_btn.click(
engine.chatter.predict,
[chatbot, role, query, messages, system, tools, max_new_tokens, top_p, temperature],
[chatbot, messages],
show_progress=True,
).then(lambda: gr.update(value=""), outputs=[query])
clear_btn.click(lambda: ([], []), outputs=[chatbot, messages], show_progress=True)
return (
chat_box,
chatbot,
messages,
dict(
role=role,
system=system,
tools=tools,
query=query,
submit_btn=submit_btn,
max_new_tokens=max_new_tokens,
top_p=top_p,
temperature=temperature,
clear_btn=clear_btn,
),
)

View File

@@ -0,0 +1,93 @@
import json
import os
from typing import TYPE_CHECKING, Any, Dict, Tuple
import gradio as gr
from ...extras.constants import DATA_CONFIG
if TYPE_CHECKING:
from gradio.components import Component
PAGE_SIZE = 2
def prev_page(page_index: int) -> int:
return page_index - 1 if page_index > 0 else page_index
def next_page(page_index: int, total_num: int) -> int:
return page_index + 1 if (page_index + 1) * PAGE_SIZE < total_num else page_index
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
try:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
except Exception:
return gr.update(interactive=False)
if (
len(dataset) > 0
and "file_name" in dataset_info[dataset[0]]
and os.path.isfile(os.path.join(dataset_dir, dataset_info[dataset[0]]["file_name"]))
):
return gr.update(interactive=True)
else:
return gr.update(interactive=False)
def get_preview(dataset_dir: str, dataset: list, page_index: int) -> Tuple[int, list, Dict[str, Any]]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
data_file: str = dataset_info[dataset[0]]["file_name"]
with open(os.path.join(dataset_dir, data_file), "r", encoding="utf-8") as f:
if data_file.endswith(".json"):
data = json.load(f)
elif data_file.endswith(".jsonl"):
data = [json.loads(line) for line in f]
else:
data = [line for line in f] # noqa: C416
return len(data), data[PAGE_SIZE * page_index : PAGE_SIZE * (page_index + 1)], gr.update(visible=True)
def create_preview_box(dataset_dir: "gr.Textbox", dataset: "gr.Dropdown") -> Dict[str, "Component"]:
data_preview_btn = gr.Button(interactive=False, scale=1)
with gr.Column(visible=False, elem_classes="modal-box") as preview_box:
with gr.Row():
preview_count = gr.Number(value=0, interactive=False, precision=0)
page_index = gr.Number(value=0, interactive=False, precision=0)
with gr.Row():
prev_btn = gr.Button()
next_btn = gr.Button()
close_btn = gr.Button()
with gr.Row():
preview_samples = gr.JSON(interactive=False)
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn], queue=False).then(
lambda: 0, outputs=[page_index], queue=False
)
data_preview_btn.click(
get_preview, [dataset_dir, dataset, page_index], [preview_count, preview_samples, preview_box], queue=False
)
prev_btn.click(prev_page, [page_index], [page_index], queue=False).then(
get_preview, [dataset_dir, dataset, page_index], [preview_count, preview_samples, preview_box], queue=False
)
next_btn.click(next_page, [page_index, preview_count], [page_index], queue=False).then(
get_preview, [dataset_dir, dataset, page_index], [preview_count, preview_samples, preview_box], queue=False
)
close_btn.click(lambda: gr.update(visible=False), outputs=[preview_box], queue=False)
return dict(
data_preview_btn=data_preview_btn,
preview_count=preview_count,
page_index=page_index,
prev_btn=prev_btn,
next_btn=next_btn,
close_btn=close_btn,
preview_samples=preview_samples,
)

View File

@@ -0,0 +1,76 @@
from typing import TYPE_CHECKING, Dict
import gradio as gr
from ..common import DEFAULT_DATA_DIR, list_dataset
from .data import create_preview_box
if TYPE_CHECKING:
from gradio.components import Component
from ..engine import Engine
def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
with gr.Row():
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
dataset = gr.Dropdown(multiselect=True, scale=4)
preview_elems = create_preview_box(dataset_dir, dataset)
dataset_dir.change(list_dataset, [dataset_dir], [dataset], queue=False)
input_elems.update({dataset_dir, dataset})
elem_dict.update(dict(dataset_dir=dataset_dir, dataset=dataset, **preview_elems))
with gr.Row():
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
max_samples = gr.Textbox(value="100000")
batch_size = gr.Slider(value=8, minimum=1, maximum=512, step=1)
predict = gr.Checkbox(value=True)
input_elems.update({cutoff_len, max_samples, batch_size, predict})
elem_dict.update(dict(cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict))
with gr.Row():
max_new_tokens = gr.Slider(10, 2048, value=128, step=1)
top_p = gr.Slider(0.01, 1, value=0.7, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01)
output_dir = gr.Textbox()
input_elems.update({max_new_tokens, top_p, temperature, output_dir})
elem_dict.update(dict(max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, output_dir=output_dir))
with gr.Row():
cmd_preview_btn = gr.Button()
start_btn = gr.Button()
stop_btn = gr.Button()
with gr.Row():
resume_btn = gr.Checkbox(visible=False, interactive=False, value=False)
process_bar = gr.Slider(visible=False, interactive=False)
with gr.Box():
output_box = gr.Markdown()
output_elems = [output_box, process_bar]
elem_dict.update(
dict(
cmd_preview_btn=cmd_preview_btn,
start_btn=start_btn,
stop_btn=stop_btn,
resume_btn=resume_btn,
process_bar=process_bar,
output_box=output_box,
)
)
cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems)
start_btn.click(engine.runner.run_eval, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort, queue=False)
resume_btn.change(engine.runner.monitor, outputs=output_elems)
return elem_dict

View File

@@ -0,0 +1,117 @@
from typing import TYPE_CHECKING, Dict, Generator, List
import gradio as gr
from ...train import export_model
from ..common import get_save_dir
from ..locales import ALERTS
if TYPE_CHECKING:
from gradio.components import Component
from ..engine import Engine
GPTQ_BITS = ["8", "4", "3", "2"]
def save_model(
lang: str,
model_name: str,
model_path: str,
adapter_path: List[str],
finetuning_type: str,
template: str,
max_shard_size: int,
export_quantization_bit: int,
export_quantization_dataset: str,
export_legacy_format: bool,
export_dir: str,
export_hub_model_id: str,
) -> Generator[str, None, None]:
error = ""
if not model_name:
error = ALERTS["err_no_model"][lang]
elif not model_path:
error = ALERTS["err_no_path"][lang]
elif not export_dir:
error = ALERTS["err_no_export_dir"][lang]
elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset:
error = ALERTS["err_no_dataset"][lang]
elif export_quantization_bit not in GPTQ_BITS and not adapter_path:
error = ALERTS["err_no_adapter"][lang]
if error:
gr.Warning(error)
yield error
return
if adapter_path:
adapter_name_or_path = ",".join(
[get_save_dir(model_name, finetuning_type, adapter) for adapter in adapter_path]
)
else:
adapter_name_or_path = None
args = dict(
model_name_or_path=model_path,
adapter_name_or_path=adapter_name_or_path,
finetuning_type=finetuning_type,
template=template,
export_dir=export_dir,
export_hub_model_id=export_hub_model_id or None,
export_size=max_shard_size,
export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None,
export_quantization_dataset=export_quantization_dataset,
export_legacy_format=export_legacy_format,
)
yield ALERTS["info_exporting"][lang]
export_model(args)
yield ALERTS["info_exported"][lang]
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Row():
max_shard_size = gr.Slider(value=1, minimum=1, maximum=100)
export_quantization_bit = gr.Dropdown(choices=["none", "8", "4", "3", "2"], value="none")
export_quantization_dataset = gr.Textbox(value="data/c4_demo.json")
export_legacy_format = gr.Checkbox()
with gr.Row():
export_dir = gr.Textbox()
export_hub_model_id = gr.Textbox()
export_btn = gr.Button()
info_box = gr.Textbox(show_label=False, interactive=False)
export_btn.click(
save_model,
[
engine.manager.get_elem_by_name("top.lang"),
engine.manager.get_elem_by_name("top.model_name"),
engine.manager.get_elem_by_name("top.model_path"),
engine.manager.get_elem_by_name("top.adapter_path"),
engine.manager.get_elem_by_name("top.finetuning_type"),
engine.manager.get_elem_by_name("top.template"),
max_shard_size,
export_quantization_bit,
export_quantization_dataset,
export_legacy_format,
export_dir,
export_hub_model_id,
],
[info_box],
)
return dict(
max_shard_size=max_shard_size,
export_quantization_bit=export_quantization_bit,
export_quantization_dataset=export_quantization_dataset,
export_legacy_format=export_legacy_format,
export_dir=export_dir,
export_hub_model_id=export_hub_model_id,
export_btn=export_btn,
info_box=info_box,
)

View File

@@ -0,0 +1,39 @@
from typing import TYPE_CHECKING, Dict
import gradio as gr
from .chatbot import create_chat_box
if TYPE_CHECKING:
from gradio.components import Component
from ..engine import Engine
def create_infer_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
infer_backend = gr.Dropdown(choices=["huggingface", "vllm"], value="huggingface")
with gr.Row():
load_btn = gr.Button()
unload_btn = gr.Button()
info_box = gr.Textbox(show_label=False, interactive=False)
input_elems.update({infer_backend})
elem_dict.update(dict(infer_backend=infer_backend, load_btn=load_btn, unload_btn=unload_btn, info_box=info_box))
chat_box, chatbot, history, chat_elems = create_chat_box(engine, visible=False)
elem_dict.update(dict(chat_box=chat_box, **chat_elems))
load_btn.click(engine.chatter.load_model, input_elems, [info_box]).then(
lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box]
)
unload_btn.click(engine.chatter.unload_model, input_elems, [info_box]).then(
lambda: ([], []), outputs=[chatbot, history]
).then(lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box])
return elem_dict

View File

@@ -0,0 +1,59 @@
from typing import TYPE_CHECKING, Dict, Tuple
import gradio as gr
from ...data import templates
from ...extras.constants import METHODS, SUPPORTED_MODELS
from ..common import get_model_path, get_template, list_adapters, save_config
from ..utils import can_quantize
if TYPE_CHECKING:
from gradio.components import Component
def create_top() -> Tuple["gr.Dropdown", Dict[str, "Component"]]:
available_models = list(SUPPORTED_MODELS.keys()) + ["Custom"]
with gr.Row():
lang = gr.Dropdown(choices=["en", "ru", "zh"], scale=1)
model_name = gr.Dropdown(choices=available_models, scale=3)
model_path = gr.Textbox(scale=3)
with gr.Row():
finetuning_type = gr.Dropdown(choices=METHODS, value="lora", scale=1)
adapter_path = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=5)
refresh_btn = gr.Button(scale=1)
with gr.Accordion(label="Advanced config", open=False) as advanced_tab:
with gr.Row():
quantization_bit = gr.Dropdown(choices=["none", "8", "4"], value="none")
template = gr.Dropdown(choices=list(templates.keys()), value="default")
rope_scaling = gr.Radio(choices=["none", "linear", "dynamic"], value="none")
booster = gr.Radio(choices=["none", "flashattn", "unsloth"], value="none")
model_name.change(list_adapters, [model_name, finetuning_type], [adapter_path], queue=False).then(
get_model_path, [model_name], [model_path], queue=False
).then(get_template, [model_name], [template], queue=False) # do not save config since the below line will save
model_path.change(save_config, inputs=[lang, model_name, model_path], queue=False)
finetuning_type.change(list_adapters, [model_name, finetuning_type], [adapter_path], queue=False).then(
can_quantize, [finetuning_type], [quantization_bit], queue=False
)
refresh_btn.click(list_adapters, [model_name, finetuning_type], [adapter_path], queue=False)
return lang, dict(
lang=lang,
model_name=model_name,
model_path=model_path,
finetuning_type=finetuning_type,
adapter_path=adapter_path,
refresh_btn=refresh_btn,
advanced_tab=advanced_tab,
quantization_bit=quantization_bit,
template=template,
rope_scaling=rope_scaling,
booster=booster,
)

View File

@@ -0,0 +1,246 @@
from typing import TYPE_CHECKING, Dict
import gradio as gr
from transformers.trainer_utils import SchedulerType
from ...extras.constants import TRAINING_STAGES
from ..common import DEFAULT_DATA_DIR, autoset_packing, list_adapters, list_dataset
from ..components.data import create_preview_box
from ..utils import gen_plot
if TYPE_CHECKING:
from gradio.components import Component
from ..engine import Engine
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
with gr.Row():
training_stage = gr.Dropdown(
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2
)
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
dataset = gr.Dropdown(multiselect=True, scale=4)
preview_elems = create_preview_box(dataset_dir, dataset)
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
input_elems.update({training_stage, dataset_dir, dataset})
elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems))
with gr.Row():
learning_rate = gr.Textbox(value="5e-5")
num_train_epochs = gr.Textbox(value="3.0")
max_grad_norm = gr.Textbox(value="1.0")
max_samples = gr.Textbox(value="100000")
compute_type = gr.Dropdown(choices=["fp16", "bf16", "fp32", "pure_bf16"], value="fp16")
input_elems.update({learning_rate, num_train_epochs, max_grad_norm, max_samples, compute_type})
elem_dict.update(
dict(
learning_rate=learning_rate,
num_train_epochs=num_train_epochs,
max_grad_norm=max_grad_norm,
max_samples=max_samples,
compute_type=compute_type,
)
)
with gr.Row():
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=16384, step=1)
batch_size = gr.Slider(value=2, minimum=1, maximum=1024, step=1)
gradient_accumulation_steps = gr.Slider(value=8, minimum=1, maximum=1024, step=1)
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine")
input_elems.update({cutoff_len, batch_size, gradient_accumulation_steps, val_size, lr_scheduler_type})
elem_dict.update(
dict(
cutoff_len=cutoff_len,
batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
val_size=val_size,
lr_scheduler_type=lr_scheduler_type,
)
)
with gr.Accordion(label="Extra config", open=False) as extra_tab:
with gr.Row():
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
neftune_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1)
optim = gr.Textbox(value="adamw_torch")
with gr.Row():
resize_vocab = gr.Checkbox()
packing = gr.Checkbox()
upcast_layernorm = gr.Checkbox()
use_llama_pro = gr.Checkbox()
shift_attn = gr.Checkbox()
input_elems.update(
{
logging_steps,
save_steps,
warmup_steps,
neftune_alpha,
optim,
resize_vocab,
packing,
upcast_layernorm,
use_llama_pro,
shift_attn,
}
)
elem_dict.update(
dict(
extra_tab=extra_tab,
logging_steps=logging_steps,
save_steps=save_steps,
warmup_steps=warmup_steps,
neftune_alpha=neftune_alpha,
optim=optim,
resize_vocab=resize_vocab,
packing=packing,
upcast_layernorm=upcast_layernorm,
use_llama_pro=use_llama_pro,
shift_attn=shift_attn,
)
)
with gr.Accordion(label="Freeze config", open=False) as freeze_tab:
with gr.Row():
num_layer_trainable = gr.Slider(value=3, minimum=1, maximum=128, step=1, scale=2)
name_module_trainable = gr.Textbox(value="all", scale=3)
input_elems.update({num_layer_trainable, name_module_trainable})
elem_dict.update(
dict(
freeze_tab=freeze_tab, num_layer_trainable=num_layer_trainable, name_module_trainable=name_module_trainable
)
)
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
with gr.Row():
lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1)
lora_alpha = gr.Slider(value=16, minimum=1, maximum=2048, step=1, scale=1)
lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
lora_target = gr.Textbox(scale=2)
with gr.Row():
use_rslora = gr.Checkbox(scale=1)
use_dora = gr.Checkbox(scale=1)
create_new_adapter = gr.Checkbox(scale=1)
additional_target = gr.Textbox(scale=2)
input_elems.update(
{lora_rank, lora_alpha, lora_dropout, lora_target, use_rslora, use_dora, create_new_adapter, additional_target}
)
elem_dict.update(
dict(
lora_tab=lora_tab,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
lora_target=lora_target,
use_rslora=use_rslora,
use_dora=use_dora,
create_new_adapter=create_new_adapter,
additional_target=additional_target,
)
)
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
with gr.Row():
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
dpo_ftx = gr.Slider(value=0, minimum=0, maximum=10, step=0.01, scale=1)
reward_model = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=2)
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False).then(
list_adapters,
[engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")],
[reward_model],
queue=False,
).then(autoset_packing, [training_stage], [packing], queue=False)
input_elems.update({dpo_beta, dpo_ftx, reward_model})
elem_dict.update(dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, dpo_ftx=dpo_ftx, reward_model=reward_model))
with gr.Accordion(label="GaLore config", open=False) as galore_tab:
with gr.Row():
use_galore = gr.Checkbox(scale=1)
galore_rank = gr.Slider(value=16, minimum=1, maximum=1024, step=1, scale=2)
galore_update_interval = gr.Slider(value=200, minimum=1, maximum=1024, step=1, scale=2)
galore_scale = gr.Slider(value=0.25, minimum=0, maximum=1, step=0.01, scale=2)
galore_target = gr.Textbox(value="mlp,attn", scale=3)
input_elems.update({use_galore, galore_rank, galore_update_interval, galore_scale, galore_target})
elem_dict.update(
dict(
galore_tab=galore_tab,
use_galore=use_galore,
galore_rank=galore_rank,
galore_update_interval=galore_update_interval,
galore_scale=galore_scale,
galore_target=galore_target,
)
)
with gr.Row():
cmd_preview_btn = gr.Button()
start_btn = gr.Button()
stop_btn = gr.Button()
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
output_dir = gr.Textbox()
with gr.Row():
resume_btn = gr.Checkbox(visible=False, interactive=False)
process_bar = gr.Slider(visible=False, interactive=False)
with gr.Box():
output_box = gr.Markdown()
with gr.Column(scale=1):
loss_viewer = gr.Plot()
input_elems.add(output_dir)
output_elems = [output_box, process_bar]
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems)
start_btn.click(engine.runner.run_train, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort, queue=False)
resume_btn.change(engine.runner.monitor, outputs=output_elems)
elem_dict.update(
dict(
cmd_preview_btn=cmd_preview_btn,
start_btn=start_btn,
stop_btn=stop_btn,
output_dir=output_dir,
resume_btn=resume_btn,
process_bar=process_bar,
output_box=output_box,
loss_viewer=loss_viewer,
)
)
output_box.change(
gen_plot,
[
engine.manager.get_elem_by_name("top.model_name"),
engine.manager.get_elem_by_name("top.finetuning_type"),
output_dir,
],
loss_viewer,
queue=False,
)
return elem_dict

View File

@@ -0,0 +1,27 @@
CSS = r"""
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
.modal-box {
position: fixed !important;
top: 50%;
left: 50%;
transform: translate(-50%, -50%); /* center horizontally */
max-width: 1000px;
max-height: 750px;
overflow-y: auto;
background-color: var(--input-background-fill);
flex-wrap: nowrap !important;
border: 2px solid black !important;
z-index: 1000;
padding: 10px;
}
.dark .modal-box {
border: 2px solid white !important;
}
"""

View File

@@ -0,0 +1,62 @@
from typing import Any, Dict, Generator
import gradio as gr
from gradio.components import Component # cannot use TYPE_CHECKING here
from .chatter import WebChatModel
from .common import get_model_path, list_dataset, load_config
from .locales import LOCALES
from .manager import Manager
from .runner import Runner
from .utils import get_time
class Engine:
def __init__(self, demo_mode: bool = False, pure_chat: bool = False) -> None:
self.demo_mode = demo_mode
self.pure_chat = pure_chat
self.manager = Manager()
self.runner = Runner(self.manager, demo_mode)
self.chatter = WebChatModel(self.manager, demo_mode, lazy_init=(not pure_chat))
def _form_dict(self, resume_dict: Dict[str, Dict[str, Any]]):
return {self.manager.get_elem_by_name(k): gr.update(**v) for k, v in resume_dict.items()}
def resume(self) -> Generator[Dict[Component, Dict[str, Any]], None, None]:
user_config = load_config() if not self.demo_mode else {}
lang = user_config.get("lang", None) or "en"
init_dict = {"top.lang": {"value": lang}, "infer.chat_box": {"visible": self.chatter.loaded}}
if not self.pure_chat:
init_dict["train.dataset"] = {"choices": list_dataset()["choices"]}
init_dict["eval.dataset"] = {"choices": list_dataset()["choices"]}
if user_config.get("last_model", None):
init_dict["top.model_name"] = {"value": user_config["last_model"]}
init_dict["top.model_path"] = {"value": get_model_path(user_config["last_model"])}
yield self._form_dict(init_dict)
if not self.pure_chat:
if self.runner.alive and not self.demo_mode:
yield {elem: gr.update(value=value) for elem, value in self.runner.running_data.items()}
if self.runner.do_train:
yield self._form_dict({"train.resume_btn": {"value": True}})
else:
yield self._form_dict({"eval.resume_btn": {"value": True}})
else:
yield self._form_dict(
{
"train.output_dir": {"value": "train_" + get_time()},
"eval.output_dir": {"value": "eval_" + get_time()},
}
)
def change_lang(self, lang: str) -> Dict[Component, Dict[str, Any]]:
return {
component: gr.update(**LOCALES[name][lang])
for elems in self.manager.all_elems.values()
for name, component in elems.items()
if name in LOCALES
}

Some files were not shown because too many files have changed in this diff Show More