mirror of
https://github.com/AIDotNet/AntSK.git
synced 2026-02-18 14:30:18 +08:00
Compare commits
238 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6beb0b52c7 | ||
|
|
0ea167a204 | ||
|
|
6e6afa2a7c | ||
|
|
7a2a5d86bb | ||
|
|
a1a36c3494 | ||
|
|
4f350081dd | ||
|
|
b3ea0c4e1a | ||
|
|
e72a6acd03 | ||
|
|
9bb8ab89fe | ||
|
|
e78da66d1a | ||
|
|
9ee21fd5e5 | ||
|
|
a22c04c9b2 | ||
|
|
3bb5bfaca7 | ||
|
|
c4bf5ee7e5 | ||
|
|
5e1e688f84 | ||
|
|
80d9bf68f3 | ||
|
|
65f2e3e363 | ||
|
|
68d27ff2bc | ||
|
|
034da30811 | ||
|
|
3db0cdcd19 | ||
|
|
42181a6f1d | ||
|
|
ec8cbf2550 | ||
|
|
9a1bd079da | ||
|
|
4213c4379c | ||
|
|
05cda17e2e | ||
|
|
cda6e54f0b | ||
|
|
51d8ba6408 | ||
|
|
b571c7d22d | ||
|
|
a0c91f565e | ||
|
|
280c750165 | ||
|
|
fec9337fda | ||
|
|
b84f252f2f | ||
|
|
5c998ccce2 | ||
|
|
0e3cfd2cfb | ||
|
|
4040831a23 | ||
|
|
a3a2308659 | ||
|
|
6d43c71d13 | ||
|
|
8315b6f37f | ||
|
|
7bc708e6ae | ||
|
|
e6f2c5c2fe | ||
|
|
5cab781362 | ||
|
|
02d7994bae | ||
|
|
b740957157 | ||
|
|
2480ec1272 | ||
|
|
35c98a0d14 | ||
|
|
0964a5ad5b | ||
|
|
a95131efe9 | ||
|
|
7783cdf3c4 | ||
|
|
7a65f33cb6 | ||
|
|
6efd01db3f | ||
|
|
1e2322b573 | ||
|
|
2cb2241a66 | ||
|
|
64efdd7881 | ||
|
|
be28e32803 | ||
|
|
468422baee | ||
|
|
7b1c6c8c64 | ||
|
|
7ff0ea0bfe | ||
|
|
6bed4356f0 | ||
|
|
73b65f7305 | ||
|
|
0ea52eced9 | ||
|
|
498e9ba9f6 | ||
|
|
125695665b | ||
|
|
0e08b3ae85 | ||
|
|
7cb8f99e7e | ||
|
|
d15cb527d0 | ||
|
|
9cb36174fd | ||
|
|
6265f94ef2 | ||
|
|
09d90b654c | ||
|
|
64e2bca2e6 | ||
|
|
328ece6d73 | ||
|
|
fabb8c2044 | ||
|
|
6ca75df880 | ||
|
|
3d4dfaced1 | ||
|
|
d532bf3bb6 | ||
|
|
e1fd288875 | ||
|
|
91eae9cfa8 | ||
|
|
b0059942d3 | ||
|
|
a716982878 | ||
|
|
3d4e48f9f5 | ||
|
|
1f212d3156 | ||
|
|
7d91ef6ba1 | ||
|
|
2a450b00de | ||
|
|
3a97068248 | ||
|
|
1d9d95899a | ||
|
|
7ae8e52b57 | ||
|
|
f5c195a1d0 | ||
|
|
78a6b662d3 | ||
|
|
5f814eb76c | ||
|
|
d9e5ebb464 | ||
|
|
bce0e9183c | ||
|
|
c40a7bcf22 | ||
|
|
97a7d447ab | ||
|
|
f803b9538b | ||
|
|
1ac34c1702 | ||
|
|
e07b480da1 | ||
|
|
9036af57e3 | ||
|
|
93288f9b5c | ||
|
|
f40dd8b013 | ||
|
|
c6b83d0695 | ||
|
|
592c850198 | ||
|
|
4a3930ac7b | ||
|
|
c05ba0af3e | ||
|
|
630ee51df6 | ||
|
|
d0e75e26c3 | ||
|
|
62c36c3072 | ||
|
|
baef309064 | ||
|
|
d717cbad9c | ||
|
|
5ef0624605 | ||
|
|
af2930a371 | ||
|
|
98f0f9fe84 | ||
|
|
28a23271e9 | ||
|
|
f1ba0bdf10 | ||
|
|
0d5513f374 | ||
|
|
4812cc308c | ||
|
|
584f7faded | ||
|
|
08dcef2d8b | ||
|
|
68218733a2 | ||
|
|
eb64cbf3d4 | ||
|
|
f0e8a55522 | ||
|
|
5ec5a0bde4 | ||
|
|
1cc56dd553 | ||
|
|
64e949a88b | ||
|
|
a2390a7c97 | ||
|
|
559661bb6c | ||
|
|
79326de263 | ||
|
|
3815891b28 | ||
|
|
42d474382a | ||
|
|
fe691f2d44 | ||
|
|
3ee41a8ab1 | ||
|
|
7ca41dff8a | ||
|
|
ba2e86993e | ||
|
|
13878046a2 | ||
|
|
49ff8bf54f | ||
|
|
e9cc5a3993 | ||
|
|
b213964b63 | ||
|
|
bfbed44270 | ||
|
|
9b07d88392 | ||
|
|
3f8ed109f9 | ||
|
|
3f969627a4 | ||
|
|
d92970819a | ||
|
|
23e756fa9b | ||
|
|
5f58126fbf | ||
|
|
dcfd0ffb8f | ||
|
|
17221d056c | ||
|
|
4a9dcfada4 | ||
|
|
bb6c2bb020 | ||
|
|
a8760a34de | ||
|
|
1e432a5782 | ||
|
|
cb861ef2bb | ||
|
|
7cee8fd87a | ||
|
|
8ce0e5d348 | ||
|
|
90bce7c89f | ||
|
|
b840d0bcce | ||
|
|
bfa6d28289 | ||
|
|
f6e6ca9747 | ||
|
|
75f8d39648 | ||
|
|
9a939eba5a | ||
|
|
4e93efe821 | ||
|
|
8bdbee80a0 | ||
|
|
6bdf5dcc03 | ||
|
|
0bf0a9d78a | ||
|
|
38e9fea601 | ||
|
|
d2366b3b46 | ||
|
|
3aff93083a | ||
|
|
eb998199db | ||
|
|
1dd794af1b | ||
|
|
08c9923e7e | ||
|
|
06b109ca87 | ||
|
|
9b039335c7 | ||
|
|
041378e5fd | ||
|
|
6dc5ae10e3 | ||
|
|
5807f4c283 | ||
|
|
8ef4445908 | ||
|
|
8a0609e970 | ||
|
|
9f33b5009b | ||
|
|
50e66db8a1 | ||
|
|
c3e83b569a | ||
|
|
85d1c5ea7e | ||
|
|
ec1d126a02 | ||
|
|
e857695e70 | ||
|
|
fa9b2051fe | ||
|
|
d450efcffe | ||
|
|
2a6c84c200 | ||
|
|
138a952ace | ||
|
|
eb6528ecd2 | ||
|
|
2c30bbfa09 | ||
|
|
c5a78c2135 | ||
|
|
f03362ee41 | ||
|
|
fad3167d97 | ||
|
|
ad949681dd | ||
|
|
27999d76b0 | ||
|
|
83278352d6 | ||
|
|
fcc56f5fef | ||
|
|
4ebe2ecc32 | ||
|
|
e684cba527 | ||
|
|
888dc19ee0 | ||
|
|
731aea702f | ||
|
|
09e22bc76a | ||
|
|
74406d88a0 | ||
|
|
e5f9d97560 | ||
|
|
59e768aaea | ||
|
|
6a7cb24a5b | ||
|
|
1db40d534c | ||
|
|
11d6e30f7e | ||
|
|
9d5214aaae | ||
|
|
010b906271 | ||
|
|
16bf944edf | ||
|
|
5bae5a099a | ||
|
|
f771ea9521 | ||
|
|
994efbf37c | ||
|
|
938cd86c88 | ||
|
|
1339cbadbc | ||
|
|
bd0ad570ad | ||
|
|
234e649a7e | ||
|
|
c431dbc842 | ||
|
|
76283060d9 | ||
|
|
75ba506db4 | ||
|
|
0c8ad5fe8d | ||
|
|
68ce0db011 | ||
|
|
c36de1a1e9 | ||
|
|
44ef759abd | ||
|
|
0c3d9844be | ||
|
|
854c62a4ca | ||
|
|
5ed4fd5299 | ||
|
|
af5ec43571 | ||
|
|
d7b56d1590 | ||
|
|
b925f8890b | ||
|
|
5d80ee994a | ||
|
|
f73bd2dfda | ||
|
|
f340ee1088 | ||
|
|
edad2644aa | ||
|
|
8a56a0393a | ||
|
|
bd5ca06d8f | ||
|
|
e0985ecec3 | ||
|
|
e56b74d4af | ||
|
|
849b18f677 | ||
|
|
344128e49d | ||
|
|
56fc9dd517 |
4
.gitignore
vendored
4
.gitignore
vendored
@@ -324,10 +324,6 @@ ASALocalRun/
|
||||
# MSBuild Binary and Structured Log
|
||||
*.binlog
|
||||
|
||||
# NVidia Nsight GPU debugger configuration file
|
||||
*.nvuser
|
||||
*.dll
|
||||
*.pdb
|
||||
# MFractors (Xamarin productivity tool) working folder
|
||||
.mfractor/
|
||||
**/bin/
|
||||
|
||||
@@ -22,4 +22,5 @@ WORKDIR /app
|
||||
COPY --from=build /app/publish .
|
||||
RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
|
||||
RUN echo 'Asia/Shanghai' >/etc/timezone
|
||||
RUN apt update && apt install -y libpugixml-dev libtbb-dev
|
||||
ENTRYPOINT ["dotnet", "AntSK.dll"]
|
||||
|
||||
@@ -25,4 +25,5 @@ ENV PATH="/app:/opt/conda/bin:/usr/local/bin:${PATH}"
|
||||
RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
|
||||
RUN echo 'Asia/Shanghai' >/etc/timezone
|
||||
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
ENTRYPOINT ["dotnet", "AntSK.dll"]
|
||||
RUN apt update && apt install -y libpugixml-dev libtbb-dev
|
||||
ENTRYPOINT ["dotnet", "AntSK.dll"]
|
||||
|
||||
2
LICENSE
2
LICENSE
@@ -186,7 +186,7 @@
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
Copyright [2024] [许泽宇]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
||||
214
README.en.md
214
README.en.md
@@ -1,214 +0,0 @@
|
||||
[简体中文](./README.md) | English
|
||||
# AntSK
|
||||
## AI Knowledge Base/Intelligent Agent built on .Net8+AntBlazor+SemanticKernel
|
||||
|
||||
## ⭐Core Features
|
||||
|
||||
- **Semantic Kernel**: Utilizes advanced natural language processing technology to accurately understand, process, and respond to complex semantic queries, providing users with precise information retrieval and recommendation services.
|
||||
|
||||
- **Kernel Memory**: Capable of continuous learning and storing knowledge points, AntSK has long-term memory function, accumulates experience, and provides a more personalized interaction experience.
|
||||
|
||||
- **Knowledge Base**: Import knowledge base through documents (Word, PDF, Excel, Txt, Markdown, Json, PPT) and perform knowledge base Q&A.
|
||||
|
||||
- **GPT Generation**: This platform supports creating personalized GPT models, enabling users to build their own GPT models.
|
||||
|
||||
- **API Interface Publishing**: Exposes internal functions in the form of APIs, enabling developers to integrate AntSK into other applications and enhance application intelligence.
|
||||
|
||||
- **API Plugin System**: Open API plugin system that allows third-party developers or service providers to easily integrate their services into AntSK, continuously enhancing application functionality.
|
||||
|
||||
- **.Net Plugin System**: Open dll plugin system that allows third-party developers or service providers to easily integrate their business functions by generating dll in standard format code, continuously enhancing application functionality.
|
||||
|
||||
- **Online Search**: AntSK, real-time access to the latest information, ensuring users receive the most timely and relevant data.
|
||||
|
||||
- **Model Management**: Adapts and manages integration of different models from different manufacturers, including gguf types supported by **llama.cpp** and models offline running supported by **llamafactory**.
|
||||
|
||||
- **Domestic Innovation**: AntSK supports domestic models and databases and can run under domestic innovation conditions.
|
||||
|
||||
- **Model Fine-Tuning**: Planned based on llamafactory for model fine-tuning.
|
||||
|
||||
## ⛪Application Scenarios
|
||||
|
||||
AntSK is suitable for various business scenarios, such as:
|
||||
- Enterprise knowledge management system
|
||||
- Automatic customer service and chatbots
|
||||
- Enterprise search engine
|
||||
- Personalized recommendation system
|
||||
- Intelligent writing assistance
|
||||
- Education and online learning platforms
|
||||
- Other interesting AI Apps
|
||||
|
||||
## ✏️Function Examples
|
||||
### Online Demo
|
||||
```
|
||||
https://antsk.ai-dotnet.com/
|
||||
```
|
||||
```
|
||||
Default account: test
|
||||
|
||||
Default password: test
|
||||
|
||||
Due to the low configuration of the cloud server, the local model cannot be run, so the system settings permissions have been closed. You can simply view the interface. If you want to use the local model, please download and use it on your own.
|
||||
```
|
||||
|
||||
### Other Function Examples
|
||||
[Video Demonstration](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
|
||||
|
||||
## ❓How to get started?
|
||||
|
||||
Here I am using Postgres as the data and vector storage because Semantic Kernel and Kernel Memory support it, but you can also use other options.
|
||||
|
||||
The model by default supports the local model of openai, azure openai, and llama. If you need to use other models, you can integrate them using one-api.
|
||||
|
||||
The Login configuration in the configuration file is the default login account and password.
|
||||
|
||||
The following configuration file needs to be configured
|
||||
|
||||
## 1️⃣Using docker-compose
|
||||
|
||||
Provided the pg version **appsettings.json** and simplified version (Sqlite+disk) **docker-compose.simple.yml**
|
||||
|
||||
Download **docker-compose.yml** from the project root directory and place the configuration file **appsettings.json** in the same directory.
|
||||
|
||||
The pg image has already been prepared. You can modify the default username and password in docker-compose.yml, and then the database connection in your **appsettings.json** needs to be consistent.
|
||||
|
||||
Then you can execute the following command in the directory to start AntSK
|
||||
```
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
## 2️⃣How to mount local models and model download directory in docker
|
||||
```
|
||||
# Non-host version, do not use local proxy
|
||||
version: '3.8'
|
||||
services:
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/AIDotNet/antsk:v0.1.5ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
- antsk
|
||||
depends_on:
|
||||
- antskpg
|
||||
restart: always
|
||||
environment:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # Local configuration file needs to be placed in the same directory
|
||||
- D://model:/app/model
|
||||
networks:
|
||||
antsk:
|
||||
```
|
||||
Taking this as an example, it means mounting the local D://model folder of Windows into the container /app/model. If so, the model address in your appsettings.json should be configured as
|
||||
```
|
||||
model/xxx.gguf
|
||||
```
|
||||
|
||||
## 3️⃣Some meanings of configuration file
|
||||
```
|
||||
{
|
||||
"DBConnection": {
|
||||
"DbType": "Sqlite",
|
||||
"ConnectionStrings": "Data Source=AntSK.db;"
|
||||
},
|
||||
"KernelMemory": {
|
||||
"VectorDb": "Disk",
|
||||
"ConnectionString": "Host=;Port=;Database=antsk;Username=;Password=",
|
||||
"TableNamePrefix": "km-"
|
||||
},
|
||||
"LLamaSharp": {
|
||||
"RunType": "GPU",
|
||||
"FileDirectory": "D:\\Code\\AI\\AntBlazor\\model\\"
|
||||
},
|
||||
"Login": {
|
||||
"User": "admin",
|
||||
"Password": "xuzeyu"
|
||||
},
|
||||
"BackgroundTaskBroker": {
|
||||
"ImportKMSTask": {
|
||||
"WorkerCount": 1
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
```
|
||||
// Supports various databases, you can check SqlSugar, MySql, SqlServer, Sqlite, Oracle, PostgreSQL, Dm, Kdbndp, Oscar, MySqlConnector, Access, OpenGauss, QuestDB, HG, ClickHouse, GBase, Odbc, OceanBaseForOracle, TDengine, GaussDB, OceanBase, Tidb, Vastbase, PolarDB, Custom
|
||||
DBConnection.DbType
|
||||
|
||||
// Connection string, need to use the corresponding string according to the different DB types
|
||||
DBConnection.ConnectionStrings
|
||||
|
||||
//The type of vector storage, supporting Postgres, Disk, Memory, Qdrant, Redis, AzureAISearch
|
||||
//Postgres and Redis require ConnectionString configuration
|
||||
//The ConnectionString of Qdrant and AzureAISearch uses Endpoint | APIKey
|
||||
KernelMemory.VectorDb
|
||||
|
||||
//Local model execution options: GPU and CPU. When using the online API, any option can be used.
|
||||
LLamaSharp.RunType
|
||||
|
||||
//Local model path, used for quick selection of models under llama, as well as saving downloaded models.
|
||||
LLamaSharp.FileDirectory
|
||||
|
||||
//Default admin account password
|
||||
Login
|
||||
|
||||
//Import asynchronous processing thread count. A higher count can be used for online API, but for local models, 1 is recommended to avoid memory overflow issues.
|
||||
BackgroundTaskBroker.ImportKMSTask.WorkerCount
|
||||
|
||||
```
|
||||
|
||||
## ⚠️Fixing Style Issues:
|
||||
Run the following in AntSK/src/AntSK:
|
||||
```
|
||||
dotnet clean
|
||||
dotnet build
|
||||
dotnet publish "AntSK.csproj"
|
||||
```
|
||||
Then navigate to AntSK/src/AntSK/bin/Release/net8.0/publish and run:
|
||||
```
|
||||
dotnet AntSK.dll
|
||||
```
|
||||
The styles should now be applied after starting.
|
||||
|
||||
I'm using CodeFirst mode for the database, so as long as the database connection is properly configured, the table structure will be created automatically.
|
||||
|
||||
## ✔️Using llamafactory
|
||||
```
|
||||
1. First, ensure that Python and pip are installed in your environment. This step is not necessary if using an image, such as version v0.2.3.2, which already includes the complete Python environment.
|
||||
2. Go to the model add page and select llamafactory.
|
||||
3. Click "Initialize" to check whether the 'pip install' environment setup is complete.
|
||||
4. Choose a model that you like.
|
||||
5. Click "Start" to begin downloading the model from the tower. This may involve a somewhat lengthy wait.
|
||||
6. After the model has finished downloading, enter http://localhost:8000/ in the request address. The default port is 8000.
|
||||
7. Click "Save" and start chatting.
|
||||
8. Many people ask about the difference between LLamaSharp and llamafactory. In fact, LLamaSharp is a .NET implementation of llama.cpp, but only supports local gguf models, while llamafactory supports a wider variety of models and uses Python implementation. The main difference lies here. Additionally, llamafactory has the ability to fine-tune models, which is an area we will focus on integrating in the future.
|
||||
```
|
||||
|
||||
## 🤝 Contributing
|
||||
|
||||
[](https://github.com/AIDotNet/AntSK/pulls)
|
||||
|
||||
If you would like to contribute, feel free to create a [Pull Request](https://github.com/AIDotNet/AntSK/pulls), or give us [Bug Report](https://github.com/AIDotNet/AntSK/issues/new).
|
||||
|
||||
|
||||
## 💕 Contributors
|
||||
|
||||
This project exists thanks to all the people who contribute.
|
||||
|
||||
<a href="https://github.com/AIDotNet/AntSK/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=AIDotNet/AntSK&max=1000&columns=15&anon=1" />
|
||||
</a>
|
||||
|
||||
## 🚨 Code of Conduct
|
||||
|
||||
This project has adopted the code of conduct defined by the Contributor Covenant to clarify expected behavior in our community.
|
||||
For more information see the [.NET Foundation Code of Conduct](https://dotnetfoundation.org/code-of-conduct).
|
||||
|
||||
To learn more or get started with **AntSK**, follow my official WeChat account and join the discussion group.
|
||||
|
||||
## ☎️Contact Me
|
||||
If you have any questions or suggestions, please contact me through my official WeChat account. We also have a discussion group where you can send a message to join, and then I will add you to the group.
|
||||

|
||||
|
||||
---
|
||||
|
||||
We appreciate your interest in **AntSK** and look forward to collaborating with you to create an intelligent future!
|
||||
217
README.md
217
README.md
@@ -1,92 +1,90 @@
|
||||
中文|[English](https://github.com/AIDotNet/AntSK/blob/main/README.en.md)
|
||||
[简体中文](./README.zh.md) | English
|
||||
# AntSK
|
||||
## 使用.Net8+Blazor+SemanticKernel 打造的AI知识库/智能体
|
||||
## AI Knowledge Base/Intelligent Agent built on .Net8+AntBlazor+SemanticKernel
|
||||
|
||||
## ⭐核心功能
|
||||
## ⭐Core Features
|
||||
|
||||
- **语义内核 (Semantic Kernel)**:采用领先的自然语言处理技术,准确理解、处理和响应复杂的语义查询,为用户提供精确的信息检索和推荐服务。
|
||||
- **Semantic Kernel**: Utilizes advanced natural language processing technology to accurately understand, process, and respond to complex semantic queries, providing users with precise information retrieval and recommendation services.
|
||||
|
||||
- **内存内核 (Kernel Memory)**:具备持续学习和存储知识点的能力,AntSK 拥有长期记忆功能,累积经验,提供更个性化的交互体验。
|
||||
- **Kernel Memory**: Capable of continuous learning and storing knowledge points, AntSK has long-term memory function, accumulates experience, and provides a more personalized interaction experience.
|
||||
|
||||
- **知识库**:通过文档(Word、PDF、Excel、Txt、Markdown、Json、PPT)等形式导入知识库,可以进行知识库问答。
|
||||
- **Knowledge Base**: Import knowledge base through documents (Word, PDF, Excel, Txt, Markdown, Json, PPT) and perform knowledge base Q&A.
|
||||
|
||||
- **GPTs 生成**:此平台支持创建个性化的GPT模型,尝试构建您自己的GPT模型。
|
||||
- **GPT Generation**: This platform supports creating personalized GPT models, enabling users to build their own GPT models.
|
||||
|
||||
- **API接口发布**:将内部功能以API的形式对外提供,便于开发者将AntSK 集成进其他应用,增强应用智慧。
|
||||
- **API Interface Publishing**: Exposes internal functions in the form of APIs, enabling developers to integrate AntSK into other applications and enhance application intelligence.
|
||||
|
||||
- **API插件系统**:开放式API插件系统,允许第三方开发者或服务商轻松将其服务集成到AntSK,不断增强应用功能。
|
||||
- **API Plugin System**: Open API plugin system that allows third-party developers or service providers to easily integrate their services into AntSK, continuously enhancing application functionality.
|
||||
|
||||
- **.Net插件系统**:开放式dll插件系统,允许第三方开发者或服务商轻松将其业务功能通过标准格式的代码生成dll后集成到AntSK,不断增强应用功能。
|
||||
- **.Net Plugin System**: Open dll plugin system that allows third-party developers or service providers to easily integrate their business functions by generating dll in standard format code, continuously enhancing application functionality.
|
||||
|
||||
- **联网搜索**:AntSK,实时获取最新信息,确保用户接受到的资料总是最及时、最相关的。
|
||||
- **Online Search**: AntSK, real-time access to the latest information, ensuring users receive the most timely and relevant data.
|
||||
|
||||
- **模型管理**:适配和管理集成不同厂商的不同模型。并且支持**llama.cpp**所支持的gguf类型,以及**llamafactory**所支持的模型离线运行
|
||||
- **Model Management**: Adapts and manages integration of different models from different manufacturers, including gguf types supported by **llama.cpp** and models offline running supported by **llamafactory**.
|
||||
|
||||
- **国产信创**:AntSK支持国产模型,和国产数据库,可以在信创条件下运行
|
||||
- **Domestic Innovation**: AntSK supports domestic models and databases and can run under domestic innovation conditions.
|
||||
|
||||
- **模型微调**:规划中,基于llamafactory进行模型微调
|
||||
|
||||
- **Model Fine-Tuning**: Planned based on llamafactory for model fine-tuning.
|
||||
|
||||
## ⛪应用场景
|
||||
## ⛪Application Scenarios
|
||||
|
||||
AntSK 适用于多种业务场景,例如:
|
||||
- 企业级知识管理系统
|
||||
- 自动客服与聊天机器人
|
||||
- 企业级搜索引擎
|
||||
- 个性化推荐系统
|
||||
- 智能辅助写作
|
||||
- 教育与在线学习平台
|
||||
- 其他有意思的AI App
|
||||
AntSK is suitable for various business scenarios, such as:
|
||||
- Enterprise knowledge management system
|
||||
- Automatic customer service and chatbots
|
||||
- Enterprise search engine
|
||||
- Personalized recommendation system
|
||||
- Intelligent writing assistance
|
||||
- Education and online learning platforms
|
||||
- Other interesting AI Apps
|
||||
|
||||
## ✏️Function Examples
|
||||
### Online Demo
|
||||
[document](http://antsk.cn/)
|
||||
|
||||
[demo](https://antsk.ai-dotnet.com/)
|
||||
|
||||
## ✏️功能示例
|
||||
### 在线演示
|
||||
```
|
||||
https://antsk.ai-dotnet.com/
|
||||
```
|
||||
```
|
||||
默认账号:test
|
||||
Default account: test
|
||||
|
||||
默认密码:test
|
||||
Default password: test
|
||||
|
||||
由于云服务器配置较低,无法运行本地模型,所以把系统设置权限关闭了,大家看看界面即可,要使用本地模型,请下载自行使用
|
||||
Due to the low configuration of the cloud server, the local model cannot be run, so the system settings permissions have been closed. You can simply view the interface. If you want to use the local model, please download and use it on your own.
|
||||
```
|
||||
|
||||
### 其他功能示例
|
||||
[视频示例](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
|
||||
### Other Function Examples
|
||||
[Video Demonstration](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
|
||||
|
||||
## ❓如何开始?
|
||||
## ❓How to get started?
|
||||
|
||||
在这里我使用的是Postgres 作为数据存储和向量存储,因为Semantic Kernel和Kernel Memory都支持他,当然你也可以换成其他的。
|
||||
Here I am using Postgres as the data and vector storage because Semantic Kernel and Kernel Memory support it, but you can also use other options.
|
||||
|
||||
模型默认支持openai、azure openai、讯飞星火、阿里云积、 和llama支持的gguf本地模型 以及llamafactory的本地模型,如果需要使用其他模型,可以使用one-api进行集成。
|
||||
The model by default supports the local model of openai, azure openai, and llama. If you need to use other models, you can integrate them using one-api.
|
||||
|
||||
配置文件中的Login配置是默认的登录账号和密码
|
||||
The Login configuration in the configuration file is the default login account and password.
|
||||
|
||||
需要配置如下的配置文件
|
||||
The following configuration file needs to be configured
|
||||
|
||||
## 1️⃣使用docker-compose
|
||||
## 1️⃣Using docker-compose
|
||||
|
||||
提供了pg版本 **appsettings.json** 和 简化版本(**Sqlite+disk**) **docker-compose.simple.yml**
|
||||
Provided the pg version **appsettings.json** and simplified version (Sqlite+disk) **docker-compose.simple.yml**
|
||||
|
||||
从项目根目录下载**docker-compose.yml**,然后把配置文件**appsettings.json**和它放在统一目录,
|
||||
Download **docker-compose.yml** from the project root directory and place the configuration file **appsettings.json** in the same directory.
|
||||
|
||||
这里已经把pg的镜像做好了。在docker-compose.yml中可以修改默认账号密码,然后你的**appsettings.json**的数据库连接需要保持一致。
|
||||
The pg image has already been prepared. You can modify the default username and password in docker-compose.yml, and then the database connection in your **appsettings.json** needs to be consistent.
|
||||
|
||||
然后你可以进入到目录后执行
|
||||
Then you can execute the following command in the directory to start AntSK
|
||||
```
|
||||
docker-compose up -d
|
||||
```
|
||||
来启动AntSK
|
||||
|
||||
## 2️⃣如何在docker中挂载本地模型,和模型下载的目录
|
||||
## 2️⃣How to mount local models and model download directory in docker
|
||||
```
|
||||
# 非 host 版本, 不使用本机代理
|
||||
# Non-host version, do not use local proxy
|
||||
version: '3.8'
|
||||
services:
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/AIDotNet/antsk:v0.2.3
|
||||
ports:
|
||||
image: registry.cn-hangzhou.aliyuncs.com/AIDotNet/antsk:v0.1.5ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
- antsk
|
||||
@@ -96,31 +94,35 @@ services:
|
||||
environment:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # 本地配置文件 需要放在同级目录
|
||||
- ./appsettings.json:/app/appsettings.json # Local configuration file needs to be placed in the same directory
|
||||
- D://model:/app/model
|
||||
networks:
|
||||
antsk:
|
||||
```
|
||||
以这个为示例,意思是把windows本地D://model的文件夹挂载进 容器内/app/model 如果是这样你的appsettings.json中的模型地址应该配置为
|
||||
Taking this as an example, it means mounting the local D://model folder of Windows into the container /app/model. If so, the model address in your appsettings.json should be configured as
|
||||
```
|
||||
model/xxx.gguf
|
||||
```
|
||||
|
||||
## 3️⃣配置文件的一些含义
|
||||
## 3️⃣Some meanings of configuration file
|
||||
```
|
||||
{
|
||||
"DBConnection": {
|
||||
"DbType": "Sqlite",
|
||||
"DbType": "Sqlite",
|
||||
"ConnectionStrings": "Data Source=AntSK.db;"
|
||||
},
|
||||
"KernelMemory": {
|
||||
"VectorDb": "Disk",
|
||||
"VectorDb": "Disk",
|
||||
"ConnectionString": "Host=;Port=;Database=antsk;Username=;Password=",
|
||||
"TableNamePrefix": "km-"
|
||||
},
|
||||
"FileDir": {
|
||||
"DirectoryPath": "D:\\git\\AntBlazor\\model"
|
||||
},
|
||||
"LLamaSharp": {
|
||||
"RunType": "GPU",
|
||||
"FileDirectory": "D:\\Code\\AI\\AntBlazor\\model\\"
|
||||
"RunType": "GPU",
|
||||
"ContextSize": 2048,
|
||||
"GpuLayerCount": 20
|
||||
},
|
||||
"Login": {
|
||||
"User": "admin",
|
||||
@@ -134,86 +136,85 @@ model/xxx.gguf
|
||||
}
|
||||
```
|
||||
```
|
||||
//支持多种数据库,具体可以查看SqlSugar,MySql,SqlServer,Sqlite,Oracle,PostgreSQL,Dm,Kdbndp,Oscar,MySqlConnector,Access,OpenGauss,QuestDB,HG,ClickHouse,GBase,Odbc,OceanBaseForOracle,TDengine,GaussDB,OceanBase,Tidb,Vastbase,PolarDB,Custom
|
||||
// Supports various databases, you can check SqlSugar, MySql, SqlServer, Sqlite, Oracle, PostgreSQL, Dm, Kdbndp, Oscar, MySqlConnector, Access, OpenGauss, QuestDB, HG, ClickHouse, GBase, Odbc, OceanBaseForOracle, TDengine, GaussDB, OceanBase, Tidb, Vastbase, PolarDB, Custom
|
||||
DBConnection.DbType
|
||||
//连接字符串,需要根据不同DB类型,用对应的字符串
|
||||
|
||||
// Connection string, need to use the corresponding string according to the different DB types
|
||||
DBConnection.ConnectionStrings
|
||||
|
||||
//向量存储的类型,支持 Postgres、Disk、Memory、Qdrant、Redis、AzureAISearch
|
||||
//Postgres、Redis需要配置 ConnectionString
|
||||
//Qdrant 和AzureAISearch 的 ConnectionString 使用 Endpoint|APIKey
|
||||
//The type of vector storage, supporting Postgres, Disk, Memory, Qdrant, Redis, AzureAISearch
|
||||
//Postgres and Redis require ConnectionString configuration
|
||||
//The ConnectionString of Qdrant and AzureAISearch uses Endpoint | APIKey
|
||||
KernelMemory.VectorDb
|
||||
|
||||
//本地模型使用的运行方式 GUP CPU ,如果用在线API 这个随意使用一个即可
|
||||
//Local model execution options: GPU and CPU. When using the online API, any option can be used.
|
||||
LLamaSharp.RunType
|
||||
|
||||
//本地模型路径,用于在选择llama时可以快速选择目录下的模型,以及保存下载的模型
|
||||
//Local model path, used for quick selection of models under llama, as well as saving downloaded models.
|
||||
LLamaSharp.FileDirectory
|
||||
|
||||
//默认管理员账号密码
|
||||
//Default admin account password
|
||||
Login
|
||||
//导入异步处理的线程数,使用在线API可以高一点,本地模型建议1 否则容易内存溢出崩掉
|
||||
|
||||
//Import asynchronous processing thread count. A higher count can be used for online API, but for local models, 1 is recommended to avoid memory overflow issues.
|
||||
BackgroundTaskBroker.ImportKMSTask.WorkerCount
|
||||
|
||||
```
|
||||
|
||||
## ⚠️找不到样式问题解决:
|
||||
AntSK/src/AntSK下执行:
|
||||
## ⚠️Fixing Style Issues:
|
||||
Run the following in AntSK/src/AntSK:
|
||||
```
|
||||
dotnet clean
|
||||
dotnet build
|
||||
dotnet publish "AntSK.csproj"
|
||||
```
|
||||
再去AntSK/src/AntSK/bin/Release/net8.0/publish下
|
||||
Then navigate to AntSK/src/AntSK/bin/Release/net8.0/publish and run:
|
||||
```
|
||||
dotnet AntSK.dll
|
||||
```
|
||||
然后启动就有样式了
|
||||
The styles should now be applied after starting.
|
||||
|
||||
DB我使用的是CodeFirst模式,只要配置好数据库链接,表结构是自动创建的
|
||||
I'm using CodeFirst mode for the database, so as long as the database connection is properly configured, the table structure will be created automatically.
|
||||
|
||||
## ✔️使用llamafactory
|
||||
## ✔️Using llamafactory
|
||||
```
|
||||
1、首先需要确保你的环境已经安装了python和pip,如果使用镜像,例如v0.2.3.2版本已经包含了 python全套环境则无需此步骤
|
||||
2、进入模型添加页面选择llamafactory
|
||||
3、点击初始化,可以检查pip install 环境是否完成
|
||||
4、选择一个喜欢的模型
|
||||
5、点击启动,这会开始从魔塔下载模型,你可能需要有一个较为漫长的等待
|
||||
6、等待模型下载完毕后,在请求地址输入 http://localhost:8000/ 这里默认是使用8000端口
|
||||
7、点击保存,然后就可以开始聊天了
|
||||
8、很多人会问 LLamaSharp与llamafactory有什么区别?其实这两者LLamaSharp是llama.cpp的 dotnet实现,但是只支持本地gguf模型, 而llamafactory 支持的模型种类更多,但使用的是python的实现,其主要差异在这里,另外llamafactory具有模型微调的能力,这也是我们下一步需要重点集成的部分。
|
||||
1. First, ensure that Python and pip are installed in your environment. This step is not necessary if using an image, such as version v0.2.3.2, which already includes the complete Python environment.
|
||||
2. Go to the model add page and select llamafactory.
|
||||
3. Click "Initialize" to check whether the 'pip install' environment setup is complete.
|
||||
4. Choose a model that you like.
|
||||
5. Click "Start" to begin downloading the model from the tower. This may involve a somewhat lengthy wait.
|
||||
6. After the model has finished downloading, enter http://localhost:8000/ in the request address. The default port is 8000.
|
||||
7. Click "Save" and start chatting.
|
||||
8. Many people ask about the difference between LLamaSharp and llamafactory. In fact, LLamaSharp is a .NET implementation of llama.cpp, but only supports local gguf models, while llamafactory supports a wider variety of models and uses Python implementation. The main difference lies here. Additionally, llamafactory has the ability to fine-tune models, which is an area we will focus on integrating in the future.
|
||||
```
|
||||
|
||||
## 🤝 贡献
|
||||
## 🤝 Contributing
|
||||
|
||||
[](https://github.com/AIDotNet/AntSK/pulls)
|
||||
|
||||
如果你想贡献,可以创建一个[拉取请求](https://github.com/AIDotNet/AntSK/pulls), 或给我们[错误报告](https://github.com/AIDotNet/AntSK/issues/new).
|
||||
|
||||
|
||||
## 💕 贡献者
|
||||
[PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)
|
||||
|
||||
If you would like to contribute, feel free to create a [Pull Request](https://github.com/AIDotNet/AntSK/pulls), or give us [Bug Report](https://github.com/AIDotNet/AntSK/issues/new).
|
||||
|
||||
|
||||
## 💕 Contributors
|
||||
|
||||
This project exists thanks to all the people who contribute.
|
||||
|
||||
这个项目的存在要感谢所有的贡献者。
|
||||
|
||||
<a href="https://github.com/AIDotNet/AntSK/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=AIDotNet/AntSK&max=1000&columns=15&anon=1" />
|
||||
</a>
|
||||
|
||||
## 🚨 行为准则
|
||||
|
||||
该项目采用了贡献者公约定义的行为准则,以阐明我们社区的预期行为。有关更多信息,请参见 .NET Foundation 行为准则。 [.NET Foundation Code of Conduct](https://dotnetfoundation.org/code-of-conduct).
|
||||
|
||||
想了解更多信息或开始使用 **AntSK**,可以关注我的公众号以及加入交流群。
|
||||
|
||||
## ☎️联系我
|
||||
如有任何问题或建议,请通过以下方式关注我的公众号,发消息与我联系,我们也有交流群,可以发送进群等消息,然后我会拉你进交流群
|
||||

|
||||
|
||||
## 🌟 Star History
|
||||
<a href="https://github.com/AIDotNet/AntSK/stargazers" target="_blank" style="display: block" align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date&theme=dark" />
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date" />
|
||||
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date" />
|
||||
</picture>
|
||||
<img src="https://contrib.rocks/image?repo=AIDotNet/AntSK&max=1000&columns=15&anon=1" />
|
||||
</a>
|
||||
|
||||
## 🚨 Use Protocol
|
||||
This warehouse follows the [Apache-2.0 License](https://github.com/AIDotNet/AntSK?tab=Apache-2.0-1-ov-file) open source protocol.
|
||||
The Apache open source license allows the use of AntSK in commercial environments, provided that the license terms are followed. One of the main terms is to retain the copyright and license statements.
|
||||
If you plan to use AntSK in commercial projects, you need to ensure that you follow the following steps:
|
||||
1. Copyright statement containing Apache license. [Apache-2.0 License](https://github.com/AIDotNet/AntSK?tab=Apache-2.0-1-ov-file).
|
||||
2. If you modify the software source code, you need to clearly indicate these modifications in the source code.
|
||||
|
||||
## ☎️Contact Me
|
||||
If you have any questions or suggestions, please contact me through my official WeChat account. We also have a discussion group where you can send a message to join, and then I will add you to the group.
|
||||
|
||||

|
||||
|
||||
---
|
||||
|
||||
We appreciate your interest in **AntSK** and look forward to collaborating with you to create an intelligent future!
|
||||
|
||||
238
README.zh.md
Normal file
238
README.zh.md
Normal file
@@ -0,0 +1,238 @@
|
||||
中文|[English](./README.md)
|
||||
# AntSK
|
||||
## 使用.Net8+Blazor+SemanticKernel 打造的AI知识库/智能体
|
||||
|
||||
## ⭐核心功能
|
||||
|
||||
- **语义内核 (Semantic Kernel)**:采用领先的自然语言处理技术,准确理解、处理和响应复杂的语义查询,为用户提供精确的信息检索和推荐服务。
|
||||
|
||||
- **内存内核 (Kernel Memory)**:具备持续学习和存储知识点的能力,AntSK 拥有长期记忆功能,累积经验,提供更个性化的交互体验。
|
||||
|
||||
- **知识库**:通过文档(Word、PDF、Excel、Txt、Markdown、Json、PPT)等形式导入知识库,可以进行知识库问答,支持本地bge-embedding 向量模型 ,以及bge-rerank 重排模型。
|
||||
|
||||
- **文生图**:集成**StableDiffusion** 本地模型,可以进行文生图。
|
||||
|
||||
- **GPTs 生成**:此平台支持创建个性化的GPT模型,尝试构建您自己的GPT模型。
|
||||
|
||||
- **API接口发布**:将内部功能以API的形式对外提供,便于开发者将AntSK 集成进其他应用,增强应用智慧。
|
||||
|
||||
- **API插件系统**:开放式API插件系统,允许第三方开发者或服务商轻松将其服务集成到AntSK,不断增强应用功能。
|
||||
|
||||
- **.Net插件系统**:开放式dll插件系统,允许第三方开发者或服务商轻松将其业务功能通过标准格式的代码生成dll后集成到AntSK,不断增强应用功能。
|
||||
|
||||
- **联网搜索**:AntSK,实时获取最新信息,确保用户接受到的资料总是最及时、最相关的。
|
||||
|
||||
- **模型管理**:适配和管理集成不同厂商的不同模型。并且支持**llama.cpp**所支持的gguf类型,以及**llamafactory**所支持的模型离线运行
|
||||
|
||||
- **国产信创**:AntSK支持国产模型,和国产数据库,可以在信创条件下运行
|
||||
|
||||
- **模型微调**:规划中,基于llamafactory进行模型微调
|
||||
|
||||
|
||||
## ⛪应用场景
|
||||
|
||||
AntSK 适用于多种业务场景,例如:
|
||||
- 企业级知识管理系统
|
||||
- 自动客服与聊天机器人
|
||||
- 企业级搜索引擎
|
||||
- 个性化推荐系统
|
||||
- 智能辅助写作
|
||||
- 教育与在线学习平台
|
||||
- 其他有意思的AI App
|
||||
|
||||
## ✏️功能示例
|
||||
### 在线演示
|
||||
|
||||
[文档地址](http://antsk.cn/)
|
||||
|
||||
[体验地址](https://antsk.ai-dotnet.com/)
|
||||
|
||||
```
|
||||
默认账号:test
|
||||
|
||||
默认密码:test
|
||||
|
||||
由于云服务器配置较低,无法运行本地模型,所以把系统设置权限关闭了,大家看看界面即可,要使用本地模型,请下载自行使用
|
||||
|
||||
请勿在演示站点上传敏感信息
|
||||
```
|
||||
|
||||
### 其他功能示例
|
||||
[视频示例](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
|
||||
|
||||
[在线文档:http://antsk.cn](http://antsk.cn)
|
||||
|
||||
## ❓如何开始?
|
||||
|
||||
在这里我使用的是Postgres 作为数据存储和向量存储,因为Semantic Kernel和Kernel Memory都支持他,当然你也可以换成其他的。
|
||||
|
||||
模型默认支持openai、azure openai、讯飞星火、阿里云积、 和llama支持的gguf本地模型 以及llamafactory的本地模型,如果需要使用其他模型,可以使用one-api进行集成。
|
||||
|
||||
配置文件中的Login配置是默认的登录账号和密码
|
||||
|
||||
需要配置如下的配置文件
|
||||
|
||||
## 1️⃣使用docker-compose
|
||||
|
||||
提供了pg版本 **appsettings.json** 和 简化版本(**Sqlite+disk**) **docker-compose.simple.yml**
|
||||
|
||||
从项目根目录下载**docker-compose.yml**,然后把配置文件**appsettings.json**和它放在统一目录,
|
||||
|
||||
这里已经把pg的镜像做好了。在docker-compose.yml中可以修改默认账号密码,然后你的**appsettings.json**的数据库连接需要保持一致。
|
||||
|
||||
然后你可以进入到目录后执行
|
||||
```
|
||||
docker-compose up -d
|
||||
```
|
||||
来启动AntSK
|
||||
|
||||
## 2️⃣如何在docker中挂载本地模型,和模型下载的目录
|
||||
```
|
||||
# 非 host 版本, 不使用本机代理
|
||||
version: '3.8'
|
||||
services:
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/AIDotNet/antsk:v0.3.1
|
||||
ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
- antsk
|
||||
depends_on:
|
||||
- antskpg
|
||||
restart: always
|
||||
environment:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # 本地配置文件 需要放在同级目录
|
||||
- D://model:/app/model
|
||||
- D://model:/root/.cache/modelscope/hub/AI-ModelScope #使用Llamafactory时需要挂载 否则初始化的环境重启后会丢失
|
||||
networks:
|
||||
antsk:
|
||||
```
|
||||
以这个为示例,意思是把windows本地D://model的文件夹挂载进 容器内/app/model 如果是这样你的appsettings.json中的模型地址应该配置为
|
||||
```
|
||||
model/xxx.gguf
|
||||
```
|
||||
|
||||
## 3️⃣配置文件的一些含义
|
||||
```
|
||||
{
|
||||
"DBConnection": {
|
||||
"DbType": "Sqlite",
|
||||
"ConnectionStrings": "Data Source=AntSK.db;"
|
||||
},
|
||||
"KernelMemory": {
|
||||
"VectorDb": "Disk",
|
||||
"ConnectionString": "Host=;Port=;Database=antsk;Username=;Password=",
|
||||
"TableNamePrefix": "km-"
|
||||
},
|
||||
"FileDir": {
|
||||
"DirectoryPath": "D:\\git\\AntBlazor\\model"
|
||||
},
|
||||
"LLamaSharp": {
|
||||
"RunType": "GPU",
|
||||
"ContextSize": 2048,
|
||||
"GpuLayerCount": 20
|
||||
},
|
||||
"Login": {
|
||||
"User": "admin",
|
||||
"Password": "xuzeyu"
|
||||
},
|
||||
"BackgroundTaskBroker": {
|
||||
"ImportKMSTask": {
|
||||
"WorkerCount": 1
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
```
|
||||
//支持多种数据库,具体可以查看SqlSugar,MySql,SqlServer,Sqlite,Oracle,PostgreSQL,Dm,Kdbndp,Oscar,MySqlConnector,Access,OpenGauss,QuestDB,HG,ClickHouse,GBase,Odbc,OceanBaseForOracle,TDengine,GaussDB,OceanBase,Tidb,Vastbase,PolarDB,Custom
|
||||
DBConnection.DbType
|
||||
//连接字符串,需要根据不同DB类型,用对应的字符串
|
||||
DBConnection.ConnectionStrings
|
||||
|
||||
//向量存储的类型,支持 Postgres、Disk、Memory、Qdrant、Redis、AzureAISearch
|
||||
//Postgres、Redis需要配置 ConnectionString
|
||||
//Qdrant 和AzureAISearch 的 ConnectionString 使用 Endpoint|APIKey
|
||||
KernelMemory.VectorDb
|
||||
|
||||
//本地模型使用的运行方式 GUP CPU ,如果用在线API 这个随意使用一个即可
|
||||
LLamaSharp.RunType
|
||||
|
||||
//本地模型路径,用于在选择llama时可以快速选择目录下的模型,以及保存下载的模型
|
||||
LLamaSharp.FileDirectory
|
||||
|
||||
//默认管理员账号密码
|
||||
Login
|
||||
//导入异步处理的线程数,使用在线API可以高一点,本地模型建议1 否则容易内存溢出崩掉
|
||||
BackgroundTaskBroker.ImportKMSTask.WorkerCount
|
||||
```
|
||||
|
||||
## ⚠️找不到样式问题解决:
|
||||
AntSK/src/AntSK下执行:
|
||||
```
|
||||
dotnet clean
|
||||
dotnet build
|
||||
dotnet publish "AntSK.csproj"
|
||||
```
|
||||
再去AntSK/src/AntSK/bin/Release/net8.0/publish下
|
||||
```
|
||||
dotnet AntSK.dll
|
||||
```
|
||||
然后启动就有样式了
|
||||
|
||||
DB我使用的是CodeFirst模式,只要配置好数据库链接,表结构是自动创建的
|
||||
|
||||
## ✔️使用llamafactory
|
||||
```
|
||||
1、首先需要确保你的环境已经安装了python和pip,如果使用镜像,例如p0.2.4版本已经包含了 python全套环境则无需此步骤
|
||||
2、进入模型添加页面选择llamafactory
|
||||
3、点击初始化,可以检查pip install 环境是否完成
|
||||
4、选择一个喜欢的模型
|
||||
5、点击启动,这会开始从魔塔下载模型,你可能需要有一个较为漫长的等待
|
||||
6、等待模型下载完毕后,在请求地址输入 http://localhost:8000/ 这里默认是使用8000端口
|
||||
7、点击保存,然后就可以开始聊天了
|
||||
8、很多人会问 LLamaSharp与llamafactory有什么区别?其实这两者LLamaSharp是llama.cpp的 dotnet实现,但是只支持本地gguf模型, 而llamafactory 支持的模型种类更多,但使用的是python的实现,其主要差异在这里,另外llamafactory具有模型微调的能力,这也是我们下一步需要重点集成的部分。
|
||||
```
|
||||
|
||||
## 🤝 贡献
|
||||
|
||||
[](https://github.com/AIDotNet/AntSK/pulls)
|
||||
|
||||
如果你想贡献,可以创建一个[拉取请求](https://github.com/AIDotNet/AntSK/pulls), 或给我们[错误报告](https://github.com/AIDotNet/AntSK/issues/new).
|
||||
|
||||
|
||||
## 💕 贡献者
|
||||
|
||||
这个项目的存在要感谢所有的贡献者。
|
||||
|
||||
<a href="https://github.com/AIDotNet/AntSK/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=AIDotNet/AntSK&max=1000&columns=15&anon=1" />
|
||||
</a>
|
||||
|
||||
## 🚨 使用协议
|
||||
|
||||
本仓库遵循 [Apache-2.0 License](https://github.com/AIDotNet/AntSK?tab=Apache-2.0-1-ov-file) 开源协议。
|
||||
Apache开源许可证允许在商业环境中使用AntSK,前提是需要遵守许可证的条款。主要条款之一是要保留版权声明和许可证声明。
|
||||
|
||||
如果您打算在商业项目中使用AntSK,您需要确保遵守以下步骤:
|
||||
|
||||
1、包含Apache许可证的版权声明。 [Apache-2.0 License](https://github.com/AIDotNet/AntSK?tab=Apache-2.0-1-ov-file) 。
|
||||
|
||||
2、如果您修改了软件源代码,您需要在源代码中明确标明这些修改。
|
||||
|
||||
|
||||
## ☎️联系我
|
||||
如有任何问题或建议,请通过以下方式关注我的公众号《许泽宇的技术分享》,发消息与我联系,我们也有AIDotnet交流群,可以发送进群等消息,然后我会拉你进交流群
|
||||

|
||||
|
||||
## 🌟 Star History
|
||||
<a href="https://github.com/AIDotNet/AntSK/stargazers" target="_blank" style="display: block" align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date&theme=dark" />
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date" />
|
||||
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date" />
|
||||
</picture>
|
||||
</a>
|
||||
|
||||
@@ -3,9 +3,9 @@ version: '3.8'
|
||||
services:
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.2.3
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.3.9
|
||||
# 如果需要pytorch环境需要使用下面这个镜像,镜像比较大
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.2.3.2
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:p0.3.9
|
||||
ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
@@ -15,5 +15,7 @@ services:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # 本地配置文件 需要放在同级目录
|
||||
- /AntSK/model:/app/model
|
||||
- /AntSK/model:/root/.cache/modelscope/hub/AI-ModelScope # LLamaFactory模型文件
|
||||
networks:
|
||||
antsk:
|
||||
|
||||
@@ -1,6 +1,20 @@
|
||||
# 非 host 版本, 不使用本机代理
|
||||
version: '3.8'
|
||||
services:
|
||||
aspire-dashboard:
|
||||
container_name: aspire-dashboard
|
||||
image: mcr.microsoft.com/dotnet/aspire-dashboard:8.0
|
||||
networks:
|
||||
- antsk
|
||||
environment:
|
||||
- DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS=true
|
||||
- ASPIRE_ALLOW_UNSECURED_TRANSPORT=true
|
||||
- DASHBOARD_OTLP_AUTHMODE=ApiKey
|
||||
- DASHBOARD_OTLP_PRIMARYAPIKEY=antsk
|
||||
ports:
|
||||
- 18888:18888
|
||||
- 18889:18889
|
||||
restart: unless-stopped
|
||||
antskpg:
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/pg:v0.5.0
|
||||
container_name: antskpg
|
||||
@@ -18,9 +32,9 @@ services:
|
||||
- ./pg/data:/var/lib/postgresql/data
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.2.3
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.3.9
|
||||
# 如果需要pytorch环境需要使用下面这个镜像,镜像比较大
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.2.3.2
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:p0.3.9
|
||||
ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
@@ -30,7 +44,15 @@ services:
|
||||
restart: always
|
||||
environment:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
- ASPNETCORE_FORWARDEDHEADERS_ENABLED=true
|
||||
- OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES=true
|
||||
- OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES= true
|
||||
- OTEL_DOTNET_EXPERIMENTAL_OTLP_RETRY=in_memory
|
||||
- OTEL_EXPORTER_OTLP_ENDPOINT=http://aspire-dashboard:18889
|
||||
- OTEL_SERVICE_NAME=antsk
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # 本地配置文件 需要放在同级目录
|
||||
- /AntSK/model:/app/model
|
||||
- /AntSK/model:/root/.cache/modelscope/hub/AI-ModelScope # LLamaFactory模型文件
|
||||
networks:
|
||||
antsk:
|
||||
|
||||
20
src/AntSK.AppHost/AntSK.AppHost.csproj
Normal file
20
src/AntSK.AppHost/AntSK.AppHost.csproj
Normal file
@@ -0,0 +1,20 @@
|
||||
<Project Sdk="Microsoft.NET.Sdk">
|
||||
|
||||
<PropertyGroup>
|
||||
<OutputType>Exe</OutputType>
|
||||
<TargetFramework>net8.0</TargetFramework>
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Nullable>enable</Nullable>
|
||||
<IsAspireHost>true</IsAspireHost>
|
||||
<UserSecretsId>32ac67c8-178a-4eeb-871d-879023582e06</UserSecretsId>
|
||||
</PropertyGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<PackageReference Include="Aspire.Hosting.AppHost" Version="8.0.1" />
|
||||
</ItemGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\AntSK\AntSK.csproj" />
|
||||
</ItemGroup>
|
||||
|
||||
</Project>
|
||||
5
src/AntSK.AppHost/Program.cs
Normal file
5
src/AntSK.AppHost/Program.cs
Normal file
@@ -0,0 +1,5 @@
|
||||
var builder = DistributedApplication.CreateBuilder(args);
|
||||
|
||||
builder.AddProject<Projects.AntSK>("antsk");
|
||||
|
||||
builder.Build().Run();
|
||||
8
src/AntSK.AppHost/appsettings.Development.json
Normal file
8
src/AntSK.AppHost/appsettings.Development.json
Normal file
@@ -0,0 +1,8 @@
|
||||
{
|
||||
"Logging": {
|
||||
"LogLevel": {
|
||||
"Default": "Information",
|
||||
"Microsoft.AspNetCore": "Warning"
|
||||
}
|
||||
}
|
||||
}
|
||||
9
src/AntSK.AppHost/appsettings.json
Normal file
9
src/AntSK.AppHost/appsettings.json
Normal file
@@ -0,0 +1,9 @@
|
||||
{
|
||||
"Logging": {
|
||||
"LogLevel": {
|
||||
"Default": "Information",
|
||||
"Microsoft.AspNetCore": "Warning",
|
||||
"Aspire.Hosting.Dcp": "Warning"
|
||||
}
|
||||
}
|
||||
}
|
||||
26
src/AntSK.AppHost/aspirate-output/docker-compose.yaml
Normal file
26
src/AntSK.AppHost/aspirate-output/docker-compose.yaml
Normal file
@@ -0,0 +1,26 @@
|
||||
services:
|
||||
aspire-dashboard:
|
||||
container_name: "aspire-dashboard"
|
||||
image: "mcr.microsoft.com/dotnet/aspire-dashboard:8.0"
|
||||
environment:
|
||||
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS: "true"
|
||||
ports:
|
||||
- target: 18888
|
||||
published: 18888
|
||||
restart: unless-stopped
|
||||
antsk:
|
||||
container_name: "antsk"
|
||||
image: "antsk:latest"
|
||||
environment:
|
||||
OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES: "true"
|
||||
OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES: "true"
|
||||
OTEL_DOTNET_EXPERIMENTAL_OTLP_RETRY: "in_memory"
|
||||
ASPNETCORE_FORWARDEDHEADERS_ENABLED: "true"
|
||||
OTEL_EXPORTER_OTLP_ENDPOINT: "http://aspire-dashboard:18889"
|
||||
OTEL_SERVICE_NAME: "antsk"
|
||||
ports:
|
||||
- target: 8080
|
||||
published: 10000
|
||||
- target: 8443
|
||||
published: 10001
|
||||
restart: unless-stopped
|
||||
17
src/AntSK.AppHost/aspirate-state.json
Normal file
17
src/AntSK.AppHost/aspirate-state.json
Normal file
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"projectPath": ".",
|
||||
"outputPath": "aspirate-output",
|
||||
"containerImageTags": [
|
||||
"latest"
|
||||
],
|
||||
"containerBuilder": "docker",
|
||||
"outputFormat": "compose",
|
||||
"privateRegistryEmail": "aspir8@aka.ms",
|
||||
"includeDashboard": true,
|
||||
"secrets": {
|
||||
"salt": "fjamZa3pQbM1UyY4",
|
||||
"hash": "QR\u002BSEr3p2SwD/w2oPE21vrWh/EerhNyVyTkr0atIREw=",
|
||||
"secrets": {}
|
||||
},
|
||||
"processAllComponents": true
|
||||
}
|
||||
26
src/AntSK.AppHost/manifest.json
Normal file
26
src/AntSK.AppHost/manifest.json
Normal file
@@ -0,0 +1,26 @@
|
||||
{
|
||||
"resources": {
|
||||
"antsk": {
|
||||
"type": "project.v0",
|
||||
"path": "../AntSK/AntSK.csproj",
|
||||
"env": {
|
||||
"OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES": "true",
|
||||
"OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES": "true",
|
||||
"OTEL_DOTNET_EXPERIMENTAL_OTLP_RETRY": "in_memory",
|
||||
"ASPNETCORE_FORWARDEDHEADERS_ENABLED": "true"
|
||||
},
|
||||
"bindings": {
|
||||
"http": {
|
||||
"scheme": "http",
|
||||
"protocol": "tcp",
|
||||
"transport": "http"
|
||||
},
|
||||
"https": {
|
||||
"scheme": "https",
|
||||
"protocol": "tcp",
|
||||
"transport": "http"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
53
src/AntSK.Domain/AntSK - Backup.Domain.csproj
Normal file
53
src/AntSK.Domain/AntSK - Backup.Domain.csproj
Normal file
@@ -0,0 +1,53 @@
|
||||
<Project Sdk="Microsoft.NET.Sdk">
|
||||
|
||||
<PropertyGroup>
|
||||
<TargetFramework>net8.0</TargetFramework>
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Nullable>enable</Nullable>
|
||||
<DocumentationFile>AntSK.Domain.xml</DocumentationFile>
|
||||
<NoWarn>CA1050,CA1707,CA2007,VSTHRD111,CS1591,RCS1110,CA5394,SKEXP0001,SKEXP0002,SKEXP0003,SKEXP0004,SKEXP0010,SKEXP0011,,SKEXP0012,SKEXP0020,SKEXP0021,SKEXP0022,SKEXP0023,SKEXP0024,SKEXP0025,SKEXP0026,SKEXP0027,SKEXP0028,SKEXP0029,SKEXP0030,SKEXP0031,SKEXP0032,SKEXP0040,SKEXP0041,SKEXP0042,SKEXP0050,SKEXP0051,SKEXP0052,SKEXP0053,SKEXP0054,SKEXP0055,SKEXP0060,SKEXP0061,SKEXP0101,SKEXP0102</NoWarn>
|
||||
</PropertyGroup>
|
||||
<ItemGroup>
|
||||
<PackageReference Include="AntDesign.Charts" Version="0.5.1" />
|
||||
<PackageReference Include="AntDesign.ProLayout" Version="0.18.2" />
|
||||
<PackageReference Include="BlazorComponents.Terminal" Version="0.6.0" />
|
||||
<PackageReference Include="Blazored.LocalStorage" Version="4.5.0" />
|
||||
|
||||
<PackageReference Include="pythonnet" Version="3.0.3" />
|
||||
|
||||
<PackageReference Include="Swashbuckle.AspNetCore" Version="6.5.0" />
|
||||
|
||||
<PackageReference Include="AutoMapper" Version="8.1.0" />
|
||||
<PackageReference Include="BCrypt.Net-Next" Version="4.0.3" />
|
||||
<PackageReference Include="Markdig" Version="0.37.0" />
|
||||
<PackageReference Include="Newtonsoft.Json" Version="13.0.3" />
|
||||
<PackageReference Include="SqlSugarCore" Version="5.1.4.151" />
|
||||
<PackageReference Include="System.Data.SQLite.Core" Version="1.0.118" />
|
||||
<PackageReference Include="RestSharp" Version="110.2.0" />
|
||||
<PackageReference Include="NPOI" Version="2.7.0" />
|
||||
|
||||
<PackageReference Include="Microsoft.SemanticKernel" Version="1.7.1" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Core" Version="1.7.1" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Plugins.Core" Version="1.7.1-alpha" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.Core" Version="0.36.240415.2" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Postgres" Version="0.36.240415.2" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Qdrant" Version="0.36.240415.2" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Redis" Version="0.36.240415.2" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.AzureAISearch" Version="0.36.240415.2" />
|
||||
|
||||
<PackageReference Include="LLamaSharp" Version="0.11.2" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cpu" Version="0.11.2" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cuda12" Version="0.11.2" />
|
||||
<PackageReference Include="LLamaSharp.kernel-memory" Version="0.11.2" />
|
||||
<PackageReference Include="LLamaSharp.semantic-kernel" Version="0.11.2" />
|
||||
|
||||
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\AntSK.LLamaFactory\AntSK.LLamaFactory.csproj" />
|
||||
<ProjectReference Include="..\AntSk.LLM\AntSK.LLM.csproj" />
|
||||
<ProjectReference Include="..\AntSK.OCR\AntSK.OCR.csproj" />
|
||||
<ProjectReference Include="..\MiddleWare\AntSK.BackgroundTask\AntSK.BackgroundTask.csproj" />
|
||||
</ItemGroup>
|
||||
|
||||
</Project>
|
||||
@@ -5,44 +5,54 @@
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Nullable>enable</Nullable>
|
||||
<DocumentationFile>AntSK.Domain.xml</DocumentationFile>
|
||||
<NoWarn>CA1050,CA1707,CA2007,VSTHRD111,CS1591,RCS1110,CA5394,SKEXP0001,SKEXP0002,SKEXP0003,SKEXP0004,SKEXP0010,SKEXP0011,,SKEXP0012,SKEXP0020,SKEXP0021,SKEXP0022,SKEXP0023,SKEXP0024,SKEXP0025,SKEXP0026,SKEXP0027,SKEXP0028,SKEXP0029,SKEXP0030,SKEXP0031,SKEXP0032,SKEXP0040,SKEXP0041,SKEXP0042,SKEXP0050,SKEXP0051,SKEXP0052,SKEXP0053,SKEXP0054,SKEXP0055,SKEXP0060,SKEXP0061,SKEXP0101,SKEXP0102</NoWarn>
|
||||
<NoWarn>CA1050,CA1707,CA2007,VSTHRD111,CS1591,RCS1110,CA5394,SKEXP0001,SKEXP0002,SKEXP0003,SKEXP0004,SKEXP0010,SKEXP0011,,SKEXP0012,SKEXP0020,SKEXP0021,SKEXP0022,SKEXP0023,SKEXP0024,SKEXP0025,SKEXP0026,SKEXP0027,SKEXP0028,SKEXP0029,SKEXP0030,SKEXP0031,SKEXP0032,SKEXP0040,SKEXP0041,SKEXP0042,SKEXP0050,SKEXP0051,SKEXP0052,SKEXP0053,SKEXP0054,SKEXP0055,SKEXP0060,SKEXP0061,SKEXP0101,SKEXP0102,KMEXP00</NoWarn>
|
||||
</PropertyGroup>
|
||||
<ItemGroup>
|
||||
<PackageReference Include="AntDesign.Charts" Version="0.5.1" />
|
||||
<PackageReference Include="AntDesign.ProLayout" Version="0.18.1" />
|
||||
<PackageReference Include="AntDesign.ProLayout" Version="0.19.0" />
|
||||
<PackageReference Include="BlazorComponents.Terminal" Version="0.6.0" />
|
||||
<PackageReference Include="Blazored.LocalStorage" Version="4.5.0" />
|
||||
|
||||
<PackageReference Include="Swashbuckle.AspNetCore" Version="6.5.0" />
|
||||
<PackageReference Include="pythonnet" Version="3.0.3" />
|
||||
|
||||
<PackageReference Include="Swashbuckle.AspNetCore" Version="6.6.2" />
|
||||
|
||||
<PackageReference Include="AutoMapper" Version="8.1.0" />
|
||||
<PackageReference Include="BCrypt.Net-Next" Version="4.0.3" />
|
||||
<PackageReference Include="Markdig" Version="0.36.2" />
|
||||
<PackageReference Include="Markdig" Version="0.37.0" />
|
||||
<PackageReference Include="Newtonsoft.Json" Version="13.0.3" />
|
||||
<PackageReference Include="SqlSugarCore" Version="5.1.4.148" />
|
||||
<PackageReference Include="SqlSugarCore" Version="5.1.4.158" />
|
||||
<PackageReference Include="System.Data.SQLite.Core" Version="1.0.118" />
|
||||
<PackageReference Include="RestSharp" Version="110.2.0" />
|
||||
<PackageReference Include="RestSharp" Version="111.2.0" />
|
||||
<PackageReference Include="NPOI" Version="2.7.0" />
|
||||
|
||||
<PackageReference Include="Microsoft.SemanticKernel" Version="1.6.3" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Core" Version="1.6.3" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Plugins.Core" Version="1.6.3-alpha" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.Core" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Postgres" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Qdrant" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Redis" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.AzureAISearch" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel" Version="1.14.1" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Core" Version="1.14.1" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Plugins.Core" Version="1.14.1-alpha" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.Core" Version="$(KMVersion)" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Postgres" Version="$(KMVersion)" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Qdrant" Version="$(KMVersion)" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Redis" Version="$(KMVersion)" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.AzureAISearch" Version="$(KMVersion)" />
|
||||
|
||||
<PackageReference Include="LLamaSharp" Version="0.10.0" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cpu" Version="0.10.0" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cuda12" Version="0.10.0" />
|
||||
<PackageReference Include="LLamaSharp.kernel-memory" Version="0.10.0" />
|
||||
<PackageReference Include="LLamaSharp.semantic-kernel" Version="0.10.0" />
|
||||
|
||||
|
||||
<PackageReference Include="LLamaSharp" Version="$(LLamaSharpVersion)" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cpu" Version="$(LLamaSharpVersion)" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cuda12" Version="$(LLamaSharpVersion)" />
|
||||
<PackageReference Include="LLamaSharp.kernel-memory" Version="$(LLamaSharpVersion)" />
|
||||
<PackageReference Include="LLamaSharp.semantic-kernel" Version="$(LLamaSharpVersion)" />
|
||||
|
||||
<PackageReference Include="Serilog" Version="4.0.0" />
|
||||
<PackageReference Include="Serilog.Sinks.Console" Version="5.1.0-dev-00943" />
|
||||
<PackageReference Include="Serilog.Sinks.File" Version="5.0.1-dev-00972" />
|
||||
<PackageReference Include="Serilog.Extensions.Logging" Version="8.0.1-dev-10391" />
|
||||
<PackageReference Include="Serilog.Settings.Configuration" Version="8.0.1" />
|
||||
<PackageReference Include="Serilog.Sinks.Seq" Version="8.0.0" />
|
||||
<PackageReference Include="Serilog.Sinks.OpenTelemetry" Version="3.0.0" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\AntSK.LLamaFactory\AntSK.LLamaFactory.csproj" />
|
||||
<ProjectReference Include="..\AntSk.LLM\AntSK.LLM.csproj" />
|
||||
<ProjectReference Include="..\AntSK.OCR\AntSK.OCR.csproj" />
|
||||
<ProjectReference Include="..\MiddleWare\AntSK.BackgroundTask\AntSK.BackgroundTask.csproj" />
|
||||
</ItemGroup>
|
||||
|
||||
|
||||
@@ -69,6 +69,84 @@
|
||||
<param name="value"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ExcelToDataTable(System.String,System.Boolean)">
|
||||
<summary>
|
||||
将excel导入到datatable
|
||||
</summary>
|
||||
<param name="filePath">excel路径</param>
|
||||
<param name="isColumnName">第一行是否是列名</param>
|
||||
<returns>返回datatable</returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ExcelToDataTable(System.IO.Stream,System.Boolean)">
|
||||
<summary>
|
||||
将excel导入到datatable
|
||||
</summary>
|
||||
<param name="stream">流</param>
|
||||
<param name="isColumnName">第一行是否是列名</param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ExcelToList``1(System.IO.Stream)">
|
||||
<summary>
|
||||
excel转list
|
||||
</summary>
|
||||
<typeparam name="TResult"></typeparam>
|
||||
<param name="stream"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ExcelToList``1(System.IO.Stream,System.String)">
|
||||
<summary>
|
||||
excel转list-根据sheetName得到List
|
||||
</summary>
|
||||
<typeparam name="TResult"></typeparam>
|
||||
<param name="stream"></param>
|
||||
<param name="sheetName"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ListToExcel``1(``0[],System.String)">
|
||||
<summary>
|
||||
List导出excel 二进制流
|
||||
</summary>
|
||||
<typeparam name="T">实体</typeparam>
|
||||
<param name="data">List</param>
|
||||
<param name="sheetName">sheetname 可不填,默认Sheet0</param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.DataTableToExcel(System.Data.DataTable,System.String,System.String)">
|
||||
<summary>
|
||||
Dt导出excel 二进制流
|
||||
</summary>
|
||||
<param name="dt">datatable</param>
|
||||
<param name="strFile">strFile</param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ListWriteExcel``1(``0[],System.String,System.String)">
|
||||
<summary>
|
||||
List写入excel
|
||||
</summary>
|
||||
<typeparam name="T"></typeparam>
|
||||
<param name="data"></param>
|
||||
<param name="strFile">路径</param>
|
||||
<param name="sheetName"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.DataTableWriteExcel(System.Data.DataTable,System.String,System.String)">
|
||||
<summary>
|
||||
dt写入excel
|
||||
</summary>
|
||||
<param name="dt">datatable</param>
|
||||
<param name="strFile">路径</param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.SetCellDropdownList(NPOI.SS.UserModel.IWorkbook,NPOI.SS.UserModel.ISheet,System.Collections.Generic.List{System.String},System.String,System.Int32,System.Int32,System.Int32)">
|
||||
<summary>
|
||||
设置单元格下拉框(除去标题行)
|
||||
</summary>
|
||||
<param name="workbook"></param>
|
||||
<param name="sheet"></param>
|
||||
<param name="ddlList"></param>
|
||||
<param name="firstcol"></param>
|
||||
<param name="lastcol"></param>
|
||||
</member>
|
||||
<member name="T:AntSK.Domain.Domain.Model.Enum.AIType">
|
||||
<summary>
|
||||
AI类型
|
||||
@@ -79,11 +157,6 @@
|
||||
模型类型
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Domain.Model.MessageInfo.IsSend">
|
||||
<summary>
|
||||
发送是true 接收是false
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Domain.Model.PageList`1.PageIndex">
|
||||
<summary>
|
||||
当前页,从1开始
|
||||
@@ -99,12 +172,34 @@
|
||||
总数
|
||||
</summary>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Other.Bge.BegRerankConfig.LoadModel(System.String,System.String)">
|
||||
<summary>
|
||||
模型写死
|
||||
</summary>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Other.Bge.BgeEmbeddingConfig.LoadModel(System.String,System.String)">
|
||||
<summary>
|
||||
模型写死
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Domain.Other.KMExcelHandler.StepName">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Other.KMExcelHandler.InvokeAsync(Microsoft.KernelMemory.Pipeline.DataPipeline,System.Threading.CancellationToken)">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="F:AntSK.Domain.Domain.Other.LLamaConfig.dicLLamaWeights">
|
||||
<summary>
|
||||
避免模型重复加载,本地缓存
|
||||
</summary>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Service.ChatService.SendChatByAppAsync(AntSK.Domain.Repositories.Apps,System.String,Microsoft.SemanticKernel.ChatCompletion.ChatHistory)">
|
||||
<member name="P:AntSK.Domain.Domain.Other.QAHandler.StepName">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Other.QAHandler.InvokeAsync(Microsoft.KernelMemory.Pipeline.DataPipeline,System.Threading.CancellationToken)">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Service.ChatService.SendChatByAppAsync(AntSK.Domain.Repositories.Apps,Microsoft.SemanticKernel.ChatCompletion.ChatHistory)">
|
||||
<summary>
|
||||
发送消息
|
||||
</summary>
|
||||
@@ -287,6 +382,56 @@
|
||||
API调用秘钥
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Apps.Relevance">
|
||||
<summary>
|
||||
相似度
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Apps.MaxAskPromptSize">
|
||||
<summary>
|
||||
提问最大token数
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Apps.MaxMatchesCount">
|
||||
<summary>
|
||||
向量匹配数
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Apps.AnswerTokens">
|
||||
<summary>
|
||||
回答最大token数
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.UserName">
|
||||
<summary>
|
||||
用户名
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.AppId">
|
||||
<summary>
|
||||
应用ID
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.Context">
|
||||
<summary>
|
||||
消息内容
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.IsSend">
|
||||
<summary>
|
||||
发送是true 接收是false
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.CreateTime">
|
||||
<summary>
|
||||
创建事件
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.FileName">
|
||||
<summary>
|
||||
文件名
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Funs.Path">
|
||||
<summary>
|
||||
接口描述
|
||||
@@ -771,6 +916,14 @@
|
||||
<param name="parameters"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Utils.ConvertUtils.ComparisonIgnoreCase(System.String,System.String)">
|
||||
<summary>
|
||||
忽略大小写匹配
|
||||
</summary>
|
||||
<param name="s"></param>
|
||||
<param name="value"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Utils.RepoFiles.SamplePluginsPath">
|
||||
<summary>
|
||||
Scan the local folders from the repo, looking for "samples/plugins" folder.
|
||||
|
||||
@@ -5,6 +5,7 @@ using DocumentFormat.OpenXml.Office2016.Drawing.ChartDrawing;
|
||||
using Microsoft.AspNetCore.Builder;
|
||||
using Microsoft.AspNetCore.Mvc;
|
||||
using Microsoft.Extensions.DependencyInjection;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Microsoft.OpenApi.Models;
|
||||
using SqlSugar;
|
||||
using Swashbuckle.AspNetCore.SwaggerGen;
|
||||
@@ -19,6 +20,12 @@ namespace AntSK.Domain.Common.DependencyInjection
|
||||
{
|
||||
public static class InitExtensions
|
||||
{
|
||||
private static ILogger _logger;
|
||||
|
||||
public static void InitLog(ILogger logger)
|
||||
{
|
||||
_logger = logger;
|
||||
}
|
||||
/// <summary>
|
||||
/// 使用codefirst创建数据库表
|
||||
/// </summary>
|
||||
@@ -50,6 +57,10 @@ namespace AntSK.Domain.Common.DependencyInjection
|
||||
_repository.GetDB().CodeFirst.InitTables(type);
|
||||
}
|
||||
}
|
||||
//安装向量插件
|
||||
_repository.GetDB().Ado.ExecuteCommandAsync($"CREATE EXTENSION IF NOT EXISTS vector;");
|
||||
|
||||
_logger.LogInformation("初始化表结构完成");
|
||||
}
|
||||
return app;
|
||||
}
|
||||
@@ -70,7 +81,7 @@ namespace AntSK.Domain.Common.DependencyInjection
|
||||
llamafactoryStart.Value = "false";
|
||||
_dic_Repository.Insert(llamafactoryStart);
|
||||
}
|
||||
|
||||
_logger.LogInformation("初始化数据库初始数据完成");
|
||||
}
|
||||
return app;
|
||||
}
|
||||
@@ -97,7 +108,7 @@ namespace AntSK.Domain.Common.DependencyInjection
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
Console.WriteLine(ex.Message + " ---- " + ex.StackTrace);
|
||||
_logger.LogError(ex.Message + " ---- " + ex.StackTrace);
|
||||
}
|
||||
return app;
|
||||
}
|
||||
|
||||
21
src/AntSK.Domain/Common/Embedding/BuilderBgeExtensions.cs
Normal file
21
src/AntSK.Domain/Common/Embedding/BuilderBgeExtensions.cs
Normal file
@@ -0,0 +1,21 @@
|
||||
using LLamaSharp.KernelMemory;
|
||||
using Microsoft.KernelMemory.AI;
|
||||
using Microsoft.KernelMemory;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Common.Embedding
|
||||
{
|
||||
public static class BuilderBgeExtensions
|
||||
{
|
||||
public static IKernelMemoryBuilder WithBgeTextEmbeddingGeneration(this IKernelMemoryBuilder builder, HuggingfaceTextEmbeddingGenerator textEmbeddingGenerator)
|
||||
{
|
||||
builder.AddSingleton((ITextEmbeddingGenerator)textEmbeddingGenerator);
|
||||
builder.AddIngestionEmbeddingGenerator(textEmbeddingGenerator);
|
||||
return builder;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,56 @@
|
||||
using LLama.Common;
|
||||
using LLama;
|
||||
using LLamaSharp.KernelMemory;
|
||||
using Microsoft.KernelMemory.AI;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using AntSK.Domain.Domain.Other.Bge;
|
||||
|
||||
namespace AntSK.Domain.Common.Embedding
|
||||
{
|
||||
public class HuggingfaceTextEmbeddingGenerator : ITextEmbeddingGenerator, ITextTokenizer, IDisposable
|
||||
{
|
||||
public int MaxTokens => 1024;
|
||||
|
||||
public int MaxTokenTotal => 1024;
|
||||
|
||||
|
||||
private readonly dynamic _embedder;
|
||||
|
||||
public HuggingfaceTextEmbeddingGenerator(string pyDllPath,string modelName)
|
||||
{
|
||||
_embedder = BgeEmbeddingConfig.LoadModel(pyDllPath, modelName);
|
||||
}
|
||||
|
||||
public void Dispose()
|
||||
{
|
||||
BgeEmbeddingConfig.Dispose();
|
||||
}
|
||||
|
||||
//public async Task<IList<ReadOnlyMemory<float>>> GenerateEmbeddingAsync(IList<string> data, CancellationToken cancellationToken = default)
|
||||
//{
|
||||
// IList<ReadOnlyMemory<float>> results = new List<ReadOnlyMemory<float>>();
|
||||
|
||||
// foreach (var d in data)
|
||||
// {
|
||||
// var embeddings = await EmbeddingConfig.GetEmbedding(d);
|
||||
// results.Add(new ReadOnlyMemory<float>(embeddings));
|
||||
// }
|
||||
// return results;
|
||||
//}
|
||||
|
||||
public async Task<Microsoft.KernelMemory.Embedding> GenerateEmbeddingAsync(string text, CancellationToken cancellationToken = default)
|
||||
{
|
||||
var embeddings = await BgeEmbeddingConfig.GetEmbedding(text);
|
||||
return new Microsoft.KernelMemory.Embedding(embeddings);
|
||||
}
|
||||
|
||||
public int CountTokens(string text)
|
||||
{
|
||||
return BgeEmbeddingConfig.TokenCount(text);
|
||||
}
|
||||
}
|
||||
}
|
||||
822
src/AntSK.Domain/Common/Excel/ExeclHelper.cs
Normal file
822
src/AntSK.Domain/Common/Excel/ExeclHelper.cs
Normal file
@@ -0,0 +1,822 @@
|
||||
using NPOI.HSSF.UserModel;
|
||||
using NPOI.SS.UserModel;
|
||||
using NPOI.SS.Util;
|
||||
using NPOI.XSSF.Streaming;
|
||||
using NPOI.XSSF.UserModel;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Data;
|
||||
using System.IO;
|
||||
using System.Linq;
|
||||
using System.Reflection;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain
|
||||
{
|
||||
public class ExeclHelper
|
||||
{
|
||||
/// <summary>
|
||||
/// 将excel导入到datatable
|
||||
/// </summary>
|
||||
/// <param name="filePath">excel路径</param>
|
||||
/// <param name="isColumnName">第一行是否是列名</param>
|
||||
/// <returns>返回datatable</returns>
|
||||
public static DataTable ExcelToDataTable(string filePath, bool isColumnName)
|
||||
{
|
||||
DataTable dataTable = null;
|
||||
FileStream fs = null;
|
||||
DataColumn column = null;
|
||||
DataRow dataRow = null;
|
||||
IWorkbook workbook = null;
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 0;
|
||||
try
|
||||
{
|
||||
using (fs = File.OpenRead(filePath))
|
||||
{
|
||||
// 2007版本
|
||||
if (filePath.Contains(".xlsx"))
|
||||
workbook = new XSSFWorkbook(fs);
|
||||
// 2003版本
|
||||
else if (filePath.Contains(".xls"))
|
||||
workbook = new HSSFWorkbook(fs);
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheetAt(0);//读取第一个sheet,当然也可以循环读取每个sheet
|
||||
dataTable = new DataTable();
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//构建datatable的列
|
||||
if (isColumnName)
|
||||
{
|
||||
startRow = 1;//如果第一行是列名,则从第二行开始读取
|
||||
for (int i = firstRow.FirstCellNum; i < cellCount; ++i)
|
||||
{
|
||||
cell = firstRow.GetCell(i);
|
||||
if (cell != null)
|
||||
{
|
||||
if (cell.StringCellValue != null)
|
||||
{
|
||||
column = new DataColumn(cell.StringCellValue);
|
||||
dataTable.Columns.Add(column);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = firstRow.FirstCellNum; i < cellCount; ++i)
|
||||
{
|
||||
column = new DataColumn("column" + (i + 1));
|
||||
dataTable.Columns.Add(column);
|
||||
}
|
||||
}
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
|
||||
dataRow = dataTable.NewRow();
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
dataRow[j] = "";
|
||||
}
|
||||
else
|
||||
{
|
||||
//CellType(Unknown = -1,Numeric = 0,String = 1,Formula = 2,Blank = 3,Boolean = 4,Error = 5,)
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
dataRow[j] = "";
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
dataRow[j] = cell.DateCellValue;
|
||||
else
|
||||
dataRow[j] = cell.NumericCellValue;
|
||||
break;
|
||||
case CellType.String:
|
||||
dataRow[j] = cell.StringCellValue;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
dataTable.Rows.Add(dataRow);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return dataTable;
|
||||
}
|
||||
catch (Exception)
|
||||
{
|
||||
if (fs != null)
|
||||
{
|
||||
fs.Close();
|
||||
}
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 将excel导入到datatable
|
||||
/// </summary>
|
||||
/// <param name="stream">流</param>
|
||||
/// <param name="isColumnName">第一行是否是列名</param>
|
||||
/// <returns></returns>
|
||||
public static DataTable ExcelToDataTable(Stream stream, bool isColumnName)
|
||||
{
|
||||
DataTable dataTable = null;
|
||||
DataColumn column = null;
|
||||
DataRow dataRow = null;
|
||||
IWorkbook workbook = new XSSFWorkbook(stream);
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 0;
|
||||
try
|
||||
{
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheetAt(0);//读取第一个sheet,当然也可以循环读取每个sheet
|
||||
dataTable = new DataTable();
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//构建datatable的列
|
||||
if (isColumnName)
|
||||
{
|
||||
startRow = 1;//如果第一行是列名,则从第二行开始读取
|
||||
for (int i = firstRow.FirstCellNum; i < cellCount; ++i)
|
||||
{
|
||||
cell = firstRow.GetCell(i);
|
||||
if (cell != null)
|
||||
{
|
||||
if (cell.StringCellValue != null)
|
||||
{
|
||||
column = new DataColumn(cell.StringCellValue);
|
||||
dataTable.Columns.Add(column);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = firstRow.FirstCellNum; i < cellCount; ++i)
|
||||
{
|
||||
column = new DataColumn("column" + (i + 1));
|
||||
dataTable.Columns.Add(column);
|
||||
}
|
||||
}
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
|
||||
dataRow = dataTable.NewRow();
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
dataRow[j] = "";
|
||||
}
|
||||
else
|
||||
{
|
||||
//CellType(Unknown = -1,Numeric = 0,String = 1,Formula = 2,Blank = 3,Boolean = 4,Error = 5,)
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
dataRow[j] = "";
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
dataRow[j] = cell.DateCellValue;
|
||||
else
|
||||
dataRow[j] = cell.NumericCellValue;
|
||||
break;
|
||||
case CellType.String:
|
||||
dataRow[j] = cell.StringCellValue;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
dataTable.Rows.Add(dataRow);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return dataTable;
|
||||
}
|
||||
catch (Exception)
|
||||
{
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// excel转list
|
||||
/// </summary>
|
||||
/// <typeparam name="TResult"></typeparam>
|
||||
/// <param name="stream"></param>
|
||||
/// <returns></returns>
|
||||
public static IEnumerable<TResult> ExcelToList<TResult>(Stream stream) where TResult : new()
|
||||
{
|
||||
var propertyInfos = typeof(TResult).GetProperties(BindingFlags.Public | BindingFlags.Instance).Where(p => p.CustomAttributes.Count() > 0)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
|
||||
List<TResult> list = new List<TResult>();
|
||||
|
||||
IWorkbook workbook = new XSSFWorkbook(stream);
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 1;
|
||||
try
|
||||
{
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheetAt(0);//读取第一个sheet,当然也可以循环读取每个sheet
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
bool emptyRow = true;//是否空行
|
||||
TResult dataModel = new TResult();
|
||||
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
var execlPropertyAttribute = propertyInfos[j].GetCustomAttribute<ExeclPropertyAttribute>();
|
||||
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
propertyInfos[j].SetValue(dataModel, cell.DateCellValue);
|
||||
else
|
||||
{
|
||||
if (execlPropertyAttribute.CellType == CellType.String)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue.ToString());
|
||||
}
|
||||
else
|
||||
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CellType.String:
|
||||
propertyInfos[j].SetValue(dataModel, cell.StringCellValue);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (cell != null && !string.IsNullOrEmpty(cell.ToString().Trim()))
|
||||
{
|
||||
emptyRow = false;
|
||||
}
|
||||
}
|
||||
//非空数据行数据添加到DataTable
|
||||
if (!emptyRow)
|
||||
{
|
||||
list.Add(dataModel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return list;
|
||||
}
|
||||
catch (Exception)
|
||||
{
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public static IEnumerable<TResult> ExcelToListFileName<TResult>(Stream stream, string fileName) where TResult : new()
|
||||
{
|
||||
var propertyInfos = typeof(TResult).GetProperties(BindingFlags.Public | BindingFlags.Instance).Where(p => p.CustomAttributes.Count() > 0)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
|
||||
List<TResult> list = new List<TResult>();
|
||||
|
||||
IWorkbook workbook = null;
|
||||
if (fileName.Contains(".xlsx"))
|
||||
workbook = new XSSFWorkbook(stream);
|
||||
// 2003版本
|
||||
else if (fileName.Contains(".xls"))
|
||||
workbook = new HSSFWorkbook(stream);
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 1;
|
||||
try
|
||||
{
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheetAt(0);//读取第一个sheet,当然也可以循环读取每个sheet
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
bool emptyRow = true;//是否空行
|
||||
TResult dataModel = new TResult();
|
||||
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
var execlPropertyAttribute = propertyInfos[j].GetCustomAttribute<ExeclPropertyAttribute>();
|
||||
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
propertyInfos[j].SetValue(dataModel, cell.DateCellValue);
|
||||
else
|
||||
{
|
||||
if (execlPropertyAttribute.CellType == CellType.String)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue.ToString());
|
||||
}
|
||||
else
|
||||
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CellType.String:
|
||||
propertyInfos[j].SetValue(dataModel, cell.StringCellValue);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (cell != null && !string.IsNullOrEmpty(cell.ToString().Trim()))
|
||||
{
|
||||
emptyRow = false;
|
||||
}
|
||||
}
|
||||
//非空数据行数据添加到DataTable
|
||||
if (!emptyRow)
|
||||
{
|
||||
list.Add(dataModel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return list;
|
||||
}
|
||||
catch (Exception)
|
||||
{
|
||||
throw;
|
||||
}
|
||||
}
|
||||
/// <summary>
|
||||
/// excel转list-根据sheetName得到List
|
||||
/// </summary>
|
||||
/// <typeparam name="TResult"></typeparam>
|
||||
/// <param name="stream"></param>
|
||||
/// <param name="sheetName"></param>
|
||||
/// <returns></returns>
|
||||
public static IEnumerable<TResult> ExcelToList<TResult>(Stream stream, string sheetName) where TResult : new()
|
||||
{
|
||||
var propertyInfos = typeof(TResult).GetProperties(BindingFlags.Public | BindingFlags.Instance)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
|
||||
List<TResult> list = new List<TResult>();
|
||||
|
||||
IWorkbook workbook = new XSSFWorkbook(stream);
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 1;
|
||||
try
|
||||
{
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheet(sheetName);//根据sheet读取对应的DataTable
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
bool emptyRow = true;//是否空行
|
||||
|
||||
TResult dataModel = new TResult();
|
||||
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
var execlPropertyAttribute = propertyInfos[j].GetCustomAttribute<ExeclPropertyAttribute>();
|
||||
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
propertyInfos[j].SetValue(dataModel, cell.DateCellValue);
|
||||
else
|
||||
{
|
||||
if (execlPropertyAttribute.CellType == CellType.String)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue.ToString());
|
||||
}
|
||||
else
|
||||
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue);
|
||||
}
|
||||
|
||||
}
|
||||
break;
|
||||
case CellType.String:
|
||||
propertyInfos[j].SetValue(dataModel, cell.StringCellValue);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (cell != null && !string.IsNullOrEmpty(cell.ToString().Trim()))
|
||||
{
|
||||
emptyRow = false;
|
||||
}
|
||||
}
|
||||
//非空数据行数据添加到DataTable
|
||||
if (!emptyRow)
|
||||
{
|
||||
list.Add(dataModel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return list;
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// List导出excel 二进制流
|
||||
/// </summary>
|
||||
/// <typeparam name="T">实体</typeparam>
|
||||
/// <param name="data">List</param>
|
||||
/// <param name="sheetName">sheetname 可不填,默认Sheet0</param>
|
||||
/// <returns></returns>
|
||||
public static byte[] ListToExcel<T>(T[] data, string sheetName = "Sheet0")
|
||||
{
|
||||
IWorkbook workbook = null;
|
||||
IRow row = null;
|
||||
ISheet sheet = null;
|
||||
ICell cell = null;
|
||||
var propertyInfos = typeof(T).GetProperties(BindingFlags.Public | BindingFlags.Instance)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
workbook = new XSSFWorkbook();
|
||||
sheet = workbook.CreateSheet(sheetName);//创建一个名称为Sheet0的表
|
||||
int rowCount = data.Count();//行数
|
||||
int columnCount = propertyInfos.Length;//列数
|
||||
//设置列头
|
||||
row = sheet.CreateRow(0);//excel第一行设为列头
|
||||
for (int c = 0; c < columnCount; c++)
|
||||
{
|
||||
cell = row.CreateCell(c);
|
||||
cell.SetCellValue(propertyInfos[c].GetCustomAttribute<ExeclPropertyAttribute>().DisplayName);
|
||||
}
|
||||
//设置每行每列的单元格,
|
||||
for (int i = 0; i < rowCount; i++)
|
||||
{
|
||||
row = sheet.CreateRow(i + 1);
|
||||
for (int j = 0; j < columnCount; j++)
|
||||
{
|
||||
cell = row.CreateCell(j);//excel第二行开始写入数据
|
||||
cell.SetCellValue(propertyInfos[j].GetValue(data[i])?.ToString());
|
||||
}
|
||||
}
|
||||
using (MemoryStream memoryStream = new MemoryStream())
|
||||
{
|
||||
workbook.Write(memoryStream);//向打开的这个xls文件中写入数据
|
||||
return memoryStream.ToArray();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Dt导出excel 二进制流
|
||||
/// </summary>
|
||||
/// <param name="dt">datatable</param>
|
||||
/// <param name="strFile">strFile</param>
|
||||
/// <returns></returns>
|
||||
public static byte[] DataTableToExcel(DataTable dt, string strFile, string sheetName = "Sheet0")
|
||||
{
|
||||
bool result = false;
|
||||
IWorkbook workbook = null;
|
||||
FileStream fs = null;
|
||||
IRow row = null;
|
||||
ISheet sheet = null;
|
||||
ICell cell = null;
|
||||
|
||||
if (dt != null && dt.Rows.Count > 0)
|
||||
{
|
||||
workbook = new XSSFWorkbook();
|
||||
sheet = workbook.CreateSheet(sheetName);//创建一个名称为Sheet0的表
|
||||
int rowCount = dt.Rows.Count;//行数
|
||||
int columnCount = dt.Columns.Count;//列数
|
||||
|
||||
//设置列头
|
||||
row = sheet.CreateRow(0);//excel第一行设为列头
|
||||
for (int c = 0; c < columnCount; c++)
|
||||
{
|
||||
cell = row.CreateCell(c);
|
||||
cell.SetCellValue(dt.Columns[c].ColumnName);
|
||||
}
|
||||
|
||||
//设置每行每列的单元格,
|
||||
for (int i = 0; i < rowCount; i++)
|
||||
{
|
||||
row = sheet.CreateRow(i + 1);
|
||||
for (int j = 0; j < columnCount; j++)
|
||||
{
|
||||
cell = row.CreateCell(j);//excel第二行开始写入数据
|
||||
cell.SetCellValue(dt.Rows[i][j].ToString());
|
||||
}
|
||||
}
|
||||
using (MemoryStream memoryStream = new MemoryStream())
|
||||
{
|
||||
workbook.Write(memoryStream);//向打开的这个xls文件中写入数据
|
||||
return memoryStream.ToArray();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return new byte[0];
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// List写入excel
|
||||
/// </summary>
|
||||
/// <typeparam name="T"></typeparam>
|
||||
/// <param name="data"></param>
|
||||
/// <param name="strFile">路径</param>
|
||||
/// <param name="sheetName"></param>
|
||||
/// <returns></returns>
|
||||
public static bool ListWriteExcel<T>(T[] data, string strFile, string sheetName = "Sheet0")
|
||||
{
|
||||
bool result = false;
|
||||
IWorkbook workbook = null;
|
||||
FileStream fs = null;
|
||||
IRow row = null;
|
||||
ISheet sheet = null;
|
||||
ICell cell = null;
|
||||
try
|
||||
{
|
||||
var propertyInfos = typeof(T).GetProperties(BindingFlags.Public | BindingFlags.Instance)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
workbook = new XSSFWorkbook();
|
||||
sheet = workbook.CreateSheet(sheetName);//创建一个名称为Sheet0的表
|
||||
int rowCount = data.Count();//行数
|
||||
int columnCount = propertyInfos.Length;//列数
|
||||
//设置列头
|
||||
row = sheet.CreateRow(0);//excel第一行设为列头
|
||||
for (int c = 0; c < columnCount; c++)
|
||||
{
|
||||
cell = row.CreateCell(c);
|
||||
cell.SetCellValue(propertyInfos[c].GetCustomAttribute<ExeclPropertyAttribute>().DisplayName);
|
||||
}
|
||||
//设置每行每列的单元格,
|
||||
for (int i = 0; i < rowCount; i++)
|
||||
{
|
||||
row = sheet.CreateRow(i + 1);
|
||||
for (int j = 0; j < columnCount; j++)
|
||||
{
|
||||
cell = row.CreateCell(j);//excel第二行开始写入数据
|
||||
cell.SetCellValue(propertyInfos[j].GetValue(data[i])?.ToString());
|
||||
}
|
||||
}
|
||||
using (fs = File.OpenWrite(strFile))
|
||||
{
|
||||
workbook.Write(fs);//向打开的这个xls文件中写入数据
|
||||
result = true;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
if (fs != null)
|
||||
{
|
||||
fs.Close();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// dt写入excel
|
||||
/// </summary>
|
||||
/// <param name="dt">datatable</param>
|
||||
/// <param name="strFile">路径</param>
|
||||
/// <returns></returns>
|
||||
public static bool DataTableWriteExcel(DataTable dt, string strFile, string sheetName = "Sheet0")
|
||||
{
|
||||
bool result = false;
|
||||
IWorkbook workbook = null;
|
||||
FileStream fs = null;
|
||||
IRow row = null;
|
||||
ISheet sheet = null;
|
||||
ICell cell = null;
|
||||
try
|
||||
{
|
||||
if (dt != null && dt.Rows.Count > 0)
|
||||
{
|
||||
workbook = new XSSFWorkbook();
|
||||
sheet = workbook.CreateSheet(sheetName);//创建一个名称为Sheet0的表
|
||||
int rowCount = dt.Rows.Count;//行数
|
||||
int columnCount = dt.Columns.Count;//列数
|
||||
|
||||
//设置列头
|
||||
row = sheet.CreateRow(0);//excel第一行设为列头
|
||||
for (int c = 0; c < columnCount; c++)
|
||||
{
|
||||
cell = row.CreateCell(c);
|
||||
cell.SetCellValue(dt.Columns[c].ColumnName);
|
||||
}
|
||||
|
||||
//设置每行每列的单元格,
|
||||
for (int i = 0; i < rowCount; i++)
|
||||
{
|
||||
row = sheet.CreateRow(i + 1);
|
||||
for (int j = 0; j < columnCount; j++)
|
||||
{
|
||||
cell = row.CreateCell(j);//excel第二行开始写入数据
|
||||
cell.SetCellValue(dt.Rows[i][j].ToString());
|
||||
}
|
||||
}
|
||||
using (fs = File.OpenWrite(strFile))
|
||||
{
|
||||
workbook.Write(fs);//向打开的这个xls文件中写入数据
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
if (fs != null)
|
||||
{
|
||||
fs.Close();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 设置单元格下拉框(除去标题行)
|
||||
/// </summary>
|
||||
/// <param name="workbook"></param>
|
||||
/// <param name="sheet"></param>
|
||||
/// <param name="ddlList"></param>
|
||||
/// <param name="firstcol"></param>
|
||||
/// <param name="lastcol"></param>
|
||||
public static void SetCellDropdownList(IWorkbook workbook, ISheet sheet, List<string> ddlList, string sheetname, int sheetIndex, int firstcol, int lastcol)
|
||||
{
|
||||
|
||||
# region 低版本Excel【HSSFWorkbook】设置下拉框
|
||||
//ISheet sheet2 = workbook.CreateSheet(sheetname);
|
||||
|
||||
////隐藏
|
||||
//workbook.SetSheetHidden(sheetIndex, 1);
|
||||
//int rowIndex = 0;
|
||||
//foreach (var item in ddlList)
|
||||
//{
|
||||
// IRow vrow = sheet2.CreateRow(rowIndex);
|
||||
// vrow.CreateCell(0).SetCellValue(item);
|
||||
|
||||
// rowIndex++;
|
||||
//}
|
||||
|
||||
////创建的下拉项的区域:
|
||||
//var rangeName = sheetname + "Range";
|
||||
//IName range = workbook.CreateName();
|
||||
//range.RefersToFormula = sheetname + "!$A$1:$A$" + rowIndex;
|
||||
//range.NameName = rangeName;
|
||||
//CellRangeAddressList regions = new CellRangeAddressList(1, 65535, firstcol, lastcol);
|
||||
|
||||
//DVConstraint constraint = DVConstraint.CreateFormulaListConstraint(rangeName);
|
||||
//HSSFDataValidation dataValidate = new HSSFDataValidation(regions, constraint);
|
||||
//dataValidate.CreateErrorBox("输入不合法", "请输入或选择下拉列表中的值。");
|
||||
//dataValidate.ShowPromptBox = true;
|
||||
//sheet.AddValidationData(dataValidate);
|
||||
#endregion
|
||||
|
||||
//高版本excel【XSSFWorkbook】 设置下拉框
|
||||
XSSFSheet sheetDDL = (XSSFSheet)workbook.CreateSheet(sheetname);
|
||||
workbook.SetSheetHidden(sheetIndex, 1); //隐藏下拉框数据sheet
|
||||
String[] datas = ddlList.ToArray(); //下拉框数据源
|
||||
XSSFDataValidationHelper dvHelper = new XSSFDataValidationHelper(sheetDDL);
|
||||
XSSFDataValidationConstraint dvConstraint = (XSSFDataValidationConstraint)dvHelper.CreateExplicitListConstraint(datas);
|
||||
CellRangeAddressList addressList = new CellRangeAddressList(1, 65535, firstcol, lastcol); //下拉设置列
|
||||
XSSFDataValidation validation = (XSSFDataValidation)dvHelper.CreateValidation(dvConstraint, addressList);
|
||||
|
||||
validation.SuppressDropDownArrow = true;
|
||||
validation.ShowErrorBox = true;
|
||||
validation.ShowPromptBox = true;
|
||||
sheet.AddValidationData(validation);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
28
src/AntSK.Domain/Common/Excel/ExeclPropertyAttribute.cs
Normal file
28
src/AntSK.Domain/Common/Excel/ExeclPropertyAttribute.cs
Normal file
@@ -0,0 +1,28 @@
|
||||
using NPOI.SS.UserModel;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain
|
||||
{
|
||||
public class ExeclPropertyAttribute : Attribute
|
||||
{
|
||||
public ExeclPropertyAttribute()
|
||||
{
|
||||
|
||||
}
|
||||
public ExeclPropertyAttribute(string displayName, int order, CellType cellType = CellType.String)
|
||||
{
|
||||
DisplayName = displayName;
|
||||
Order = order;
|
||||
CellType = cellType;
|
||||
}
|
||||
|
||||
public string DisplayName { get; set; }
|
||||
|
||||
public int Order { get; set; }
|
||||
|
||||
public CellType CellType { get; set; }
|
||||
}
|
||||
}
|
||||
@@ -1,4 +1,6 @@
|
||||
using System;
|
||||
using Amazon.Runtime.Internal.Util;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Linq;
|
||||
@@ -7,7 +9,7 @@ using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Common.LLamaFactory
|
||||
{
|
||||
public class ProcessWrapper
|
||||
public class ProcessWrapper(ILogger<ProcessWrapper> _logger)
|
||||
{
|
||||
private Process process;
|
||||
|
||||
@@ -41,7 +43,7 @@ namespace AntSK.Domain.Common.LLamaFactory
|
||||
isProcessComplete = true;
|
||||
}
|
||||
}
|
||||
Console.WriteLine(result);
|
||||
_logger.LogInformation(result);
|
||||
}
|
||||
start.WaitForExit();
|
||||
}
|
||||
|
||||
@@ -5,6 +5,7 @@ using Microsoft.SemanticKernel;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Drawing;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
@@ -13,10 +14,10 @@ namespace AntSK.Domain.Domain.Interface
|
||||
{
|
||||
public interface IChatService
|
||||
{
|
||||
IAsyncEnumerable<StreamingKernelContent> SendChatByAppAsync(Apps app, string questions, ChatHistory history);
|
||||
IAsyncEnumerable<string> SendChatByAppAsync(Apps app, ChatHistory history);
|
||||
|
||||
IAsyncEnumerable<StreamingKernelContent> SendKmsByAppAsync(Apps app, string questions, ChatHistory history, string filePath, List<RelevantSource> relevantSources = null);
|
||||
|
||||
Task<ChatHistory> GetChatHistory(List<MessageInfo> MessageList);
|
||||
Task<string> SendImgByAppAsync(Apps app, string questions);
|
||||
Task<ChatHistory> GetChatHistory(List<Chats> MessageList, ChatHistory history);
|
||||
}
|
||||
}
|
||||
@@ -7,13 +7,13 @@ namespace AntSK.Domain.Domain.Interface
|
||||
{
|
||||
public interface IKMService
|
||||
{
|
||||
MemoryServerless GetMemory(Apps app);
|
||||
MemoryServerless GetMemoryByApp(Apps app);
|
||||
|
||||
MemoryServerless GetMemoryByKMS(string kmsID, SearchClientConfig searchClientConfig = null);
|
||||
MemoryServerless GetMemoryByKMS(string kmsID);
|
||||
|
||||
Task<List<KMFile>> GetDocumentByFileID(string kmsId, string fileId);
|
||||
|
||||
Task<List<RelevantSource>> GetRelevantSourceList(string kmsIdListStr, string msg);
|
||||
Task<List<RelevantSource>> GetRelevantSourceList(Apps app, string msg);
|
||||
|
||||
List<UploadFileItem> FileList { get; }
|
||||
|
||||
|
||||
@@ -6,6 +6,8 @@ namespace AntSK.Domain.Domain.Interface
|
||||
public interface IKernelService
|
||||
{
|
||||
Kernel GetKernelByApp(Apps app);
|
||||
|
||||
Kernel GetKernelByAIModelID(string modelid);
|
||||
void ImportFunctionsByApp(Apps app, Kernel _kernel);
|
||||
Task<string> HistorySummarize(Kernel _kernel, string questions, string history);
|
||||
}
|
||||
|
||||
@@ -9,7 +9,29 @@ namespace AntSK.Domain.Domain.Model.Constant
|
||||
public class KmsConstantcs
|
||||
{
|
||||
public const string KmsIdTag = "kmsid";
|
||||
public const string FileIdTag = "fileid";
|
||||
public const string AppIdTag = "appid";
|
||||
public const string KmsIndex = "kms";
|
||||
public const string FileIndex = "kms";
|
||||
public const string KmsSearchNull="知识库未搜索到相关内容";
|
||||
|
||||
public const string KmsPrompt = @"使用<data></data>标记的内容作为你的知识:
|
||||
<data>
|
||||
{{$doc}}
|
||||
</data>
|
||||
--------------------------
|
||||
回答要求:
|
||||
- 如果你不清楚答案,你需要澄清
|
||||
- 避免提及你是从<data></data>获取的知识
|
||||
- 保持答案与<data></data>众描述一致
|
||||
- 使用Markdown语法优化回答格式。
|
||||
- 如果Markdown有图片则正常显示
|
||||
--------------------------
|
||||
|
||||
历史聊天记录:{{ConversationSummaryPlugin.SummarizeConversation $history}}
|
||||
--------------------------
|
||||
用户问题: {{$input}}";
|
||||
|
||||
public const string KMExcelSplit = "*&antsk_excel&*";
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,6 +8,8 @@ namespace AntSK.Domain.Domain.Model.Dto
|
||||
public string Text { get; set; }
|
||||
public float Relevance { get; set; }
|
||||
|
||||
public double RerankScore { get; set; }
|
||||
|
||||
public override string ToString()
|
||||
{
|
||||
return $"[file:{SourceName};Relevance:{(Relevance * 100):F2}%]:{Text}";
|
||||
|
||||
@@ -21,12 +21,18 @@ namespace AntSK.Domain.Domain.Model.Enum
|
||||
|
||||
[Display(Name = "灵积大模型")]
|
||||
DashScope = 5,
|
||||
|
||||
|
||||
[Display(Name = "LLamaFactory")]
|
||||
LLamaFactory = 6,
|
||||
|
||||
[Display(Name = "Bge Embedding")]
|
||||
BgeEmbedding = 7,
|
||||
[Display(Name = "Bge Rerank")]
|
||||
BgeRerank = 8,
|
||||
[Display(Name = "StableDiffusion")]
|
||||
StableDiffusion = 9,
|
||||
[Display(Name = "模拟输出")]
|
||||
Mock = 100,
|
||||
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@@ -36,5 +42,7 @@ namespace AntSK.Domain.Domain.Model.Enum
|
||||
{
|
||||
Chat = 1,
|
||||
Embedding = 2,
|
||||
Image=3,
|
||||
Rerank=4
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9,6 +9,7 @@ namespace AntSK.Domain.Domain.Model.Enum
|
||||
public enum AppType
|
||||
{
|
||||
chat = 1,
|
||||
kms = 2
|
||||
kms = 2,
|
||||
img=3
|
||||
}
|
||||
}
|
||||
|
||||
17
src/AntSK.Domain/Domain/Model/Excel/KMSExcelModel.cs
Normal file
17
src/AntSK.Domain/Domain/Model/Excel/KMSExcelModel.cs
Normal file
@@ -0,0 +1,17 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Domain.Model.Excel
|
||||
{
|
||||
public class KMSExcelModel
|
||||
{
|
||||
[ExeclProperty("问题",0)]
|
||||
public string Question { get; set; }
|
||||
|
||||
[ExeclProperty("答案", 1)]
|
||||
public string Answer { get; set; }
|
||||
}
|
||||
}
|
||||
@@ -17,11 +17,14 @@ namespace AntSK.Domain.Domain.Model
|
||||
public string FilePath { get; set; } = "";
|
||||
|
||||
public string FileName { get; set; } = "";
|
||||
|
||||
public bool IsQA { get; set; } = false;
|
||||
}
|
||||
|
||||
|
||||
public class ImportKMSTaskReq : ImportKMSTaskDTO
|
||||
{
|
||||
public bool IsQA { get; set; }=false;
|
||||
public KmsDetails KmsDetail { get; set; } = new KmsDetails();
|
||||
}
|
||||
|
||||
@@ -29,6 +32,13 @@ namespace AntSK.Domain.Domain.Model
|
||||
{
|
||||
File = 1,
|
||||
Url = 2,
|
||||
Text = 3
|
||||
Text = 3,
|
||||
Excel=4
|
||||
}
|
||||
|
||||
public class QAModel
|
||||
{
|
||||
public string ChatModelId { get; set; }
|
||||
public string Context { get; set; }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,20 +0,0 @@
|
||||
namespace AntSK.Domain.Domain.Model
|
||||
{
|
||||
public class MessageInfo
|
||||
{
|
||||
public string ID { get; set; } = "";
|
||||
public string Context { get; set; } = "";
|
||||
public string HtmlAnswers { get; set; } = "";
|
||||
|
||||
/// <summary>
|
||||
/// 发送是true 接收是false
|
||||
/// </summary>
|
||||
public bool IsSend { get; set; } = false;
|
||||
|
||||
public DateTime CreateTime { get; set; }
|
||||
|
||||
public string? FilePath { get; set; }
|
||||
|
||||
public string? FileName { get; set; }
|
||||
}
|
||||
}
|
||||
@@ -1,27 +1,31 @@
|
||||
using AntSK.BackgroundTask;
|
||||
using Amazon.Runtime.Internal.Util;
|
||||
using AntSK.BackgroundTask;
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Model;
|
||||
using Microsoft.Extensions.DependencyInjection;
|
||||
using Microsoft.Extensions.Logging;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other
|
||||
{
|
||||
public class BackGroundTaskHandler : IBackgroundTaskHandler<ImportKMSTaskReq>
|
||||
{
|
||||
private readonly IServiceScopeFactory _scopeFactory;
|
||||
private readonly ILogger<BackGroundTaskHandler> _logger;
|
||||
|
||||
public BackGroundTaskHandler(IServiceScopeFactory scopeFactory)
|
||||
public BackGroundTaskHandler(IServiceScopeFactory scopeFactory, ILogger<BackGroundTaskHandler> logger)
|
||||
{
|
||||
_scopeFactory = scopeFactory;
|
||||
_logger = logger;
|
||||
}
|
||||
public async Task ExecuteAsync(ImportKMSTaskReq item)
|
||||
{
|
||||
using (var scope = _scopeFactory.CreateScope())
|
||||
{
|
||||
Console.WriteLine("ExecuteAsync.开始执行后台任务");
|
||||
_logger.LogInformation("ExecuteAsync.开始执行后台任务");
|
||||
var importKMSService = scope.ServiceProvider.GetRequiredService<IImportKMSService>();
|
||||
//不能使用异步
|
||||
importKMSService.ImportKMSTask(item);
|
||||
Console.WriteLine("ExecuteAsync.后台任务执行完成");
|
||||
_logger.LogInformation("ExecuteAsync.后台任务执行完成");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
81
src/AntSK.Domain/Domain/Other/Bge/BegRerankConfig.cs
Normal file
81
src/AntSK.Domain/Domain/Other/Bge/BegRerankConfig.cs
Normal file
@@ -0,0 +1,81 @@
|
||||
using Newtonsoft.Json;
|
||||
using Python.Runtime;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using static Python.Runtime.Py;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other.Bge
|
||||
{
|
||||
public static class BegRerankConfig
|
||||
{
|
||||
public static dynamic model { get; set; }
|
||||
|
||||
static object lockobj = new object();
|
||||
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 模型写死
|
||||
/// </summary>
|
||||
public static dynamic LoadModel(string pythondllPath, string modelName)
|
||||
{
|
||||
lock (lockobj)
|
||||
{
|
||||
if (model == null)
|
||||
{
|
||||
if (string.IsNullOrEmpty(Runtime.PythonDLL))
|
||||
{
|
||||
Runtime.PythonDLL = pythondllPath;
|
||||
}
|
||||
PythonEngine.Initialize();
|
||||
try
|
||||
{
|
||||
using (GIL())// 初始化Python环境的Global Interpreter Lock)
|
||||
{
|
||||
dynamic modelscope = Py.Import("modelscope");
|
||||
dynamic flagEmbedding = Py.Import("FlagEmbedding");
|
||||
|
||||
dynamic model_dir = modelscope.snapshot_download(modelName, revision: "master");
|
||||
dynamic flagReranker = flagEmbedding.FlagReranker(model_dir, use_fp16: true);
|
||||
model = flagReranker;
|
||||
return model;
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return model;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public static double Rerank(List<string> list)
|
||||
{
|
||||
using (GIL())
|
||||
{
|
||||
try
|
||||
{
|
||||
PyList pyList = new PyList();
|
||||
foreach (string item in list)
|
||||
{
|
||||
pyList.Append(item.ToPython()); // 将C# string转换为Python对象并添加到PyList中
|
||||
}
|
||||
PyObject result = model.compute_score(pyList, normalize: true);
|
||||
return result.As<double>();
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
99
src/AntSK.Domain/Domain/Other/Bge/BgeEmbeddingConfig.cs
Normal file
99
src/AntSK.Domain/Domain/Other/Bge/BgeEmbeddingConfig.cs
Normal file
@@ -0,0 +1,99 @@
|
||||
using Microsoft.KernelMemory.AI.OpenAI;
|
||||
using Microsoft.KernelMemory.AI.OpenAI.GPT3;
|
||||
using Python.Runtime;
|
||||
using Serilog;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using static Python.Runtime.Py;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other.Bge
|
||||
{
|
||||
public static class BgeEmbeddingConfig
|
||||
{
|
||||
public static dynamic model { get; set; }
|
||||
|
||||
static object lockobj = new object();
|
||||
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 模型写死
|
||||
/// </summary>
|
||||
public static dynamic LoadModel(string pythondllPath, string modelName)
|
||||
{
|
||||
lock (lockobj)
|
||||
{
|
||||
if (model == null)
|
||||
{
|
||||
//Runtime.PythonDLL = @"D:\Programs\Python\Python311\python311.dll";
|
||||
if (string.IsNullOrEmpty(Runtime.PythonDLL))
|
||||
{
|
||||
Runtime.PythonDLL = pythondllPath;
|
||||
}
|
||||
PythonEngine.Initialize();
|
||||
PythonEngine.BeginAllowThreads();
|
||||
try
|
||||
{
|
||||
using (GIL())// 初始化Python环境的Global Interpreter Lock)
|
||||
{
|
||||
dynamic modelscope = Import("modelscope");
|
||||
//dynamic model_dir = modelscope.snapshot_download("AI-ModelScope/bge-large-zh-v1.5", revision: "master");
|
||||
dynamic model_dir = modelscope.snapshot_download(modelName, revision: "master");
|
||||
dynamic HuggingFaceBgeEmbeddingstemp = Import("langchain_community.embeddings.huggingface");
|
||||
dynamic HuggingFaceBgeEmbeddings = HuggingFaceBgeEmbeddingstemp.HuggingFaceBgeEmbeddings;
|
||||
string model_name = model_dir;
|
||||
dynamic model_kwargs = new PyDict();
|
||||
model_kwargs["device"] = new PyString("cpu");
|
||||
dynamic hugginmodel = HuggingFaceBgeEmbeddings(
|
||||
model_name: model_dir,
|
||||
model_kwargs: model_kwargs
|
||||
);
|
||||
model = hugginmodel;
|
||||
return hugginmodel;
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
}
|
||||
else
|
||||
return model;
|
||||
}
|
||||
}
|
||||
|
||||
public static Task<float[]> GetEmbedding(string queryStr)
|
||||
{
|
||||
using (GIL())
|
||||
{
|
||||
PyObject queryResult = model.embed_query(queryStr);
|
||||
var floatList = queryResult.As<float[]>();
|
||||
return Task.FromResult(floatList); ;
|
||||
}
|
||||
}
|
||||
|
||||
public static int TokenCount(string queryStr)
|
||||
{
|
||||
//using (Py.GIL())
|
||||
//{
|
||||
// PyObject queryResult = model.client.tokenize(queryStr);
|
||||
// // 使用Python的内置len()函数获取长度
|
||||
// PyObject lenFunc = Py.Import("builtins").GetAttr("len");
|
||||
// PyObject length = lenFunc.Invoke(queryResult["input_ids"]);
|
||||
// int len = length.As<int>(); // 将PyObject转换为C#中的整数
|
||||
// return len;
|
||||
|
||||
//}
|
||||
var tokenCount1 = DefaultGPTTokenizer.StaticCountTokens(queryStr);
|
||||
return tokenCount1;
|
||||
}
|
||||
|
||||
public static void Dispose()
|
||||
{
|
||||
Log.Information("python dispose");
|
||||
}
|
||||
}
|
||||
}
|
||||
157
src/AntSK.Domain/Domain/Other/KMExcelHandler.cs
Normal file
157
src/AntSK.Domain/Domain/Other/KMExcelHandler.cs
Normal file
@@ -0,0 +1,157 @@
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using AntSK.Domain.Utils;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Microsoft.KernelMemory.AI.OpenAI;
|
||||
using Microsoft.KernelMemory.Configuration;
|
||||
using Microsoft.KernelMemory.DataFormats.Text;
|
||||
using Microsoft.KernelMemory.Diagnostics;
|
||||
using Microsoft.KernelMemory.Extensions;
|
||||
using Microsoft.KernelMemory.Pipeline;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other
|
||||
{
|
||||
public class KMExcelHandler: IPipelineStepHandler
|
||||
{
|
||||
private readonly TextPartitioningOptions _options;
|
||||
private readonly IPipelineOrchestrator _orchestrator;
|
||||
private readonly ILogger<KMExcelHandler> _log;
|
||||
private readonly TextChunker.TokenCounter _tokenCounter;
|
||||
|
||||
public KMExcelHandler(
|
||||
string stepName,
|
||||
IPipelineOrchestrator orchestrator,
|
||||
TextPartitioningOptions? options = null,
|
||||
ILogger<KMExcelHandler>? log = null)
|
||||
{
|
||||
this.StepName = stepName;
|
||||
this._orchestrator = orchestrator;
|
||||
this._options = options ?? new TextPartitioningOptions();
|
||||
this._options.Validate();
|
||||
|
||||
this._log = log ?? DefaultLogger<KMExcelHandler>.Instance;
|
||||
this._tokenCounter = DefaultGPTTokenizer.StaticCountTokens;
|
||||
}
|
||||
|
||||
/// <inheritdoc />
|
||||
public string StepName { get; }
|
||||
|
||||
/// <inheritdoc />
|
||||
public async Task<(bool success, DataPipeline updatedPipeline)> InvokeAsync(
|
||||
DataPipeline pipeline, CancellationToken cancellationToken = default)
|
||||
{
|
||||
this._log.LogDebug("Partitioning text, pipeline '{0}/{1}'", pipeline.Index, pipeline.DocumentId);
|
||||
|
||||
if (pipeline.Files.Count == 0)
|
||||
{
|
||||
this._log.LogWarning("Pipeline '{0}/{1}': there are no files to process, moving to next pipeline step.", pipeline.Index, pipeline.DocumentId);
|
||||
return (true, pipeline);
|
||||
}
|
||||
|
||||
foreach (DataPipeline.FileDetails uploadedFile in pipeline.Files)
|
||||
{
|
||||
// Track new files being generated (cannot edit originalFile.GeneratedFiles while looping it)
|
||||
Dictionary<string, DataPipeline.GeneratedFileDetails> newFiles = new();
|
||||
|
||||
foreach (KeyValuePair<string, DataPipeline.GeneratedFileDetails> generatedFile in uploadedFile.GeneratedFiles)
|
||||
{
|
||||
var file = generatedFile.Value;
|
||||
if (file.AlreadyProcessedBy(this))
|
||||
{
|
||||
this._log.LogTrace("File {0} already processed by this handler", file.Name);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Partition only the original text
|
||||
if (file.ArtifactType != DataPipeline.ArtifactTypes.ExtractedText)
|
||||
{
|
||||
this._log.LogTrace("Skipping file {0} (not original text)", file.Name);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Use a different partitioning strategy depending on the file type
|
||||
List<string> partitions;
|
||||
List<string> sentences;
|
||||
BinaryData partitionContent = await this._orchestrator.ReadFileAsync(pipeline, file.Name, cancellationToken).ConfigureAwait(false);
|
||||
|
||||
// Skip empty partitions. Also: partitionContent.ToString() throws an exception if there are no bytes.
|
||||
if (partitionContent.ToArray().Length == 0) { continue; }
|
||||
|
||||
switch (file.MimeType)
|
||||
{
|
||||
case MimeTypes.PlainText:
|
||||
{
|
||||
this._log.LogDebug("Partitioning text file {0}", file.Name);
|
||||
string content = partitionContent.ToString();
|
||||
var excelList = content.Split(KmsConstantcs.KMExcelSplit, StringSplitOptions.RemoveEmptyEntries).ToList();
|
||||
sentences = excelList;
|
||||
partitions = excelList;
|
||||
break;
|
||||
}
|
||||
|
||||
case MimeTypes.MarkDown:
|
||||
{
|
||||
this._log.LogDebug("Partitioning text file {0}", file.Name);
|
||||
string content = partitionContent.ToString();
|
||||
var excelList = content.Split(KmsConstantcs.KMExcelSplit, StringSplitOptions.RemoveEmptyEntries).ToList();
|
||||
sentences = excelList;
|
||||
partitions = excelList;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
this._log.LogWarning("File {0} cannot be partitioned, type '{1}' not supported", file.Name, file.MimeType);
|
||||
// Don't partition other files
|
||||
continue;
|
||||
}
|
||||
|
||||
if (partitions.Count == 0) { continue; }
|
||||
|
||||
this._log.LogDebug("Saving {0} file partitions", partitions.Count);
|
||||
for (int partitionNumber = 0; partitionNumber < partitions.Count; partitionNumber++)
|
||||
{
|
||||
// TODO: turn partitions in objects with more details, e.g. page number
|
||||
string text = partitions[partitionNumber];
|
||||
int sectionNumber = 0; // TODO: use this to store the page number (if any)
|
||||
BinaryData textData = new(text);
|
||||
|
||||
int tokenCount = this._tokenCounter(text);
|
||||
this._log.LogDebug("Partition size: {0} tokens", tokenCount);
|
||||
|
||||
var destFile = uploadedFile.GetPartitionFileName(partitionNumber);
|
||||
await this._orchestrator.WriteFileAsync(pipeline, destFile, textData, cancellationToken).ConfigureAwait(false);
|
||||
|
||||
var destFileDetails = new DataPipeline.GeneratedFileDetails
|
||||
{
|
||||
Id = Guid.NewGuid().ToString("N"),
|
||||
ParentId = uploadedFile.Id,
|
||||
Name = destFile,
|
||||
Size = text.Length,
|
||||
MimeType = MimeTypes.PlainText,
|
||||
ArtifactType = DataPipeline.ArtifactTypes.TextPartition,
|
||||
PartitionNumber = partitionNumber,
|
||||
SectionNumber = sectionNumber,
|
||||
Tags = pipeline.Tags,
|
||||
ContentSHA256 = textData.AntSKCalculateSHA256(),
|
||||
};
|
||||
newFiles.Add(destFile, destFileDetails);
|
||||
destFileDetails.MarkProcessedBy(this);
|
||||
}
|
||||
|
||||
file.MarkProcessedBy(this);
|
||||
}
|
||||
|
||||
// Add new files to pipeline status
|
||||
foreach (var file in newFiles)
|
||||
{
|
||||
uploadedFile.GeneratedFiles.Add(file.Key, file.Value);
|
||||
}
|
||||
}
|
||||
|
||||
return (true, pipeline);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,4 +1,5 @@
|
||||
using LLama;
|
||||
using AntSK.Domain.Options;
|
||||
using LLama;
|
||||
using LLama.Common;
|
||||
using LLamaSharp.KernelMemory;
|
||||
|
||||
@@ -29,10 +30,10 @@ namespace AntSK.Domain.Domain.Other
|
||||
}
|
||||
var parameters = new ModelParams(lsConfig.ModelPath)
|
||||
{
|
||||
ContextSize = lsConfig?.ContextSize ?? 2048,
|
||||
ContextSize = LLamaSharpOption.ContextSize ?? 2048,
|
||||
Seed = lsConfig?.Seed ?? 0,
|
||||
GpuLayerCount = lsConfig?.GpuLayerCount ?? 20,
|
||||
EmbeddingMode = true
|
||||
GpuLayerCount = LLamaSharpOption.GpuLayerCount ?? 20,
|
||||
Embeddings = true
|
||||
};
|
||||
var weights = LLamaWeights.LoadFromFile(parameters);
|
||||
dicLLamaWeights.Add(modelPath, (weights, parameters));
|
||||
|
||||
173
src/AntSK.Domain/Domain/Other/QAHandler.cs
Normal file
173
src/AntSK.Domain/Domain/Other/QAHandler.cs
Normal file
@@ -0,0 +1,173 @@
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Model;
|
||||
using AntSK.Domain.Utils;
|
||||
using Microsoft.Extensions.Configuration;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Microsoft.KernelMemory.AI.OpenAI;
|
||||
using Microsoft.KernelMemory.Configuration;
|
||||
using Microsoft.KernelMemory.DataFormats.Text;
|
||||
using Microsoft.KernelMemory.Diagnostics;
|
||||
using Microsoft.KernelMemory.Extensions;
|
||||
using Microsoft.KernelMemory.Pipeline;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Newtonsoft.Json;
|
||||
using RestSharp;
|
||||
using System.Security.Policy;
|
||||
using System.Text;
|
||||
using System.Text.RegularExpressions;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other
|
||||
{
|
||||
public class QAHandler : IPipelineStepHandler
|
||||
{
|
||||
private readonly TextPartitioningOptions _options;
|
||||
private readonly IPipelineOrchestrator _orchestrator;
|
||||
private readonly ILogger<QAHandler> _log;
|
||||
private readonly TextChunker.TokenCounter _tokenCounter;
|
||||
private readonly IKernelService _kernelService;
|
||||
public QAHandler(
|
||||
string stepName,
|
||||
IPipelineOrchestrator orchestrator,
|
||||
IKernelService kernelService,
|
||||
TextPartitioningOptions? options = null,
|
||||
ILogger<QAHandler>? log = null
|
||||
)
|
||||
{
|
||||
this.StepName = stepName;
|
||||
this._orchestrator = orchestrator;
|
||||
this._options = options ?? new TextPartitioningOptions();
|
||||
this._options.Validate();
|
||||
|
||||
this._log = log ?? DefaultLogger<QAHandler>.Instance;
|
||||
this._tokenCounter = DefaultGPTTokenizer.StaticCountTokens;
|
||||
this._kernelService = kernelService;
|
||||
}
|
||||
|
||||
/// <inheritdoc />
|
||||
public string StepName { get; }
|
||||
|
||||
/// <inheritdoc />
|
||||
public async Task<(bool success, DataPipeline updatedPipeline)> InvokeAsync(
|
||||
DataPipeline pipeline, CancellationToken cancellationToken = default)
|
||||
{
|
||||
this._log.LogDebug("Partitioning text, pipeline '{0}/{1}'", pipeline.Index, pipeline.DocumentId);
|
||||
|
||||
if (pipeline.Files.Count == 0)
|
||||
{
|
||||
this._log.LogWarning("Pipeline '{0}/{1}': there are no files to process, moving to next pipeline step.", pipeline.Index, pipeline.DocumentId);
|
||||
return (true, pipeline);
|
||||
}
|
||||
|
||||
foreach (DataPipeline.FileDetails uploadedFile in pipeline.Files)
|
||||
{
|
||||
// Track new files being generated (cannot edit originalFile.GeneratedFiles while looping it)
|
||||
Dictionary<string, DataPipeline.GeneratedFileDetails> newFiles = new();
|
||||
|
||||
foreach (KeyValuePair<string, DataPipeline.GeneratedFileDetails> generatedFile in uploadedFile.GeneratedFiles)
|
||||
{
|
||||
var file = generatedFile.Value;
|
||||
if (file.AlreadyProcessedBy(this))
|
||||
{
|
||||
this._log.LogTrace("File {0} already processed by this handler", file.Name);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Partition only the original text
|
||||
if (file.ArtifactType != DataPipeline.ArtifactTypes.ExtractedText)
|
||||
{
|
||||
this._log.LogTrace("Skipping file {0} (not original text)", file.Name);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Use a different partitioning strategy depending on the file type
|
||||
List<string> partitions;
|
||||
List<string> sentences;
|
||||
BinaryData partitionContent = await this._orchestrator.ReadFileAsync(pipeline, file.Name, cancellationToken).ConfigureAwait(false);
|
||||
|
||||
// Skip empty partitions. Also: partitionContent.ToString() throws an exception if there are no bytes.
|
||||
if (partitionContent.ToArray().Length == 0) { continue; }
|
||||
|
||||
switch (file.MimeType)
|
||||
{
|
||||
case MimeTypes.PlainText:
|
||||
case MimeTypes.MarkDown:
|
||||
{
|
||||
this._log.LogDebug("Partitioning text file {0}", file.Name);
|
||||
string content = partitionContent.ToString();
|
||||
|
||||
var kernel = _kernelService.GetKernelByAIModelID(StepName);
|
||||
var lines = TextChunker.SplitPlainTextLines(content, 299);
|
||||
var paragraphs = TextChunker.SplitPlainTextParagraphs(lines, 3000);
|
||||
KernelFunction jsonFun = kernel.Plugins.GetFunction("KMSPlugin", "QA");
|
||||
|
||||
List<string> qaList = new List<string>();
|
||||
foreach (var para in paragraphs)
|
||||
{
|
||||
var qaresult = await kernel.InvokeAsync(function: jsonFun, new KernelArguments() { ["input"] = para });
|
||||
var qaListStr = qaresult.GetValue<string>().ConvertToString();
|
||||
|
||||
string pattern = @"Q\d+:.*?A\d+:.*?(?=(Q\d+:|$))";
|
||||
RegexOptions options = RegexOptions.Singleline;
|
||||
|
||||
foreach (Match match in Regex.Matches(qaListStr, pattern, options))
|
||||
{
|
||||
qaList.Add(match.Value.Trim()); // Trim用于删除可能的首尾空格
|
||||
}
|
||||
}
|
||||
sentences = qaList;
|
||||
partitions = qaList;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
this._log.LogWarning("File {0} cannot be partitioned, type '{1}' not supported", file.Name, file.MimeType);
|
||||
// Don't partition other files
|
||||
continue;
|
||||
}
|
||||
|
||||
if (partitions.Count == 0) { continue; }
|
||||
|
||||
this._log.LogDebug("Saving {0} file partitions", partitions.Count);
|
||||
for (int partitionNumber = 0; partitionNumber < partitions.Count; partitionNumber++)
|
||||
{
|
||||
// TODO: turn partitions in objects with more details, e.g. page number
|
||||
string text = partitions[partitionNumber];
|
||||
int sectionNumber = 0; // TODO: use this to store the page number (if any)
|
||||
BinaryData textData = new(text);
|
||||
|
||||
int tokenCount = this._tokenCounter(text);
|
||||
this._log.LogDebug("Partition size: {0} tokens", tokenCount);
|
||||
|
||||
var destFile = uploadedFile.GetPartitionFileName(partitionNumber);
|
||||
await this._orchestrator.WriteFileAsync(pipeline, destFile, textData, cancellationToken).ConfigureAwait(false);
|
||||
|
||||
var destFileDetails = new DataPipeline.GeneratedFileDetails
|
||||
{
|
||||
Id = Guid.NewGuid().ToString("N"),
|
||||
ParentId = uploadedFile.Id,
|
||||
Name = destFile,
|
||||
Size = text.Length,
|
||||
MimeType = MimeTypes.PlainText,
|
||||
ArtifactType = DataPipeline.ArtifactTypes.TextPartition,
|
||||
PartitionNumber = partitionNumber,
|
||||
SectionNumber = sectionNumber,
|
||||
Tags = pipeline.Tags,
|
||||
ContentSHA256 = textData.AntSKCalculateSHA256(),
|
||||
};
|
||||
newFiles.Add(destFile, destFileDetails);
|
||||
destFileDetails.MarkProcessedBy(this);
|
||||
}
|
||||
|
||||
file.MarkProcessedBy(this);
|
||||
}
|
||||
|
||||
// Add new files to pipeline status
|
||||
foreach (var file in newFiles)
|
||||
{
|
||||
uploadedFile.GeneratedFiles.Add(file.Key, file.Value);
|
||||
}
|
||||
}
|
||||
|
||||
return (true, pipeline);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,21 +1,23 @@
|
||||
using AntSK.Domain.Common.DependencyInjection;
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Repositories;
|
||||
using Microsoft.SemanticKernel.Connectors.OpenAI;
|
||||
using Microsoft.SemanticKernel;
|
||||
using System.Text;
|
||||
using AntSK.Domain.Utils;
|
||||
using AntSK.Domain.Domain.Model.Dto;
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using DocumentFormat.OpenXml.Drawing;
|
||||
using System.Reflection.Metadata;
|
||||
using Microsoft.KernelMemory;
|
||||
using System.Collections.Generic;
|
||||
using Markdig;
|
||||
using ChatHistory = Microsoft.SemanticKernel.ChatCompletion.ChatHistory;
|
||||
using Microsoft.SemanticKernel.Plugins.Core;
|
||||
using Azure.Core;
|
||||
using AntSK.Domain.Domain.Model;
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using AntSK.Domain.Domain.Model.Dto;
|
||||
using AntSK.Domain.Domain.Other.Bge;
|
||||
using AntSK.Domain.Repositories;
|
||||
using AntSK.Domain.Utils;
|
||||
using AntSK.LLM.StableDiffusion;
|
||||
using Markdig;
|
||||
using Microsoft.KernelMemory;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel.Connectors.OpenAI;
|
||||
using System.Diagnostics;
|
||||
using System.Drawing;
|
||||
using System.Runtime.InteropServices;
|
||||
using System.Text;
|
||||
using System.Text.RegularExpressions;
|
||||
using ChatHistory = Microsoft.SemanticKernel.ChatCompletion.ChatHistory;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -23,7 +25,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
public class ChatService(
|
||||
IKernelService _kernelService,
|
||||
IKMService _kMService,
|
||||
IKmsDetails_Repositories _kmsDetails_Repositories
|
||||
IKmsDetails_Repositories _kmsDetails_Repositories,
|
||||
IAIModels_Repositories _aIModels_Repositories
|
||||
) : IChatService
|
||||
{
|
||||
/// <summary>
|
||||
@@ -33,87 +36,183 @@ namespace AntSK.Domain.Domain.Service
|
||||
/// <param name="questions"></param>
|
||||
/// <param name="history"></param>
|
||||
/// <returns></returns>
|
||||
public async IAsyncEnumerable<StreamingKernelContent> SendChatByAppAsync(Apps app, string questions, ChatHistory history)
|
||||
public async IAsyncEnumerable<string> SendChatByAppAsync(Apps app, ChatHistory history)
|
||||
{
|
||||
|
||||
if (string.IsNullOrEmpty(app.Prompt) || !app.Prompt.Contains("{{$input}}"))
|
||||
{
|
||||
//如果模板为空,给默认提示词
|
||||
app.Prompt = app.Prompt.ConvertToString() + "{{$input}}";
|
||||
}
|
||||
KernelArguments args =new KernelArguments();
|
||||
if (history.Count > 10)
|
||||
{
|
||||
app.Prompt = @"${{ConversationSummaryPlugin.SummarizeConversation $history}}" + app.Prompt;
|
||||
args = new() {
|
||||
{ "history", string.Join("\n", history.Select(x => x.Role + ": " + x.Content)) },
|
||||
{ "input", questions }
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
args=new()
|
||||
{
|
||||
{ "input", $"{string.Join("\n", history.Select(x => x.Role + ": " + x.Content))}{Environment.NewLine} user:{questions}" }
|
||||
};
|
||||
}
|
||||
|
||||
var _kernel = _kernelService.GetKernelByApp(app);
|
||||
var chat = _kernel.GetRequiredService<IChatCompletionService>();
|
||||
var temperature = app.Temperature / 100;//存的是0~100需要缩小
|
||||
OpenAIPromptExecutionSettings settings = new() { Temperature = temperature };
|
||||
List<string> completionList = new List<string>();
|
||||
if (!string.IsNullOrEmpty(app.ApiFunctionList) || !string.IsNullOrEmpty(app.NativeFunctionList))//这里还需要加上本地插件的
|
||||
{
|
||||
_kernelService.ImportFunctionsByApp(app, _kernel);
|
||||
settings.ToolCallBehavior = ToolCallBehavior.AutoInvokeKernelFunctions;
|
||||
settings.ToolCallBehavior = ToolCallBehavior.EnableKernelFunctions;
|
||||
while (true)
|
||||
{
|
||||
ChatMessageContent result = await chat.GetChatMessageContentAsync(history, settings, _kernel);
|
||||
if (result.Content is not null)
|
||||
{
|
||||
string chunkCompletion = result.Content.ConvertToString();
|
||||
completionList.Add(chunkCompletion);
|
||||
foreach (var content in completionList)
|
||||
{
|
||||
yield return content.ConvertToString();
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
history.Add(result);
|
||||
|
||||
IEnumerable<FunctionCallContent> functionCalls = FunctionCallContent.GetFunctionCalls(result);
|
||||
if (!functionCalls.Any())
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
foreach (var functionCall in functionCalls)
|
||||
{
|
||||
FunctionResultContent resultContent = await functionCall.InvokeAsync(_kernel);
|
||||
|
||||
history.Add(resultContent.ToChatMessage());
|
||||
}
|
||||
}
|
||||
}
|
||||
var func = _kernel.CreateFunctionFromPrompt(app.Prompt, settings);
|
||||
var chatResult = _kernel.InvokeStreamingAsync(function: func,
|
||||
arguments: args);
|
||||
await foreach (var content in chatResult)
|
||||
else
|
||||
{
|
||||
yield return content;
|
||||
var chatResult = chat.GetStreamingChatMessageContentsAsync(history, settings, _kernel);
|
||||
await foreach (var content in chatResult)
|
||||
{
|
||||
yield return content.ConvertToString();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public async IAsyncEnumerable<StreamingKernelContent> SendKmsByAppAsync(Apps app, string questions, ChatHistory history, string filePath, List<RelevantSource> relevantSources = null)
|
||||
{
|
||||
var relevantSourceList = await _kMService.GetRelevantSourceList(app.KmsIdList, questions);
|
||||
relevantSources?.Clear();
|
||||
var relevantSourceList = await _kMService.GetRelevantSourceList(app, questions);
|
||||
var _kernel = _kernelService.GetKernelByApp(app);
|
||||
if (!string.IsNullOrWhiteSpace(filePath))
|
||||
{
|
||||
var memory = _kMService.GetMemory(app);
|
||||
var fileId = Guid.NewGuid().ToString();
|
||||
var result = await memory.ImportDocumentAsync(new Microsoft.KernelMemory.Document(fileId).AddFile(filePath)
|
||||
.AddTag(KmsConstantcs.KmsIdTag, app.Id)
|
||||
, index: KmsConstantcs.KmsIndex);
|
||||
var memory = _kMService.GetMemoryByApp(app);
|
||||
|
||||
var filters = new MemoryFilter().ByTag(KmsConstantcs.KmsIdTag, app.Id);
|
||||
// 匹配GUID的正则表达式
|
||||
string pattern = @"\b[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}\b";
|
||||
|
||||
var searchResult = await memory.SearchAsync(questions, index: KmsConstantcs.KmsIndex, filters: [filters]);
|
||||
relevantSourceList.AddRange(searchResult.Results.SelectMany(item => item.Partitions.Select(part => new RelevantSource()
|
||||
// 使用正则表达式找到匹配
|
||||
Match match = Regex.Match(filePath, pattern);
|
||||
if (match.Success)
|
||||
{
|
||||
SourceName = item.SourceName,
|
||||
Text = Markdown.ToHtml(part.Text),
|
||||
Relevance = part.Relevance
|
||||
})));
|
||||
var fileId = match.Value;
|
||||
|
||||
var status=await memory.IsDocumentReadyAsync(fileId, index: KmsConstantcs.KmsIndex);
|
||||
if (!status)
|
||||
{
|
||||
var result = await memory.ImportDocumentAsync(new Document(fileId).AddFile(filePath)
|
||||
.AddTag(KmsConstantcs.AppIdTag, app.Id)
|
||||
.AddTag(KmsConstantcs.FileIdTag, fileId)
|
||||
, index: KmsConstantcs.FileIndex);
|
||||
}
|
||||
|
||||
var filters = new List<MemoryFilter>() {
|
||||
new MemoryFilter().ByTag(KmsConstantcs.AppIdTag, app.Id),
|
||||
new MemoryFilter().ByTag(KmsConstantcs.FileIdTag, fileId)
|
||||
};
|
||||
|
||||
var searchResult = await memory.SearchAsync(questions, index: KmsConstantcs.FileIndex, filters: filters);
|
||||
relevantSourceList.AddRange(searchResult.Results.SelectMany(item => item.Partitions.Select(part => new RelevantSource()
|
||||
{
|
||||
SourceName = item.SourceName,
|
||||
Text = Markdown.ToHtml(part.Text),
|
||||
Relevance = part.Relevance
|
||||
})));
|
||||
app.Prompt = KmsConstantcs.KmsPrompt;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
var dataMsg = new StringBuilder();
|
||||
if (relevantSourceList.Any())
|
||||
{
|
||||
relevantSources?.AddRange(relevantSourceList);
|
||||
if (!string.IsNullOrEmpty(app.RerankModelID))
|
||||
{
|
||||
var rerankModel=_aIModels_Repositories.GetById(app.RerankModelID);
|
||||
BegRerankConfig.LoadModel(rerankModel.EndPoint, rerankModel.ModelName);
|
||||
//进行rerank
|
||||
foreach (var item in relevantSourceList)
|
||||
{
|
||||
List<string> rerank = new List<string>();
|
||||
rerank.Add(questions);
|
||||
rerank.Add(item.Text);
|
||||
item.RerankScore = BegRerankConfig.Rerank(rerank);
|
||||
|
||||
}
|
||||
relevantSourceList = relevantSourceList.OrderByDescending(p => p.RerankScore).Take(app.MaxMatchesCount).ToList();
|
||||
}
|
||||
|
||||
bool isSearch = false;
|
||||
foreach (var item in relevantSourceList)
|
||||
{
|
||||
dataMsg.AppendLine(item.ToString());
|
||||
if (!string.IsNullOrEmpty(app.RerankModelID))
|
||||
{
|
||||
//匹配重排后相似度
|
||||
if (item.RerankScore >= app.Relevance / 100)
|
||||
{
|
||||
dataMsg.AppendLine(item.ToString());
|
||||
isSearch = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
//匹配相似度
|
||||
if (item.Relevance >= app.Relevance / 100)
|
||||
{
|
||||
dataMsg.AppendLine(item.ToString());
|
||||
isSearch = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
KernelFunction jsonFun = _kernel.Plugins.GetFunction("KMSPlugin", "Ask1");
|
||||
var chatResult = _kernel.InvokeStreamingAsync(function: jsonFun,
|
||||
arguments: new KernelArguments() { ["doc"] = dataMsg, ["history"] = string.Join("\n", history.Select(x => x.Role + ": " + x.Content)), ["questions"] = questions });
|
||||
|
||||
await foreach (var content in chatResult)
|
||||
//处理markdown显示
|
||||
relevantSources?.AddRange(relevantSourceList);
|
||||
Dictionary<string, string> fileDic = new Dictionary<string, string>();
|
||||
foreach (var item in relevantSourceList)
|
||||
{
|
||||
yield return content;
|
||||
if (fileDic.ContainsKey(item.SourceName))
|
||||
{
|
||||
item.SourceName = fileDic[item.SourceName];
|
||||
}
|
||||
else
|
||||
{
|
||||
var fileDetail = _kmsDetails_Repositories.GetFirst(p => p.FileGuidName == item.SourceName);
|
||||
if (fileDetail.IsNotNull())
|
||||
{
|
||||
string fileName = fileDetail.FileName;
|
||||
fileDic.Add(item.SourceName, fileName);
|
||||
item.SourceName = fileName;
|
||||
}
|
||||
}
|
||||
item.Text = Markdown.ToHtml(item.Text);
|
||||
}
|
||||
|
||||
if (isSearch)
|
||||
{
|
||||
//KernelFunction jsonFun = _kernel.Plugins.GetFunction("KMSPlugin", "Ask1");
|
||||
var temperature = app.Temperature / 100;//存的是0~100需要缩小
|
||||
OpenAIPromptExecutionSettings settings = new() { Temperature = temperature };
|
||||
var func = _kernel.CreateFunctionFromPrompt(app.Prompt , settings);
|
||||
|
||||
var chatResult = _kernel.InvokeStreamingAsync(function: func,
|
||||
arguments: new KernelArguments() { ["doc"] = dataMsg.ToString(), ["history"] = string.Join("\n", history.Select(x => x.Role + ": " + x.Content)), ["input"] = questions });
|
||||
|
||||
await foreach (var content in chatResult)
|
||||
{
|
||||
yield return content;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
yield return new StreamingTextContent(KmsConstantcs.KmsSearchNull);
|
||||
}
|
||||
}
|
||||
else
|
||||
@@ -122,25 +221,127 @@ namespace AntSK.Domain.Domain.Service
|
||||
}
|
||||
}
|
||||
|
||||
public async Task<ChatHistory> GetChatHistory(List<MessageInfo> MessageList)
|
||||
{
|
||||
ChatHistory history = new ChatHistory();
|
||||
if (MessageList.Count > 1)
|
||||
{
|
||||
|
||||
foreach (var item in MessageList)
|
||||
public async Task<string> SendImgByAppAsync(Apps app, string questions)
|
||||
{
|
||||
var imageModel = _aIModels_Repositories.GetFirst(p => p.Id == app.ImageModelID);
|
||||
KernelArguments args = new() {
|
||||
{ "input", questions }
|
||||
};
|
||||
var _kernel = _kernelService.GetKernelByApp(app);
|
||||
var temperature = app.Temperature / 100; //存的是0~100需要缩小
|
||||
OpenAIPromptExecutionSettings settings = new() { Temperature = temperature };
|
||||
var func = _kernel.CreateFunctionFromPrompt("Translate this into English:{{$input}}", settings);
|
||||
var chatResult = await _kernel.InvokeAsync(function: func, arguments: args);
|
||||
if (chatResult.IsNotNull())
|
||||
{
|
||||
//Can Load stable-diffusion library in diffenert environment
|
||||
|
||||
//SDHelper.LoadLibrary()
|
||||
string versionString = string.Empty;
|
||||
string extensionString = string.Empty;
|
||||
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
|
||||
{
|
||||
if (item.IsSend)
|
||||
extensionString = ".dll";
|
||||
}
|
||||
else if (RuntimeInformation.IsOSPlatform(OSPlatform.Linux))
|
||||
{
|
||||
extensionString = ".so";
|
||||
}
|
||||
else
|
||||
{
|
||||
throw new InvalidOperationException("OS Platform no support");
|
||||
}
|
||||
|
||||
ProcessStartInfo startInfo = new ProcessStartInfo("nvcc", "--version");
|
||||
startInfo.RedirectStandardOutput = true;
|
||||
startInfo.UseShellExecute = false;
|
||||
startInfo.CreateNoWindow = true;
|
||||
using (Process process = Process.Start(startInfo))
|
||||
{
|
||||
if (process != null)
|
||||
{
|
||||
history.AddUserMessage(item.Context);
|
||||
string result = process.StandardOutput.ReadToEnd();
|
||||
Regex regex = new Regex(@"release (\d+).[\d]");
|
||||
Match match = regex.Match(result);
|
||||
if (match.Success)
|
||||
{
|
||||
switch (match.Groups[1].Value.ToString())
|
||||
{
|
||||
case "11":
|
||||
versionString = "Cuda11";
|
||||
break;
|
||||
case "12":
|
||||
versionString = "Cuda12";
|
||||
break;
|
||||
default:
|
||||
versionString = "CPU";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
history.AddAssistantMessage(item.Context);
|
||||
throw new Exception("nvcc get an error");
|
||||
}
|
||||
}
|
||||
|
||||
string libraryPath = System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "StableDiffusion", "Backend", versionString, "stable-diffusion" + extensionString);
|
||||
NativeLibrary.TryLoad(libraryPath, out _);
|
||||
string prompt = chatResult.GetValue<string>();
|
||||
if (!SDHelper.IsInitialized)
|
||||
{
|
||||
Structs.ModelParams modelParams = new Structs.ModelParams
|
||||
{
|
||||
ModelPath = imageModel.ModelName,
|
||||
RngType = Structs.RngType.CUDA_RNG,
|
||||
//VaePath = vaePath,
|
||||
//KeepVaeOnCpu = keepVaeOnCpu,
|
||||
//set false can get a better image, otherwise can use lower vram
|
||||
VaeTiling = false,
|
||||
//LoraModelDir = loraModelDir,
|
||||
};
|
||||
bool result = SDHelper.Initialize(modelParams);
|
||||
}
|
||||
|
||||
Structs.TextToImageParams textToImageParams = new Structs.TextToImageParams
|
||||
{
|
||||
Prompt = prompt,
|
||||
NegativePrompt = "bad quality, wrong image, worst quality",
|
||||
SampleMethod = (Structs.SampleMethod)Enum.Parse(typeof(Structs.SampleMethod), "EULER_A"),
|
||||
//the base image size in SD1.5 is 512x512
|
||||
Width = 512,
|
||||
Height = 512,
|
||||
NormalizeInput = true,
|
||||
ClipSkip = -1,
|
||||
CfgScale = 7,
|
||||
SampleSteps = 20,
|
||||
Seed = -1,
|
||||
};
|
||||
Bitmap[] outputImages = SDHelper.TextToImage(textToImageParams);
|
||||
var base64 = ImageUtils.BitmapToBase64(outputImages[0]);
|
||||
return base64;
|
||||
}
|
||||
else
|
||||
{
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
public async Task<ChatHistory> GetChatHistory(List<Chats> MessageList, ChatHistory history)
|
||||
{
|
||||
foreach (var item in MessageList)
|
||||
{
|
||||
if (item.IsSend)
|
||||
{
|
||||
history.AddUserMessage(item.Context);
|
||||
}
|
||||
else
|
||||
{
|
||||
history.AddAssistantMessage(item.Context);
|
||||
}
|
||||
}
|
||||
return history;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,6 +8,7 @@ using System.Text.RegularExpressions;
|
||||
using Microsoft.SemanticKernel;
|
||||
using HtmlAgilityPack;
|
||||
using System.Collections.Generic;
|
||||
using Serilog;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -115,7 +116,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
Console.WriteLine(ex.Message + " ---- " + ex.StackTrace);
|
||||
Log.Error(ex.Message + " ---- " + ex.StackTrace);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,8 +2,13 @@
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Model;
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using AntSK.Domain.Domain.Model.Excel;
|
||||
using AntSK.Domain.Domain.Other;
|
||||
using AntSK.Domain.Repositories;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Microsoft.KernelMemory;
|
||||
using Microsoft.KernelMemory.Handlers;
|
||||
using System.Text;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -11,7 +16,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
public class ImportKMSService(
|
||||
IKMService _kMService,
|
||||
IKmsDetails_Repositories _kmsDetails_Repositories,
|
||||
IKmss_Repositories _kmss_Repositories
|
||||
IKmss_Repositories _kmss_Repositories,
|
||||
ILogger<ImportKMSService> _logger
|
||||
) : IImportKMSService
|
||||
{
|
||||
|
||||
@@ -20,18 +26,40 @@ namespace AntSK.Domain.Domain.Service
|
||||
try
|
||||
{
|
||||
var km = _kmss_Repositories.GetFirst(p => p.Id == req.KmsId);
|
||||
|
||||
var _memory = _kMService.GetMemoryByKMS(km.Id);
|
||||
string fileid = req.KmsDetail.Id;
|
||||
List<string> step = new List<string>();
|
||||
if (req.IsQA)
|
||||
{
|
||||
_memory.Orchestrator.AddHandler<TextExtractionHandler>("extract_text");
|
||||
_memory.Orchestrator.AddHandler<QAHandler>(km.ChatModelID);
|
||||
_memory.Orchestrator.AddHandler<GenerateEmbeddingsHandler>("generate_embeddings");
|
||||
_memory.Orchestrator.AddHandler<SaveRecordsHandler>("save_memory_records");
|
||||
step.Add("extract_text");
|
||||
step.Add(km.ChatModelID);
|
||||
step.Add("generate_embeddings");
|
||||
step.Add("save_memory_records");
|
||||
}
|
||||
|
||||
switch (req.ImportType)
|
||||
{
|
||||
case ImportType.File:
|
||||
//导入文件
|
||||
{
|
||||
var importResult = _memory.ImportDocumentAsync(new Document(fileid)
|
||||
.AddFile(req.FilePath)
|
||||
.AddTag(KmsConstantcs.KmsIdTag, req.KmsId)
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
//导入文件
|
||||
if (req.IsQA)
|
||||
{
|
||||
var importResult = _memory.ImportDocumentAsync(new Document(fileid)
|
||||
.AddFile(req.FilePath)
|
||||
.AddTag(KmsConstantcs.KmsIdTag, req.KmsId)
|
||||
,index: KmsConstantcs.KmsIndex ,steps: step.ToArray()).Result;
|
||||
}
|
||||
else
|
||||
{
|
||||
var importResult = _memory.ImportDocumentAsync(new Document(fileid)
|
||||
.AddFile(req.FilePath)
|
||||
.AddTag(KmsConstantcs.KmsIdTag, req.KmsId)
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
}
|
||||
//查询文档数量
|
||||
var docTextList = _kMService.GetDocumentByFileID(km.Id, fileid).Result;
|
||||
string fileGuidName = Path.GetFileName(req.FilePath);
|
||||
@@ -44,8 +72,16 @@ namespace AntSK.Domain.Domain.Service
|
||||
case ImportType.Url:
|
||||
{
|
||||
//导入url
|
||||
var importResult = _memory.ImportWebPageAsync(req.Url, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
if (req.IsQA)
|
||||
{
|
||||
var importResult = _memory.ImportWebPageAsync(req.Url, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex, steps: step.ToArray()).Result;
|
||||
}
|
||||
else
|
||||
{
|
||||
var importResult = _memory.ImportWebPageAsync(req.Url, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
}
|
||||
//查询文档数量
|
||||
var docTextList = _kMService.GetDocumentByFileID(km.Id, fileid).Result;
|
||||
req.KmsDetail.Url = req.Url;
|
||||
@@ -55,8 +91,16 @@ namespace AntSK.Domain.Domain.Service
|
||||
case ImportType.Text:
|
||||
//导入文本
|
||||
{
|
||||
var importResult = _memory.ImportTextAsync(req.Text, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
if (req.IsQA)
|
||||
{
|
||||
var importResult = _memory.ImportTextAsync(req.Text, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex, steps: step.ToArray()).Result;
|
||||
}
|
||||
else
|
||||
{
|
||||
var importResult = _memory.ImportTextAsync(req.Text, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
}
|
||||
//查询文档数量
|
||||
var docTextList = _kMService.GetDocumentByFileID(km.Id, fileid).Result;
|
||||
req.KmsDetail.Url = req.Url;
|
||||
@@ -64,17 +108,47 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
}
|
||||
break;
|
||||
case ImportType.Excel:
|
||||
using (var fs = File.OpenRead(req.FilePath))
|
||||
{
|
||||
var excelList= ExeclHelper.ExcelToList<KMSExcelModel>(fs);
|
||||
_memory.Orchestrator.AddHandler<TextExtractionHandler>("extract_text");
|
||||
_memory.Orchestrator.AddHandler<KMExcelHandler>("antsk_excel_split");
|
||||
_memory.Orchestrator.AddHandler<GenerateEmbeddingsHandler>("generate_embeddings");
|
||||
_memory.Orchestrator.AddHandler<SaveRecordsHandler>("save_memory_records");
|
||||
|
||||
StringBuilder text = new StringBuilder();
|
||||
foreach (var item in excelList)
|
||||
{
|
||||
text.AppendLine(@$"Question:{item.Question}{Environment.NewLine}Answer:{item.Answer}{KmsConstantcs.KMExcelSplit}");
|
||||
}
|
||||
var importResult = _memory.ImportTextAsync(text.ToString(), fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex,
|
||||
steps: new[]
|
||||
{
|
||||
"extract_text",
|
||||
"antsk_excel_split",
|
||||
"generate_embeddings",
|
||||
"save_memory_records"
|
||||
}
|
||||
).Result;
|
||||
req.KmsDetail.FileName = req.FileName;
|
||||
string fileGuidName = Path.GetFileName(req.FilePath);
|
||||
req.KmsDetail.FileGuidName = fileGuidName;
|
||||
req.KmsDetail.DataCount = excelList.Count();
|
||||
}
|
||||
break;
|
||||
}
|
||||
req.KmsDetail.Status = Model.Enum.ImportKmsStatus.Success;
|
||||
_kmsDetails_Repositories.Update(req.KmsDetail);
|
||||
//_kmsDetails_Repositories.GetList(p => p.KmsId == req.KmsId);
|
||||
Console.WriteLine("后台导入任务成功:" + req.KmsDetail.DataCount);
|
||||
_logger.LogInformation("后台导入任务成功:" + req.KmsDetail.DataCount);
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
req.KmsDetail.Status = Model.Enum.ImportKmsStatus.Fail;
|
||||
_kmsDetails_Repositories.Update(req.KmsDetail);
|
||||
Console.WriteLine("后台导入任务异常:" + ex.Message);
|
||||
_logger.LogError("后台导入任务异常:" + ex.Message);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
using AntDesign;
|
||||
using AntSK.Domain.Common.DependencyInjection;
|
||||
using AntSK.Domain.Common.Embedding;
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using AntSK.Domain.Domain.Model.Dto;
|
||||
@@ -7,6 +8,7 @@ using AntSK.Domain.Domain.Other;
|
||||
using AntSK.Domain.Options;
|
||||
using AntSK.Domain.Repositories;
|
||||
using AntSK.Domain.Utils;
|
||||
using AntSK.OCR;
|
||||
using DocumentFormat.OpenXml.Drawing.Diagrams;
|
||||
using LLama;
|
||||
using LLamaSharp.KernelMemory;
|
||||
@@ -15,6 +17,7 @@ using Microsoft.AspNetCore.Components;
|
||||
using Microsoft.Extensions.Configuration;
|
||||
using Microsoft.KernelMemory;
|
||||
using Microsoft.KernelMemory.Configuration;
|
||||
using Microsoft.KernelMemory.DataFormats;
|
||||
using Microsoft.KernelMemory.FileSystem.DevTools;
|
||||
using Microsoft.KernelMemory.MemoryStorage;
|
||||
using Microsoft.KernelMemory.MemoryStorage.DevTools;
|
||||
@@ -26,7 +29,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
public class KMService(
|
||||
IKmss_Repositories _kmss_Repositories,
|
||||
IAIModels_Repositories _aIModels_Repositories,
|
||||
IMessageService? _message
|
||||
IMessageService? _message,
|
||||
IKernelService _kernelService
|
||||
) : IKMService
|
||||
{
|
||||
private MemoryServerless _memory;
|
||||
@@ -35,20 +39,36 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
public List<UploadFileItem> FileList => _fileList;
|
||||
|
||||
public MemoryServerless GetMemory(Apps app)
|
||||
public MemoryServerless GetMemoryByApp(Apps app)
|
||||
{
|
||||
var chatModel = _aIModels_Repositories.GetFirst(p => p.Id == app.ChatModelID);
|
||||
var embedModel = _aIModels_Repositories.GetFirst(p => p.Id == app.EmbeddingModelID);
|
||||
var chatHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(chatModel.EndPoint);
|
||||
var embeddingHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(embedModel.EndPoint);
|
||||
|
||||
var searchClientConfig = new SearchClientConfig
|
||||
SearchClientConfig searchClientConfig;
|
||||
if (string.IsNullOrEmpty(app.RerankModelID))
|
||||
{
|
||||
MaxAskPromptSize = 2048,
|
||||
MaxMatchesCount = 3,
|
||||
AnswerTokens = 1000,
|
||||
EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
};
|
||||
//不重排直接取查询数
|
||||
searchClientConfig = new SearchClientConfig
|
||||
{
|
||||
MaxAskPromptSize = app.MaxAskPromptSize,
|
||||
MaxMatchesCount = app.MaxMatchesCount,
|
||||
AnswerTokens = app.AnswerTokens,
|
||||
EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
//重排取rerank数
|
||||
searchClientConfig = new SearchClientConfig
|
||||
{
|
||||
MaxAskPromptSize = app.MaxAskPromptSize,
|
||||
MaxMatchesCount = app.RerankCount,
|
||||
AnswerTokens = app.AnswerTokens,
|
||||
EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
var memoryBuild = new KernelMemoryBuilder()
|
||||
.WithSearchClientConfig(searchClientConfig)
|
||||
@@ -70,7 +90,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
return _memory;
|
||||
}
|
||||
|
||||
public MemoryServerless GetMemoryByKMS(string kmsID, SearchClientConfig searchClientConfig = null)
|
||||
public MemoryServerless GetMemoryByKMS(string kmsID)
|
||||
{
|
||||
//if (_memory.IsNull())
|
||||
{
|
||||
@@ -84,33 +104,35 @@ namespace AntSK.Domain.Domain.Service
|
||||
var embeddingHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(embedModel.EndPoint);
|
||||
|
||||
//搜索配置
|
||||
if (searchClientConfig.IsNull())
|
||||
{
|
||||
searchClientConfig = new SearchClientConfig
|
||||
{
|
||||
MaxAskPromptSize = 2048,
|
||||
MaxMatchesCount = 3,
|
||||
AnswerTokens = 1000,
|
||||
EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
};
|
||||
}
|
||||
//if (searchClientConfig.IsNull())
|
||||
//{
|
||||
// searchClientConfig = new SearchClientConfig
|
||||
// {
|
||||
// MaxAskPromptSize = 2048,
|
||||
// MaxMatchesCount = 3,
|
||||
// AnswerTokens = 1000,
|
||||
// EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
// };
|
||||
//}
|
||||
|
||||
var memoryBuild = new KernelMemoryBuilder()
|
||||
.WithSearchClientConfig(searchClientConfig)
|
||||
//.WithSearchClientConfig(searchClientConfig)
|
||||
.WithCustomTextPartitioningOptions(new TextPartitioningOptions
|
||||
{
|
||||
MaxTokensPerLine = kms.MaxTokensPerLine,
|
||||
MaxTokensPerParagraph = kms.MaxTokensPerParagraph,
|
||||
OverlappingTokens = kms.OverlappingTokens
|
||||
});
|
||||
//加载OCR
|
||||
WithOcr(memoryBuild, kms);
|
||||
//加载会话模型
|
||||
WithTextGenerationByAIType(memoryBuild, chatModel, chatHttpClient);
|
||||
//加载向量模型
|
||||
WithTextEmbeddingGenerationByAIType(memoryBuild, embedModel, embeddingHttpClient);
|
||||
//加载向量库
|
||||
WithMemoryDbByVectorDB(memoryBuild);
|
||||
|
||||
_memory = memoryBuild.Build<MemoryServerless>();
|
||||
|
||||
_memory = memoryBuild.AddSingleton<IKernelService>(_kernelService).Build<MemoryServerless>();
|
||||
return _memory;
|
||||
}
|
||||
//else {
|
||||
@@ -118,6 +140,14 @@ namespace AntSK.Domain.Domain.Service
|
||||
//}
|
||||
}
|
||||
|
||||
private static void WithOcr(IKernelMemoryBuilder memoryBuild, Kmss kms)
|
||||
{
|
||||
if (kms.IsOCR == 1)
|
||||
{
|
||||
memoryBuild.WithCustomImageOcr(new AntSKOcrEngine());
|
||||
}
|
||||
}
|
||||
|
||||
private void WithTextEmbeddingGenerationByAIType(IKernelMemoryBuilder memory, AIModels embedModel,
|
||||
HttpClient embeddingHttpClient)
|
||||
{
|
||||
@@ -147,6 +177,11 @@ namespace AntSK.Domain.Domain.Service
|
||||
var embedder = new LLamaEmbedder(weights, parameters);
|
||||
memory.WithLLamaSharpTextEmbeddingGeneration(new LLamaSharpTextEmbeddingGenerator(embedder));
|
||||
break;
|
||||
case Model.Enum.AIType.BgeEmbedding:
|
||||
string pyDll = embedModel.EndPoint;
|
||||
string bgeEmbeddingModelName = embedModel.ModelName;
|
||||
memory.WithBgeTextEmbeddingGeneration(new HuggingfaceTextEmbeddingGenerator(pyDll,bgeEmbeddingModelName));
|
||||
break;
|
||||
case Model.Enum.AIType.DashScope:
|
||||
memory.WithDashScopeDefaults(embedModel.ModelKey);
|
||||
break;
|
||||
@@ -183,6 +218,14 @@ namespace AntSK.Domain.Domain.Service
|
||||
var executor = new StatelessExecutor(weights, parameters);
|
||||
memory.WithLLamaSharpTextGeneration(new LlamaSharpTextGenerator(weights, context, executor));
|
||||
break;
|
||||
case Model.Enum.AIType.LLamaFactory:
|
||||
|
||||
memory.WithOpenAITextGeneration(new OpenAIConfig()
|
||||
{
|
||||
APIKey = "NotNull",
|
||||
TextModel = chatModel.ModelName
|
||||
}, null, chatHttpClient);
|
||||
break;
|
||||
case Model.Enum.AIType.DashScope:
|
||||
memory.WithDashScopeTextGeneration(new Cnblogs.KernelMemory.AI.DashScope.DashScopeConfig
|
||||
{
|
||||
@@ -248,12 +291,12 @@ namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
foreach (var memoryDb in memoryDbs)
|
||||
{
|
||||
var items = await memoryDb.GetListAsync(memoryIndex.Name, new List<MemoryFilter>() { new MemoryFilter().ByDocument(fileId) }, 100, true).ToListAsync();
|
||||
var items = await memoryDb.GetListAsync(memoryIndex.Name, new List<MemoryFilter>() { new MemoryFilter().ByDocument(fileId) }, 1000, true).ToListAsync();
|
||||
docTextList.AddRange(items.Select(item => new KMFile()
|
||||
{
|
||||
DocumentId = item.GetDocumentId(),
|
||||
Text = item.GetPartitionText(),
|
||||
Url = item.GetWebPageUrl(),
|
||||
Url = item.GetWebPageUrl(KmsConstantcs.KmsIndex),
|
||||
LastUpdate = item.GetLastUpdate().LocalDateTime.ToString("yyyy-MM-dd HH:mm:ss"),
|
||||
File = item.GetFileName()
|
||||
}));
|
||||
@@ -263,15 +306,15 @@ namespace AntSK.Domain.Domain.Service
|
||||
return docTextList;
|
||||
}
|
||||
|
||||
public async Task<List<RelevantSource>> GetRelevantSourceList(string kmsIdListStr, string msg)
|
||||
public async Task<List<RelevantSource>> GetRelevantSourceList(Apps app ,string msg)
|
||||
{
|
||||
var result = new List<RelevantSource>();
|
||||
if (string.IsNullOrWhiteSpace(kmsIdListStr))
|
||||
if (string.IsNullOrWhiteSpace(app.KmsIdList))
|
||||
return result;
|
||||
var kmsIdList = kmsIdListStr.Split(",");
|
||||
var kmsIdList = app.KmsIdList.Split(",");
|
||||
if (!kmsIdList.Any()) return result;
|
||||
|
||||
var memory = GetMemoryByKMS(kmsIdList.FirstOrDefault()!);
|
||||
var memory = GetMemoryByApp(app);
|
||||
|
||||
var filters = kmsIdList.Select(kmsId => new MemoryFilter().ByTag(KmsConstantcs.KmsIdTag, kmsId)).ToList();
|
||||
|
||||
@@ -283,7 +326,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
result.AddRange(item.Partitions.Select(part => new RelevantSource()
|
||||
{
|
||||
SourceName = item.SourceName,
|
||||
Text = Markdown.ToHtml(part.Text),
|
||||
Text = part.Text,
|
||||
Relevance = part.Relevance
|
||||
}));
|
||||
}
|
||||
@@ -305,7 +348,10 @@ namespace AntSK.Domain.Domain.Service
|
||||
"application/pdf",
|
||||
"application/json",
|
||||
"text/x-markdown",
|
||||
"text/markdown"
|
||||
"text/markdown",
|
||||
"image/jpeg",
|
||||
"image/png",
|
||||
"image/tiff"
|
||||
};
|
||||
|
||||
string[] exceptExts = [".md", ".pdf"];
|
||||
|
||||
@@ -18,6 +18,12 @@ using AntSK.Domain.Domain.Model.Enum;
|
||||
using AntSK.LLM.LLamaFactory;
|
||||
using System.Reflection;
|
||||
using DocumentFormat.OpenXml.Drawing;
|
||||
using Microsoft.KernelMemory;
|
||||
using OpenCvSharp.ML;
|
||||
using LLamaSharp.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Amazon.Runtime.Internal.Util;
|
||||
using Microsoft.Extensions.Logging;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -29,17 +35,20 @@ namespace AntSK.Domain.Domain.Service
|
||||
private readonly FunctionService _functionService;
|
||||
private readonly IServiceProvider _serviceProvider;
|
||||
private Kernel _kernel;
|
||||
private readonly ILogger<KernelService> _logger;
|
||||
|
||||
public KernelService(
|
||||
IApis_Repositories apis_Repositories,
|
||||
IAIModels_Repositories aIModels_Repositories,
|
||||
FunctionService functionService,
|
||||
IServiceProvider serviceProvider)
|
||||
IServiceProvider serviceProvider,
|
||||
ILogger<KernelService> logger)
|
||||
{
|
||||
_apis_Repositories = apis_Repositories;
|
||||
_aIModels_Repositories = aIModels_Repositories;
|
||||
_functionService = functionService;
|
||||
_serviceProvider = serviceProvider;
|
||||
_logger = logger;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@@ -57,7 +66,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
var chatHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(chatModel.EndPoint);
|
||||
|
||||
var builder = Kernel.CreateBuilder();
|
||||
WithTextGenerationByAIType(builder, app, chatModel, chatHttpClient);
|
||||
WithTextGenerationByAIType(builder, chatModel, chatHttpClient);
|
||||
|
||||
_kernel = builder.Build();
|
||||
RegisterPluginsWithKernel(_kernel);
|
||||
@@ -69,7 +78,18 @@ namespace AntSK.Domain.Domain.Service
|
||||
//}
|
||||
}
|
||||
|
||||
private void WithTextGenerationByAIType(IKernelBuilder builder, Apps app, AIModels chatModel, HttpClient chatHttpClient)
|
||||
public Kernel GetKernelByAIModelID(string modelid)
|
||||
{
|
||||
var chatModel = _aIModels_Repositories.GetById(modelid);
|
||||
var chatHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(chatModel.EndPoint);
|
||||
var builder = Kernel.CreateBuilder();
|
||||
WithTextGenerationByAIType(builder, chatModel, chatHttpClient);
|
||||
_kernel = builder.Build();
|
||||
RegisterPluginsWithKernel(_kernel);
|
||||
return _kernel;
|
||||
}
|
||||
|
||||
private void WithTextGenerationByAIType(IKernelBuilder builder,AIModels chatModel, HttpClient chatHttpClient)
|
||||
{
|
||||
switch (chatModel.AIType)
|
||||
{
|
||||
@@ -92,11 +112,13 @@ namespace AntSK.Domain.Domain.Service
|
||||
var (weights, parameters) = LLamaConfig.GetLLamaConfig(chatModel.ModelName);
|
||||
var ex = new StatelessExecutor(weights, parameters);
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("local-llama", new LLamaSharpTextCompletion(ex));
|
||||
builder.Services.AddKeyedSingleton<IChatCompletionService>("local-llama-chat", new LLamaSharpChatCompletion(ex));
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.SparkDesk:
|
||||
var options = new SparkDeskOptions { AppId = chatModel.EndPoint, ApiSecret = chatModel.ModelKey, ApiKey = chatModel.ModelName, ModelVersion = Sdcb.SparkDesk.ModelVersion.V3_5 };
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("spark-desk", new SparkDeskTextCompletion(options, app.Id));
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("spark-desk", new SparkDeskTextCompletion(options, chatModel.Id));
|
||||
builder.Services.AddKeyedSingleton<IChatCompletionService>("spark-desk-chat", new SparkDeskChatCompletion(options, chatModel.Id));
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.DashScope:
|
||||
@@ -105,6 +127,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
case Model.Enum.AIType.Mock:
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("mock", new MockTextCompletion());
|
||||
builder.Services.AddKeyedSingleton<IChatCompletionService>("mock-chat", new MockChatCompletion());
|
||||
break;
|
||||
case Model.Enum.AIType.LLamaFactory:
|
||||
builder.AddOpenAIChatCompletion(
|
||||
@@ -160,7 +183,6 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
var getParametes = new List<KernelParameterMetadata>() {
|
||||
new KernelParameterMetadata("jsonbody"){
|
||||
Name="json参数字符串",
|
||||
ParameterType=typeof(string),
|
||||
Description=$"背景文档:{Environment.NewLine}{api.InputPrompt} {Environment.NewLine}提取出对应的json格式字符串,参考如下格式:{Environment.NewLine}{api.Query}"
|
||||
}
|
||||
@@ -199,7 +221,6 @@ namespace AntSK.Domain.Domain.Service
|
||||
//处理json body
|
||||
var postParametes = new List<KernelParameterMetadata>() {
|
||||
new KernelParameterMetadata("jsonbody"){
|
||||
Name="json参数字符串",
|
||||
ParameterType=typeof(string),
|
||||
Description=$"背景文档:{Environment.NewLine}{api.InputPrompt} {Environment.NewLine}提取出对应的json格式字符串,参考如下格式:{Environment.NewLine}{api.JsonBody}"
|
||||
}
|
||||
@@ -208,7 +229,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
try
|
||||
{
|
||||
Console.WriteLine(jsonBody);
|
||||
_logger.LogInformation(jsonBody);
|
||||
RestClient client = new RestClient();
|
||||
RestRequest request = new RestRequest(api.Url, Method.Post);
|
||||
foreach (var header in api.Header.ConvertToString().Split("\n"))
|
||||
@@ -287,8 +308,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
KernelFunction sunFun = _kernel.Plugins.GetFunction("ConversationSummaryPlugin", "SummarizeConversation");
|
||||
var summary = await _kernel.InvokeAsync(sunFun, new() { ["input"] = $"内容是:{history.ToString()} {Environment.NewLine} 请注意用中文总结" });
|
||||
string his = summary.GetValue<string>();
|
||||
var msg = $"history:{Environment.NewLine}{history.ToString()}{Environment.NewLine} user:{questions}{Environment.NewLine}"; ;
|
||||
var msg = $"history:{Environment.NewLine}{his}{Environment.NewLine} user:{questions}{Environment.NewLine}";
|
||||
return msg;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,13 +1,16 @@
|
||||
using AntSK.Domain.Common.DependencyInjection;
|
||||
using Amazon.Runtime.Internal.Util;
|
||||
using AntSK.Domain.Common.DependencyInjection;
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Model.Dto;
|
||||
using AntSK.Domain.Options;
|
||||
using AntSK.LLamaFactory.Model;
|
||||
using Microsoft.AspNetCore.Mvc.ModelBinding;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Newtonsoft.Json;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Diagnostics.Tracing;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Text.Json;
|
||||
@@ -16,7 +19,7 @@ using System.Threading.Tasks;
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
[ServiceDescription(typeof(ILLamaFactoryService), ServiceLifetime.Singleton)]
|
||||
public class LLamaFactoryService : ILLamaFactoryService
|
||||
public class LLamaFactoryService(ILogger<LLamaFactoryService> _logger) : ILLamaFactoryService
|
||||
{
|
||||
private Process process;
|
||||
|
||||
@@ -25,7 +28,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
private readonly object _syncLock = new object();
|
||||
private List<LLamaModel> modelList = new List<LLamaModel>();
|
||||
|
||||
public LLamaFactoryService() { }
|
||||
|
||||
public delegate Task LogMessageHandler(string message);
|
||||
public event LogMessageHandler LogMessageReceived;
|
||||
protected virtual async Task OnLogMessageReceived(string message)
|
||||
@@ -55,19 +58,21 @@ namespace AntSK.Domain.Domain.Service
|
||||
};
|
||||
process.OutputDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Console.WriteLine($"{eventArgs.Data}");
|
||||
_logger.LogInformation($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.ErrorDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Console.WriteLine($"{eventArgs.Data}");
|
||||
_logger.LogInformation($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.Start();
|
||||
process.BeginOutputReadLine();
|
||||
process.BeginErrorReadLine();
|
||||
process.WaitForExit();
|
||||
OnLogMessageReceived("--------------------完成--------------------");
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
await cmdTask;
|
||||
}
|
||||
|
||||
public async Task StartLLamaFactory(string modelName, string templateName)
|
||||
@@ -82,31 +87,34 @@ namespace AntSK.Domain.Domain.Service
|
||||
StartInfo = new ProcessStartInfo
|
||||
{
|
||||
FileName = "python",
|
||||
Arguments = "api_demo.py --model_name_or_path " + modelName + " --template " + templateName + " ",
|
||||
Arguments = "api_antsk.py --model_name_or_path " + modelName + " --template " + templateName + " ",
|
||||
UseShellExecute = false,
|
||||
RedirectStandardOutput = true,
|
||||
RedirectStandardError=true,
|
||||
WorkingDirectory = Path.Combine(Path.GetDirectoryName(System.Reflection.Assembly.GetEntryAssembly().Location), "llamafactory"),
|
||||
}
|
||||
};
|
||||
process.StartInfo.Environment["CUDA_VISIBLE_DEVICES"] = "0";
|
||||
process.StartInfo.Environment["CUDA_VISIBLE_DEVICES"] = Environment.GetEnvironmentVariable("CUDA_VISIBLE_DEVICES") ?? "0";
|
||||
process.StartInfo.Environment["API_PORT"] = "8000";
|
||||
process.StartInfo.EnvironmentVariables["USE_MODELSCOPE_HUB"] = "1";
|
||||
process.StartInfo.EnvironmentVariables["USE_MODELSCOPE_HUB"] = Environment.GetEnvironmentVariable("USE_MODELSCOPE_HUB") ?? "1";
|
||||
process.OutputDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Console.WriteLine($"{eventArgs.Data}");
|
||||
_logger.LogInformation($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.ErrorDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Console.WriteLine($"{eventArgs.Data}");
|
||||
_logger.LogInformation($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.Start();
|
||||
process.BeginOutputReadLine();
|
||||
process.BeginErrorReadLine();
|
||||
process.WaitForExit();
|
||||
|
||||
OnLogMessageReceived("--------------------完成--------------------");
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
await cmdTask;
|
||||
}
|
||||
|
||||
private void Process_OutputDataReceived(object sender, DataReceivedEventArgs e)
|
||||
@@ -131,7 +139,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
if (process1.ProcessName.ToLower() == "python")
|
||||
{
|
||||
process1.Kill();
|
||||
System.Console.WriteLine("kill python");
|
||||
_logger.LogInformation("kill python");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
13
src/AntSK.Domain/Options/FileDirOption.cs
Normal file
13
src/AntSK.Domain/Options/FileDirOption.cs
Normal file
@@ -0,0 +1,13 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Options
|
||||
{
|
||||
public class FileDirOption
|
||||
{
|
||||
public static string DirectoryPath { get; set; } = Directory.GetCurrentDirectory();
|
||||
}
|
||||
}
|
||||
@@ -3,6 +3,7 @@
|
||||
public class LLamaSharpOption
|
||||
{
|
||||
public static string RunType { get; set; }
|
||||
public static string FileDirectory { get; set; } = Directory.GetCurrentDirectory();
|
||||
public static uint? ContextSize { get; set; }
|
||||
public static int? GpuLayerCount { get; set; }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -44,6 +44,10 @@ namespace AntSK.Domain.Repositories
|
||||
/// </summary>
|
||||
public string? EmbeddingModelID { get; set; }
|
||||
|
||||
public string? RerankModelID { get; set; }
|
||||
|
||||
|
||||
public string? ImageModelID { get; set; }
|
||||
/// <summary>
|
||||
/// 温度
|
||||
/// </summary>
|
||||
@@ -53,6 +57,7 @@ namespace AntSK.Domain.Repositories
|
||||
/// <summary>
|
||||
/// 提示词
|
||||
/// </summary>
|
||||
[SugarColumn(ColumnDataType = "varchar(2000)")]
|
||||
public string? Prompt { get; set; }
|
||||
|
||||
/// <summary>
|
||||
@@ -76,5 +81,31 @@ namespace AntSK.Domain.Repositories
|
||||
/// API调用秘钥
|
||||
/// </summary>
|
||||
public string? SecretKey { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 相似度
|
||||
/// </summary>
|
||||
[SugarColumn(DefaultValue = "70")]
|
||||
public double Relevance { get; set; } = 70f;
|
||||
|
||||
/// <summary>
|
||||
/// 提问最大token数
|
||||
/// </summary>
|
||||
[SugarColumn(DefaultValue = "2048")]
|
||||
public int MaxAskPromptSize { get; set; } = 2048;
|
||||
/// <summary>
|
||||
/// 向量匹配数
|
||||
/// </summary>
|
||||
[SugarColumn(DefaultValue = "3")]
|
||||
public int MaxMatchesCount { get; set; } = 3;
|
||||
|
||||
|
||||
[SugarColumn(DefaultValue = "20")]
|
||||
public int RerankCount { get; set; } = 20;
|
||||
/// <summary>
|
||||
/// 回答最大token数
|
||||
/// </summary>
|
||||
[SugarColumn(DefaultValue = "2048")]
|
||||
public int AnswerTokens { get; set; } = 2048;
|
||||
}
|
||||
}
|
||||
41
src/AntSK.Domain/Repositories/AI/Chat/Chats.cs
Normal file
41
src/AntSK.Domain/Repositories/AI/Chat/Chats.cs
Normal file
@@ -0,0 +1,41 @@
|
||||
using AntSK.Domain.Domain.Model.Enum;
|
||||
using SqlSugar;
|
||||
using System.ComponentModel.DataAnnotations;
|
||||
|
||||
namespace AntSK.Domain.Repositories
|
||||
{
|
||||
[SugarTable("Chats")]
|
||||
public partial class Chats
|
||||
{
|
||||
[SugarColumn(IsPrimaryKey = true)]
|
||||
public string Id { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 用户名
|
||||
/// </summary>
|
||||
public string UserName { get; set; }
|
||||
/// <summary>
|
||||
/// 应用ID
|
||||
/// </summary>
|
||||
public string AppId { get; set; }
|
||||
/// <summary>
|
||||
/// 消息内容
|
||||
/// </summary>
|
||||
[SugarColumn(ColumnDataType = "varchar(4000)")]
|
||||
public string Context { get; set; } = "";
|
||||
|
||||
/// <summary>
|
||||
/// 发送是true 接收是false
|
||||
/// </summary>
|
||||
public bool IsSend { get; set; } = false;
|
||||
/// <summary>
|
||||
/// 创建事件
|
||||
/// </summary>
|
||||
public DateTime CreateTime { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 文件名
|
||||
/// </summary>
|
||||
public string? FileName { get; set; }
|
||||
}
|
||||
}
|
||||
11
src/AntSK.Domain/Repositories/AI/Chat/Chats_Repositories.cs
Normal file
11
src/AntSK.Domain/Repositories/AI/Chat/Chats_Repositories.cs
Normal file
@@ -0,0 +1,11 @@
|
||||
|
||||
using AntSK.Domain.Common.DependencyInjection;
|
||||
using AntSK.Domain.Repositories.Base;
|
||||
|
||||
namespace AntSK.Domain.Repositories
|
||||
{
|
||||
[ServiceDescription(typeof(IChats_Repositories), ServiceLifetime.Scoped)]
|
||||
public class Chats_Repositories : Repository<Chats>, IChats_Repositories
|
||||
{
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,8 @@
|
||||
using AntSK.Domain.Repositories.Base;
|
||||
|
||||
namespace AntSK.Domain.Repositories
|
||||
{
|
||||
public interface IChats_Repositories : IRepository<Chats>
|
||||
{
|
||||
}
|
||||
}
|
||||
@@ -55,6 +55,7 @@ namespace AntSK.Domain.Repositories
|
||||
[SugarColumn(DefaultValue = "49")]
|
||||
public int OverlappingTokens { get; set; } = 49;
|
||||
|
||||
|
||||
[SugarColumn(DefaultValue = "0")]
|
||||
public int IsOCR { get; set; } = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
using System.Web;
|
||||
using System.Security.Cryptography;
|
||||
using System.Web;
|
||||
|
||||
namespace AntSK.Domain.Utils
|
||||
{
|
||||
@@ -250,5 +251,22 @@ namespace AntSK.Domain.Utils
|
||||
|
||||
return nameValueCollection.ToString();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 忽略大小写匹配
|
||||
/// </summary>
|
||||
/// <param name="s"></param>
|
||||
/// <param name="value"></param>
|
||||
/// <returns></returns>
|
||||
public static bool ComparisonIgnoreCase(this string s, string value)
|
||||
{
|
||||
return s.Equals(value, StringComparison.OrdinalIgnoreCase);
|
||||
}
|
||||
|
||||
public static string AntSKCalculateSHA256(this BinaryData binaryData)
|
||||
{
|
||||
byte[] byteArray = SHA256.HashData(binaryData.ToMemory().Span);
|
||||
return Convert.ToHexString(byteArray).ToLowerInvariant();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
39
src/AntSK.Domain/Utils/ImageUtils.cs
Normal file
39
src/AntSK.Domain/Utils/ImageUtils.cs
Normal file
@@ -0,0 +1,39 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Drawing.Imaging;
|
||||
using System.Drawing;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Utils
|
||||
{
|
||||
public class ImageUtils
|
||||
{
|
||||
public static string BitmapToBase64(Bitmap bitmap)
|
||||
{
|
||||
using (MemoryStream memoryStream = new MemoryStream())
|
||||
{
|
||||
// 保存为JPEG格式,也可以选择Png,Gif等等
|
||||
bitmap.Save(memoryStream, ImageFormat.Jpeg);
|
||||
|
||||
// 获取内存流的字节数组
|
||||
byte[] imageBytes = memoryStream.ToArray();
|
||||
|
||||
// 将字节转换为Base64字符串
|
||||
string base64String = Convert.ToBase64String(imageBytes);
|
||||
return base64String;
|
||||
}
|
||||
}
|
||||
public static List<string> BitmapListToBase64(Bitmap[] bitmaps)
|
||||
{
|
||||
List<string> base64Strings = new List<string>();
|
||||
|
||||
foreach (Bitmap bitmap in bitmaps)
|
||||
{
|
||||
base64Strings.Add(BitmapToBase64(bitmap));
|
||||
}
|
||||
return base64Strings;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,4 +1,6 @@
|
||||
using System.Text.RegularExpressions;
|
||||
|
||||
using Serilog;
|
||||
using System.Text.RegularExpressions;
|
||||
|
||||
namespace AntSK.Domain.Utils
|
||||
{
|
||||
@@ -19,7 +21,7 @@ namespace AntSK.Domain.Utils
|
||||
{
|
||||
string requestBody = await request.Content.ReadAsStringAsync();
|
||||
//便于调试查看请求prompt
|
||||
Console.WriteLine(requestBody);
|
||||
Log.Information(requestBody);
|
||||
}
|
||||
if (match.Success)
|
||||
{
|
||||
|
||||
19
src/AntSK.LLamaFactory/llamafactory/api_antsk.py
Normal file
19
src/AntSK.LLamaFactory/llamafactory/api_antsk.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
import uvicorn
|
||||
|
||||
from llamafactory.api.app import create_app
|
||||
from llamafactory.chat import ChatModel
|
||||
|
||||
|
||||
def main():
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||
uvicorn.run(app, host=api_host, port=api_port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,16 +0,0 @@
|
||||
import os
|
||||
|
||||
import uvicorn
|
||||
|
||||
from llmtuner import ChatModel, create_app
|
||||
|
||||
|
||||
def main():
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
|
||||
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,27 +0,0 @@
|
||||
import subprocess
|
||||
import shlex
|
||||
import os
|
||||
class Start(object):
|
||||
|
||||
def __init__(self,model_name_or_path):
|
||||
self.model_name_or_path=model_name_or_path
|
||||
|
||||
def StartCommand(self):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
os.environ['API_PORT'] = '8000'
|
||||
# 构建要执行的命令
|
||||
command = (
|
||||
'python api_demo.py'
|
||||
' --model_name_or_path E:/model/Qwen1.5-0.5B-Chat_back'
|
||||
' --template default '
|
||||
)
|
||||
|
||||
# 使用shlex.split()去安全地分割命令字符串
|
||||
command = shlex.split(command)
|
||||
|
||||
# 执行命令
|
||||
subprocess.run(command, shell=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
star= Start('model_name_or_path')
|
||||
star.StartCommand()
|
||||
@@ -1,49 +0,0 @@
|
||||
from llmtuner import ChatModel
|
||||
from llmtuner.extras.misc import torch_gc
|
||||
|
||||
|
||||
try:
|
||||
import platform
|
||||
|
||||
if platform.system() != "Windows":
|
||||
import readline # noqa: F401
|
||||
except ImportError:
|
||||
print("Install `readline` for a better experience.")
|
||||
|
||||
|
||||
def main():
|
||||
chat_model = ChatModel()
|
||||
messages = []
|
||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||
|
||||
while True:
|
||||
try:
|
||||
query = input("\nUser: ")
|
||||
except UnicodeDecodeError:
|
||||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
||||
continue
|
||||
except Exception:
|
||||
raise
|
||||
|
||||
if query.strip() == "exit":
|
||||
break
|
||||
|
||||
if query.strip() == "clear":
|
||||
messages = []
|
||||
torch_gc()
|
||||
print("History has been removed.")
|
||||
continue
|
||||
|
||||
messages.append({"role": "user", "content": query})
|
||||
print("Assistant: ", end="", flush=True)
|
||||
|
||||
response = ""
|
||||
for new_text in chat_model.stream_chat(messages):
|
||||
print(new_text, end="", flush=True)
|
||||
response += new_text
|
||||
print()
|
||||
messages.append({"role": "assistant", "content": response})
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,10 +0,0 @@
|
||||
from llmtuner import Evaluator
|
||||
|
||||
|
||||
def main():
|
||||
evaluator = Evaluator()
|
||||
evaluator.eval()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,9 +0,0 @@
|
||||
from llmtuner import export_model
|
||||
|
||||
|
||||
def main():
|
||||
export_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,6 @@
|
||||
# Level: api, webui > chat, eval, train > data, model > hparams > extras
|
||||
|
||||
from .cli import VERSION
|
||||
|
||||
|
||||
__version__ = VERSION
|
||||
108
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/app.py
Normal file
108
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/app.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import os
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Optional
|
||||
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from ..chat import ChatModel
|
||||
from ..extras.misc import torch_gc
|
||||
from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available
|
||||
from .chat import (
|
||||
create_chat_completion_response,
|
||||
create_score_evaluation_response,
|
||||
create_stream_chat_completion_response,
|
||||
)
|
||||
from .protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ModelCard,
|
||||
ModelList,
|
||||
ScoreEvaluationRequest,
|
||||
ScoreEvaluationResponse,
|
||||
)
|
||||
|
||||
|
||||
if is_fastapi_available():
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
|
||||
|
||||
|
||||
if is_starlette_available():
|
||||
from sse_starlette import EventSourceResponse
|
||||
|
||||
|
||||
if is_uvicorn_available():
|
||||
import uvicorn
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: "FastAPI"): # collects GPU memory
|
||||
yield
|
||||
torch_gc()
|
||||
|
||||
|
||||
def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
api_key = os.environ.get("API_KEY")
|
||||
security = HTTPBearer(auto_error=False)
|
||||
|
||||
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
|
||||
if api_key and (auth is None or auth.credentials != api_key):
|
||||
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")
|
||||
|
||||
@app.get(
|
||||
"/v1/models",
|
||||
response_model=ModelList,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def list_models():
|
||||
model_card = ModelCard(id="gpt-3.5-turbo")
|
||||
return ModelList(data=[model_card])
|
||||
|
||||
@app.post(
|
||||
"/v1/chat/completions",
|
||||
response_model=ChatCompletionResponse,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
if not chat_model.engine.can_generate:
|
||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||
|
||||
if request.stream:
|
||||
generate = create_stream_chat_completion_response(request, chat_model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
else:
|
||||
return await create_chat_completion_response(request, chat_model)
|
||||
|
||||
@app.post(
|
||||
"/v1/score/evaluation",
|
||||
response_model=ScoreEvaluationResponse,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def create_score_evaluation(request: ScoreEvaluationRequest):
|
||||
if chat_model.engine.can_generate:
|
||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||
|
||||
return await create_score_evaluation_response(request, chat_model)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def run_api() -> None:
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||
uvicorn.run(app, host=api_host, port=api_port)
|
||||
219
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/chat.py
Normal file
219
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/chat.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple
|
||||
|
||||
from ..data import Role as DataRole
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available
|
||||
from .common import dictify, jsonify
|
||||
from .protocol import (
|
||||
ChatCompletionMessage,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatCompletionResponseUsage,
|
||||
ChatCompletionStreamResponse,
|
||||
ChatCompletionStreamResponseChoice,
|
||||
Finish,
|
||||
Function,
|
||||
FunctionCall,
|
||||
Role,
|
||||
ScoreEvaluationResponse,
|
||||
)
|
||||
|
||||
|
||||
if is_fastapi_available():
|
||||
from fastapi import HTTPException, status
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if is_requests_available():
|
||||
import requests
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ..chat import ChatModel
|
||||
from .protocol import ChatCompletionRequest, ScoreEvaluationRequest
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
ROLE_MAPPING = {
|
||||
Role.USER: DataRole.USER.value,
|
||||
Role.ASSISTANT: DataRole.ASSISTANT.value,
|
||||
Role.SYSTEM: DataRole.SYSTEM.value,
|
||||
Role.FUNCTION: DataRole.FUNCTION.value,
|
||||
Role.TOOL: DataRole.OBSERVATION.value,
|
||||
}
|
||||
|
||||
|
||||
def _process_request(
|
||||
request: "ChatCompletionRequest",
|
||||
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional["NDArray"]]:
|
||||
logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False)))
|
||||
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
|
||||
|
||||
if request.messages[0].role == Role.SYSTEM:
|
||||
system = request.messages.pop(0).content
|
||||
else:
|
||||
system = None
|
||||
|
||||
if len(request.messages) % 2 == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
|
||||
|
||||
input_messages = []
|
||||
image = None
|
||||
for i, message in enumerate(request.messages):
|
||||
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||
|
||||
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
|
||||
name = message.tool_calls[0].function.name
|
||||
arguments = message.tool_calls[0].function.arguments
|
||||
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)
|
||||
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content})
|
||||
elif isinstance(message.content, list):
|
||||
for input_item in message.content:
|
||||
if input_item.type == "text":
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text})
|
||||
else:
|
||||
image_url = input_item.image_url.url
|
||||
if image_url.startswith("data:image"): # base64 image
|
||||
image_data = base64.b64decode(image_url.split(",", maxsplit=1)[1])
|
||||
image_path = io.BytesIO(image_data)
|
||||
elif os.path.isfile(image_url): # local file
|
||||
image_path = open(image_url, "rb")
|
||||
else: # web uri
|
||||
image_path = requests.get(image_url, stream=True).raw
|
||||
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
else:
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content})
|
||||
|
||||
tool_list = request.tools
|
||||
if isinstance(tool_list, list) and len(tool_list):
|
||||
try:
|
||||
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
|
||||
except Exception:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
|
||||
else:
|
||||
tools = None
|
||||
|
||||
return input_messages, system, tools, image
|
||||
|
||||
|
||||
def _create_stream_chat_completion_chunk(
|
||||
completion_id: str,
|
||||
model: str,
|
||||
delta: "ChatCompletionMessage",
|
||||
index: Optional[int] = 0,
|
||||
finish_reason: Optional["Finish"] = None,
|
||||
) -> str:
|
||||
choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason)
|
||||
chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data])
|
||||
return jsonify(chunk)
|
||||
|
||||
|
||||
async def create_chat_completion_response(
|
||||
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||
) -> "ChatCompletionResponse":
|
||||
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
input_messages, system, tools, image = _process_request(request)
|
||||
responses = await chat_model.achat(
|
||||
input_messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
do_sample=request.do_sample,
|
||||
temperature=request.temperature,
|
||||
top_p=request.top_p,
|
||||
max_new_tokens=request.max_tokens,
|
||||
num_return_sequences=request.n,
|
||||
stop=request.stop,
|
||||
)
|
||||
|
||||
prompt_length, response_length = 0, 0
|
||||
choices = []
|
||||
for i, response in enumerate(responses):
|
||||
if tools:
|
||||
result = chat_model.engine.template.format_tools.extract(response.response_text)
|
||||
else:
|
||||
result = response.response_text
|
||||
|
||||
if isinstance(result, tuple):
|
||||
name, arguments = result
|
||||
function = Function(name=name, arguments=arguments)
|
||||
tool_call = FunctionCall(id="call_{}".format(uuid.uuid4().hex), function=function)
|
||||
response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=[tool_call])
|
||||
finish_reason = Finish.TOOL
|
||||
else:
|
||||
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
|
||||
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
|
||||
|
||||
choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason))
|
||||
prompt_length = response.prompt_length
|
||||
response_length += response.response_length
|
||||
|
||||
usage = ChatCompletionResponseUsage(
|
||||
prompt_tokens=prompt_length,
|
||||
completion_tokens=response_length,
|
||||
total_tokens=prompt_length + response_length,
|
||||
)
|
||||
|
||||
return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage)
|
||||
|
||||
|
||||
async def create_stream_chat_completion_response(
|
||||
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||
) -> AsyncGenerator[str, None]:
|
||||
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
input_messages, system, tools, image = _process_request(request)
|
||||
if tools:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
|
||||
|
||||
if request.n > 1:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.")
|
||||
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="")
|
||||
)
|
||||
async for new_token in chat_model.astream_chat(
|
||||
input_messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
do_sample=request.do_sample,
|
||||
temperature=request.temperature,
|
||||
top_p=request.top_p,
|
||||
max_new_tokens=request.max_tokens,
|
||||
stop=request.stop,
|
||||
):
|
||||
if len(new_token) != 0:
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token)
|
||||
)
|
||||
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
|
||||
)
|
||||
yield "[DONE]"
|
||||
|
||||
|
||||
async def create_score_evaluation_response(
|
||||
request: "ScoreEvaluationRequest", chat_model: "ChatModel"
|
||||
) -> "ScoreEvaluationResponse":
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
||||
|
||||
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
|
||||
return ScoreEvaluationResponse(model=request.model, scores=scores)
|
||||
@@ -0,0 +1,20 @@
|
||||
import json
|
||||
from typing import TYPE_CHECKING, Any, Dict
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
def dictify(data: "BaseModel") -> Dict[str, Any]:
|
||||
try: # pydantic v2
|
||||
return data.model_dump(exclude_unset=True)
|
||||
except AttributeError: # pydantic v1
|
||||
return data.dict(exclude_unset=True)
|
||||
|
||||
|
||||
def jsonify(data: "BaseModel") -> str:
|
||||
try: # pydantic v2
|
||||
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
|
||||
except AttributeError: # pydantic v1
|
||||
return data.json(exclude_unset=True, ensure_ascii=False)
|
||||
@@ -1,6 +1,6 @@
|
||||
import time
|
||||
from enum import Enum, unique
|
||||
from typing import List, Optional
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Literal
|
||||
@@ -39,15 +39,37 @@ class Function(BaseModel):
|
||||
arguments: str
|
||||
|
||||
|
||||
class FunctionDefinition(BaseModel):
|
||||
name: str
|
||||
description: str
|
||||
parameters: Dict[str, Any]
|
||||
|
||||
|
||||
class FunctionAvailable(BaseModel):
|
||||
type: Literal["function", "code_interpreter"] = "function"
|
||||
function: Optional[FunctionDefinition] = None
|
||||
|
||||
|
||||
class FunctionCall(BaseModel):
|
||||
id: Literal["call_default"] = "call_default"
|
||||
id: str
|
||||
type: Literal["function"] = "function"
|
||||
function: Function
|
||||
|
||||
|
||||
class ImageURL(BaseModel):
|
||||
url: str
|
||||
|
||||
|
||||
class MultimodalInputItem(BaseModel):
|
||||
type: Literal["text", "image_url"]
|
||||
text: Optional[str] = None
|
||||
image_url: Optional[ImageURL] = None
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: Role
|
||||
content: str
|
||||
content: Optional[Union[str, List[MultimodalInputItem]]] = None
|
||||
tool_calls: Optional[List[FunctionCall]] = None
|
||||
|
||||
|
||||
class ChatCompletionMessage(BaseModel):
|
||||
@@ -59,12 +81,13 @@ class ChatCompletionMessage(BaseModel):
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
tools: list = []
|
||||
tools: Optional[List[FunctionAvailable]] = None
|
||||
do_sample: bool = True
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
n: int = 1
|
||||
max_tokens: Optional[int] = None
|
||||
stop: Optional[Union[str, List[str]]] = None
|
||||
stream: bool = False
|
||||
|
||||
|
||||
@@ -74,7 +97,7 @@ class ChatCompletionResponseChoice(BaseModel):
|
||||
finish_reason: Finish
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
class ChatCompletionStreamResponseChoice(BaseModel):
|
||||
index: int
|
||||
delta: ChatCompletionMessage
|
||||
finish_reason: Optional[Finish] = None
|
||||
@@ -87,7 +110,7 @@ class ChatCompletionResponseUsage(BaseModel):
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
id: Literal["chatcmpl-default"] = "chatcmpl-default"
|
||||
id: str
|
||||
object: Literal["chat.completion"] = "chat.completion"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
model: str
|
||||
@@ -96,11 +119,11 @@ class ChatCompletionResponse(BaseModel):
|
||||
|
||||
|
||||
class ChatCompletionStreamResponse(BaseModel):
|
||||
id: Literal["chatcmpl-default"] = "chatcmpl-default"
|
||||
id: str
|
||||
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
model: str
|
||||
choices: List[ChatCompletionResponseStreamChoice]
|
||||
choices: List[ChatCompletionStreamResponseChoice]
|
||||
|
||||
|
||||
class ScoreEvaluationRequest(BaseModel):
|
||||
@@ -110,7 +133,7 @@ class ScoreEvaluationRequest(BaseModel):
|
||||
|
||||
|
||||
class ScoreEvaluationResponse(BaseModel):
|
||||
id: Literal["scoreeval-default"] = "scoreeval-default"
|
||||
id: str
|
||||
object: Literal["score.evaluation"] = "score.evaluation"
|
||||
model: str
|
||||
scores: List[float]
|
||||
@@ -4,15 +4,13 @@ from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Opti
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from vllm import AsyncLLMEngine
|
||||
|
||||
from ..data import Template
|
||||
from ..extras.packages import is_vllm_available
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import AsyncLLMEngine
|
||||
|
||||
|
||||
@dataclass
|
||||
class Response:
|
||||
@@ -49,6 +47,7 @@ class BaseEngine(ABC):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]: ...
|
||||
|
||||
@@ -58,6 +57,7 @@ class BaseEngine(ABC):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]: ...
|
||||
|
||||
@@ -2,12 +2,15 @@ import asyncio
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
||||
|
||||
from ..extras.misc import torch_gc
|
||||
from ..hparams import get_infer_args
|
||||
from .hf_engine import HuggingfaceEngine
|
||||
from .vllm_engine import VllmEngine
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
@@ -36,9 +39,10 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, **input_kwargs), self._loop)
|
||||
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, image, **input_kwargs), self._loop)
|
||||
return task.result()
|
||||
|
||||
async def achat(
|
||||
@@ -46,18 +50,20 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
return await self.engine.chat(messages, system, tools, **input_kwargs)
|
||||
return await self.engine.chat(messages, system, tools, image, **input_kwargs)
|
||||
|
||||
def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> Generator[str, None, None]:
|
||||
generator = self.astream_chat(messages, system, tools, **input_kwargs)
|
||||
generator = self.astream_chat(messages, system, tools, image, **input_kwargs)
|
||||
while True:
|
||||
try:
|
||||
task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop)
|
||||
@@ -70,9 +76,10 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
async for new_token in self.engine.stream_chat(messages, system, tools, **input_kwargs):
|
||||
async for new_token in self.engine.stream_chat(messages, system, tools, image, **input_kwargs):
|
||||
yield new_token
|
||||
|
||||
def get_scores(
|
||||
@@ -89,3 +96,45 @@ class ChatModel:
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
return await self.engine.get_scores(batch_input, **input_kwargs)
|
||||
|
||||
|
||||
def run_chat() -> None:
|
||||
try:
|
||||
import platform
|
||||
|
||||
if platform.system() != "Windows":
|
||||
import readline # noqa: F401
|
||||
except ImportError:
|
||||
print("Install `readline` for a better experience.")
|
||||
|
||||
chat_model = ChatModel()
|
||||
messages = []
|
||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||
|
||||
while True:
|
||||
try:
|
||||
query = input("\nUser: ")
|
||||
except UnicodeDecodeError:
|
||||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
||||
continue
|
||||
except Exception:
|
||||
raise
|
||||
|
||||
if query.strip() == "exit":
|
||||
break
|
||||
|
||||
if query.strip() == "clear":
|
||||
messages = []
|
||||
torch_gc()
|
||||
print("History has been removed.")
|
||||
continue
|
||||
|
||||
messages.append({"role": "user", "content": query})
|
||||
print("Assistant: ", end="", flush=True)
|
||||
|
||||
response = ""
|
||||
for new_text in chat_model.stream_chat(messages):
|
||||
print(new_text, end="", flush=True)
|
||||
response += new_text
|
||||
print()
|
||||
messages.append({"role": "assistant", "content": response})
|
||||
@@ -2,25 +2,31 @@ import asyncio
|
||||
import concurrent.futures
|
||||
import os
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import GenerationConfig, TextIteratorStreamer
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import get_logits_processor
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from numpy.typing import NDArray
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
from trl import PreTrainedModelWrapper
|
||||
|
||||
from ..data import Template
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class HuggingfaceEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -30,55 +36,96 @@ class HuggingfaceEngine(BaseEngine):
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(
|
||||
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.model = load_model(
|
||||
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
) # must after fixing tokenizer to resize vocab
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
@staticmethod
|
||||
def _process_args(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Tuple[Dict[str, Any], int]:
|
||||
if (
|
||||
processor is not None
|
||||
and image is not None
|
||||
and not hasattr(processor, "image_seq_length")
|
||||
and template.image_token not in messages[0]["content"]
|
||||
): # llava-like models
|
||||
messages[0]["content"] = template.image_token + messages[0]["content"]
|
||||
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
system = system or generating_args["default_system"]
|
||||
pixel_values = None
|
||||
prompt_ids, _ = template.encode_oneturn(
|
||||
tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
if processor is not None and image is not None: # add image features
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
batch_feature = image_processor(image, return_tensors="pt")
|
||||
pixel_values = batch_feature.to(model.device)["pixel_values"] # shape (B, C, H, W)
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
prompt_length = len(prompt_ids)
|
||||
inputs = torch.tensor([prompt_ids], device=model.device)
|
||||
attention_mask = torch.ones_like(inputs, dtype=torch.bool)
|
||||
|
||||
do_sample = input_kwargs.pop("do_sample", None)
|
||||
temperature = input_kwargs.pop("temperature", None)
|
||||
top_p = input_kwargs.pop("top_p", None)
|
||||
top_k = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||
do_sample: Optional[bool] = input_kwargs.pop("do_sample", None)
|
||||
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
||||
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
||||
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
||||
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
||||
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
|
||||
if stop is not None:
|
||||
logger.warning("Stop parameter is not supported in Huggingface engine yet.")
|
||||
|
||||
generating_args = generating_args.copy()
|
||||
generating_args.update(
|
||||
dict(
|
||||
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
|
||||
temperature=temperature or generating_args["temperature"],
|
||||
top_p=top_p or generating_args["top_p"],
|
||||
top_k=top_k or generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences or 1,
|
||||
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
||||
temperature=temperature if temperature is not None else generating_args["temperature"],
|
||||
top_p=top_p if top_p is not None else generating_args["top_p"],
|
||||
top_k=top_k if top_k is not None else generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences,
|
||||
repetition_penalty=repetition_penalty
|
||||
if repetition_penalty is not None
|
||||
else generating_args["repetition_penalty"],
|
||||
length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"],
|
||||
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
)
|
||||
)
|
||||
|
||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
|
||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1: # do_sample needs temperature > 0
|
||||
generating_args["do_sample"] = True
|
||||
generating_args["temperature"] = generating_args["temperature"] or 1.0
|
||||
|
||||
if not generating_args["temperature"]:
|
||||
generating_args["do_sample"] = False
|
||||
|
||||
if not generating_args["do_sample"]:
|
||||
generating_args.pop("temperature", None)
|
||||
generating_args.pop("top_p", None)
|
||||
|
||||
if max_length:
|
||||
generating_args.pop("max_new_tokens", None)
|
||||
@@ -90,10 +137,14 @@ class HuggingfaceEngine(BaseEngine):
|
||||
|
||||
gen_kwargs = dict(
|
||||
inputs=inputs,
|
||||
attention_mask=attention_mask,
|
||||
generation_config=GenerationConfig(**generating_args),
|
||||
logits_processor=get_logits_processor(),
|
||||
)
|
||||
|
||||
if pixel_values is not None:
|
||||
gen_kwargs["pixel_values"] = pixel_values
|
||||
|
||||
return gen_kwargs, prompt_length
|
||||
|
||||
@staticmethod
|
||||
@@ -101,15 +152,17 @@ class HuggingfaceEngine(BaseEngine):
|
||||
def _chat(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> List["Response"]:
|
||||
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
|
||||
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
|
||||
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
||||
)
|
||||
generate_output = model.generate(**gen_kwargs)
|
||||
response_ids = generate_output[:, prompt_length:]
|
||||
@@ -134,15 +187,17 @@ class HuggingfaceEngine(BaseEngine):
|
||||
def _stream_chat(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Callable[[], str]:
|
||||
gen_kwargs, _ = HuggingfaceEngine._process_args(
|
||||
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
|
||||
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
||||
)
|
||||
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
gen_kwargs["streamer"] = streamer
|
||||
@@ -198,6 +253,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
if not self.can_generate:
|
||||
@@ -207,11 +263,13 @@ class HuggingfaceEngine(BaseEngine):
|
||||
input_args = (
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
self.processor,
|
||||
self.template,
|
||||
self.generating_args,
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self._semaphore:
|
||||
@@ -223,6 +281,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
if not self.can_generate:
|
||||
@@ -232,11 +291,13 @@ class HuggingfaceEngine(BaseEngine):
|
||||
input_args = (
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
self.processor,
|
||||
self.template,
|
||||
self.generating_args,
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self._semaphore:
|
||||
@@ -0,0 +1,214 @@
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence, Union
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import get_device_count
|
||||
from ..extras.packages import is_vllm_available
|
||||
from ..model import load_config, load_tokenizer
|
||||
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.sequence import MultiModalData
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class VllmEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
config = load_config(model_args) # may download model from ms hub
|
||||
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
engine_args = {
|
||||
"model": model_args.model_name_or_path,
|
||||
"trust_remote_code": True,
|
||||
"download_dir": model_args.cache_dir,
|
||||
"dtype": model_args.vllm_dtype,
|
||||
"max_model_len": model_args.vllm_maxlen,
|
||||
"tensor_parallel_size": get_device_count() or 1,
|
||||
"gpu_memory_utilization": model_args.vllm_gpu_util,
|
||||
"disable_log_stats": True,
|
||||
"disable_log_requests": True,
|
||||
"enforce_eager": model_args.vllm_enforce_eager,
|
||||
"enable_lora": model_args.adapter_name_or_path is not None,
|
||||
"max_lora_rank": model_args.vllm_max_lora_rank,
|
||||
}
|
||||
|
||||
if model_args.visual_inputs:
|
||||
image_size = config.vision_config.image_size
|
||||
patch_size = config.vision_config.patch_size
|
||||
self.image_feature_size = (image_size // patch_size) ** 2
|
||||
engine_args["image_input_type"] = "pixel_values"
|
||||
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids(self.template.image_token)
|
||||
engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size)
|
||||
engine_args["image_feature_size"] = self.image_feature_size
|
||||
if getattr(config, "is_yi_vl_derived_model", None):
|
||||
import vllm.model_executor.models.llava
|
||||
|
||||
logger.info("Detected Yi-VL model, applying projector patch.")
|
||||
vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
|
||||
|
||||
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
|
||||
else:
|
||||
self.lora_request = None
|
||||
|
||||
async def _generate(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncIterator["RequestOutput"]:
|
||||
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
|
||||
if (
|
||||
self.processor is not None
|
||||
and image is not None
|
||||
and not hasattr(self.processor, "image_seq_length")
|
||||
and self.template.image_token not in messages[0]["content"]
|
||||
): # llava-like models (TODO: paligemma models)
|
||||
messages[0]["content"] = self.template.image_token * self.image_feature_size + messages[0]["content"]
|
||||
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
system = system or self.generating_args["default_system"]
|
||||
prompt_ids, _ = self.template.encode_oneturn(
|
||||
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
|
||||
if self.processor is not None and image is not None: # add image features
|
||||
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
|
||||
pixel_values = image_processor(image, return_tensors="pt")["pixel_values"]
|
||||
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
|
||||
else:
|
||||
multi_modal_data = None
|
||||
|
||||
prompt_length = len(prompt_ids)
|
||||
|
||||
use_beam_search: bool = self.generating_args["num_beams"] > 1
|
||||
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
||||
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
||||
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
||||
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
||||
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
|
||||
if "max_new_tokens" in self.generating_args:
|
||||
max_tokens = self.generating_args["max_new_tokens"]
|
||||
elif "max_length" in self.generating_args:
|
||||
if self.generating_args["max_length"] > prompt_length:
|
||||
max_tokens = self.generating_args["max_length"] - prompt_length
|
||||
else:
|
||||
max_tokens = 1
|
||||
|
||||
if max_length:
|
||||
max_tokens = max_length - prompt_length if max_length > prompt_length else 1
|
||||
|
||||
if max_new_tokens:
|
||||
max_tokens = max_new_tokens
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=num_return_sequences,
|
||||
repetition_penalty=(
|
||||
repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"]
|
||||
)
|
||||
or 1.0, # repetition_penalty must > 0
|
||||
temperature=temperature if temperature is not None else self.generating_args["temperature"],
|
||||
top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0
|
||||
top_k=top_k if top_k is not None else self.generating_args["top_k"],
|
||||
use_beam_search=use_beam_search,
|
||||
length_penalty=length_penalty if length_penalty is not None else self.generating_args["length_penalty"],
|
||||
stop=stop,
|
||||
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
||||
max_tokens=max_tokens,
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
|
||||
result_generator = self.model.generate(
|
||||
inputs={"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data},
|
||||
sampling_params=sampling_params,
|
||||
request_id=request_id,
|
||||
lora_request=self.lora_request,
|
||||
)
|
||||
return result_generator
|
||||
|
||||
async def start(self) -> None:
|
||||
pass
|
||||
|
||||
async def chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
final_output = None
|
||||
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
||||
async for request_output in generator:
|
||||
final_output = request_output
|
||||
|
||||
results = []
|
||||
for output in final_output.outputs:
|
||||
results.append(
|
||||
Response(
|
||||
response_text=output.text,
|
||||
response_length=len(output.token_ids),
|
||||
prompt_length=len(final_output.prompt_token_ids),
|
||||
finish_reason=output.finish_reason,
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
async def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
generated_text = ""
|
||||
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
||||
async for result in generator:
|
||||
delta_text = result.outputs[0].text[len(generated_text) :]
|
||||
generated_text = result.outputs[0].text
|
||||
yield delta_text
|
||||
|
||||
async def get_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
raise NotImplementedError("vLLM engine does not support get_scores.")
|
||||
106
src/AntSK.LLamaFactory/llamafactory/llamafactory/cli.py
Normal file
106
src/AntSK.LLamaFactory/llamafactory/llamafactory/cli.py
Normal file
@@ -0,0 +1,106 @@
|
||||
import os
|
||||
import random
|
||||
import subprocess
|
||||
import sys
|
||||
from enum import Enum, unique
|
||||
|
||||
from . import launcher
|
||||
from .api.app import run_api
|
||||
from .chat.chat_model import run_chat
|
||||
from .eval.evaluator import run_eval
|
||||
from .extras.env import VERSION, print_env
|
||||
from .extras.logging import get_logger
|
||||
from .extras.misc import get_device_count
|
||||
from .train.tuner import export_model, run_exp
|
||||
from .webui.interface import run_web_demo, run_web_ui
|
||||
|
||||
|
||||
USAGE = (
|
||||
"-" * 70
|
||||
+ "\n"
|
||||
+ "| Usage: |\n"
|
||||
+ "| llamafactory-cli api -h: launch an OpenAI-style API server |\n"
|
||||
+ "| llamafactory-cli chat -h: launch a chat interface in CLI |\n"
|
||||
+ "| llamafactory-cli eval -h: evaluate models |\n"
|
||||
+ "| llamafactory-cli export -h: merge LoRA adapters and export model |\n"
|
||||
+ "| llamafactory-cli train -h: train models |\n"
|
||||
+ "| llamafactory-cli webchat -h: launch a chat interface in Web UI |\n"
|
||||
+ "| llamafactory-cli webui: launch LlamaBoard |\n"
|
||||
+ "| llamafactory-cli version: show version info |\n"
|
||||
+ "-" * 70
|
||||
)
|
||||
|
||||
WELCOME = (
|
||||
"-" * 58
|
||||
+ "\n"
|
||||
+ "| Welcome to LLaMA Factory, version {}".format(VERSION)
|
||||
+ " " * (21 - len(VERSION))
|
||||
+ "|\n|"
|
||||
+ " " * 56
|
||||
+ "|\n"
|
||||
+ "| Project page: https://github.com/hiyouga/LLaMA-Factory |\n"
|
||||
+ "-" * 58
|
||||
)
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
@unique
|
||||
class Command(str, Enum):
|
||||
API = "api"
|
||||
CHAT = "chat"
|
||||
ENV = "env"
|
||||
EVAL = "eval"
|
||||
EXPORT = "export"
|
||||
TRAIN = "train"
|
||||
WEBDEMO = "webchat"
|
||||
WEBUI = "webui"
|
||||
VER = "version"
|
||||
HELP = "help"
|
||||
|
||||
|
||||
def main():
|
||||
command = sys.argv.pop(1)
|
||||
if command == Command.API:
|
||||
run_api()
|
||||
elif command == Command.CHAT:
|
||||
run_chat()
|
||||
elif command == Command.ENV:
|
||||
print_env()
|
||||
elif command == Command.EVAL:
|
||||
run_eval()
|
||||
elif command == Command.EXPORT:
|
||||
export_model()
|
||||
elif command == Command.TRAIN:
|
||||
force_torchrun = os.environ.get("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
|
||||
if force_torchrun or get_device_count() > 1:
|
||||
master_addr = os.environ.get("MASTER_ADDR", "127.0.0.1")
|
||||
master_port = os.environ.get("MASTER_PORT", str(random.randint(20001, 29999)))
|
||||
logger.info("Initializing distributed tasks at: {}:{}".format(master_addr, master_port))
|
||||
subprocess.run(
|
||||
(
|
||||
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
|
||||
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
|
||||
).format(
|
||||
nnodes=os.environ.get("NNODES", "1"),
|
||||
node_rank=os.environ.get("RANK", "0"),
|
||||
nproc_per_node=os.environ.get("NPROC_PER_NODE", str(get_device_count())),
|
||||
master_addr=master_addr,
|
||||
master_port=master_port,
|
||||
file_name=launcher.__file__,
|
||||
args=" ".join(sys.argv[1:]),
|
||||
),
|
||||
shell=True,
|
||||
)
|
||||
else:
|
||||
run_exp()
|
||||
elif command == Command.WEBDEMO:
|
||||
run_web_demo()
|
||||
elif command == Command.WEBUI:
|
||||
run_web_ui()
|
||||
elif command == Command.VER:
|
||||
print(WELCOME)
|
||||
elif command == Command.HELP:
|
||||
print(USAGE)
|
||||
else:
|
||||
raise NotImplementedError("Unknown command: {}".format(command))
|
||||
@@ -0,0 +1,16 @@
|
||||
from .collator import KTODataCollatorWithPadding, PairwiseDataCollatorWithPadding
|
||||
from .data_utils import Role, split_dataset
|
||||
from .loader import get_dataset
|
||||
from .template import TEMPLATES, Template, get_template_and_fix_tokenizer
|
||||
|
||||
|
||||
__all__ = [
|
||||
"KTODataCollatorWithPadding",
|
||||
"PairwiseDataCollatorWithPadding",
|
||||
"Role",
|
||||
"split_dataset",
|
||||
"get_dataset",
|
||||
"TEMPLATES",
|
||||
"Template",
|
||||
"get_template_and_fix_tokenizer",
|
||||
]
|
||||
221
src/AntSK.LLamaFactory/llamafactory/llamafactory/data/aligner.py
Normal file
221
src/AntSK.LLamaFactory/llamafactory/llamafactory/data/aligner.py
Normal file
@@ -0,0 +1,221 @@
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
||||
|
||||
from datasets import Features
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from .data_utils import Role
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from .parser import DatasetAttr
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _convert_images(images: List[Any], dataset_attr: "DatasetAttr", data_args: "DataArguments") -> List[Any]:
|
||||
r"""
|
||||
Optionally concatenates image path to dataset dir when loading from local disk.
|
||||
"""
|
||||
outputs = []
|
||||
if dataset_attr.load_from in ["script", "file"]:
|
||||
for image in images:
|
||||
if isinstance(image, str) and os.path.isfile(os.path.join(data_args.dataset_dir, image)):
|
||||
outputs.append(os.path.join(data_args.dataset_dir, image))
|
||||
else:
|
||||
outputs.append(image)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_alpaca(
|
||||
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Dict[str, List[Any]]:
|
||||
r"""
|
||||
Converts alpaca format dataset to the standard format.
|
||||
"""
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
for i in range(len(examples[dataset_attr.prompt])):
|
||||
prompt = []
|
||||
if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list):
|
||||
for old_prompt, old_response in examples[dataset_attr.history][i]:
|
||||
prompt.append({"role": Role.USER.value, "content": old_prompt})
|
||||
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
|
||||
|
||||
content = []
|
||||
if dataset_attr.prompt and examples[dataset_attr.prompt][i]:
|
||||
content.append(examples[dataset_attr.prompt][i])
|
||||
|
||||
if dataset_attr.query and examples[dataset_attr.query][i]:
|
||||
content.append(examples[dataset_attr.query][i])
|
||||
|
||||
prompt.append({"role": Role.USER.value, "content": "\n".join(content)}) # "prompt\nquery"
|
||||
|
||||
if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool): # kto example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
|
||||
if examples[dataset_attr.kto_tag][i]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
dataset_attr.ranking
|
||||
and isinstance(examples[dataset_attr.chosen][i], str)
|
||||
and isinstance(examples[dataset_attr.rejected][i], str)
|
||||
): # pairwise example
|
||||
response = [
|
||||
{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.chosen][i]},
|
||||
{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.rejected][i]},
|
||||
]
|
||||
elif dataset_attr.response and isinstance(examples[dataset_attr.response][i], str): # normal example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
|
||||
else: # unsupervised
|
||||
response = []
|
||||
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
|
||||
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
||||
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_sharegpt(
|
||||
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Dict[str, List[Any]]:
|
||||
r"""
|
||||
Converts sharegpt format dataset to the standard format.
|
||||
"""
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
tag_mapping = {
|
||||
dataset_attr.user_tag: Role.USER.value,
|
||||
dataset_attr.assistant_tag: Role.ASSISTANT.value,
|
||||
dataset_attr.observation_tag: Role.OBSERVATION.value,
|
||||
dataset_attr.function_tag: Role.FUNCTION.value,
|
||||
dataset_attr.system_tag: Role.SYSTEM.value,
|
||||
}
|
||||
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
|
||||
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
|
||||
accept_tags = (odd_tags, even_tags)
|
||||
for i, messages in enumerate(examples[dataset_attr.messages]):
|
||||
if dataset_attr.system_tag and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag:
|
||||
system = messages[0][dataset_attr.content_tag]
|
||||
messages = messages[1:]
|
||||
else:
|
||||
system = examples[dataset_attr.system][i] if dataset_attr.system else ""
|
||||
|
||||
if len(messages) == 0:
|
||||
continue
|
||||
|
||||
aligned_messages = []
|
||||
broken_data = False
|
||||
for turn_idx, message in enumerate(messages):
|
||||
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
|
||||
logger.warning("Invalid role tag in {}.".format(messages))
|
||||
broken_data = True
|
||||
|
||||
aligned_messages.append(
|
||||
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
|
||||
)
|
||||
|
||||
if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
|
||||
dataset_attr.ranking and len(aligned_messages) % 2 == 0
|
||||
):
|
||||
logger.warning("Invalid message count in {}.".format(messages))
|
||||
broken_data = True
|
||||
|
||||
if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool): # kto example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
if examples[dataset_attr.kto_tag][i]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
dataset_attr.ranking
|
||||
and isinstance(examples[dataset_attr.chosen][i], dict)
|
||||
and isinstance(examples[dataset_attr.rejected][i], dict)
|
||||
): # pairwise example
|
||||
chosen = examples[dataset_attr.chosen][i]
|
||||
rejected = examples[dataset_attr.rejected][i]
|
||||
if (
|
||||
chosen[dataset_attr.role_tag] not in accept_tags[-1]
|
||||
or rejected[dataset_attr.role_tag] not in accept_tags[-1]
|
||||
):
|
||||
logger.warning("Invalid role tag in {}.".format([chosen, rejected]))
|
||||
broken_data = True
|
||||
|
||||
prompt = aligned_messages
|
||||
response = [
|
||||
{"role": tag_mapping[chosen[dataset_attr.role_tag]], "content": chosen[dataset_attr.content_tag]},
|
||||
{"role": tag_mapping[rejected[dataset_attr.role_tag]], "content": rejected[dataset_attr.content_tag]},
|
||||
]
|
||||
else: # normal example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
|
||||
if broken_data:
|
||||
logger.warning("Skipping this abnormal example.")
|
||||
continue
|
||||
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(system)
|
||||
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
||||
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def align_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
r"""
|
||||
Aligned dataset:
|
||||
prompt: [{"role": "user", "content": "..."}] * (2T - 1)
|
||||
response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
|
||||
system: "..."
|
||||
tools: "...",
|
||||
images: [],
|
||||
"""
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)
|
||||
else:
|
||||
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args)
|
||||
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
features = Features.from_dict(
|
||||
{
|
||||
"prompt": [
|
||||
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
||||
],
|
||||
"response": [
|
||||
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
||||
],
|
||||
"system": {"dtype": "string", "_type": "Value"},
|
||||
"tools": {"dtype": "string", "_type": "Value"},
|
||||
"images": [{"_type": "Image"}],
|
||||
}
|
||||
)
|
||||
kwargs = {}
|
||||
if not data_args.streaming:
|
||||
kwargs = dict(
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
load_from_cache_file=(not data_args.overwrite_cache),
|
||||
desc="Converting format of dataset",
|
||||
)
|
||||
|
||||
return dataset.map(
|
||||
convert_func,
|
||||
batched=True,
|
||||
remove_columns=column_names,
|
||||
features=features,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -0,0 +1,81 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Sequence
|
||||
|
||||
import torch
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
|
||||
@dataclass
|
||||
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Pads batched data to the longest sequence in the batch.
|
||||
|
||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||
the last n examples represent rejected examples.
|
||||
"""
|
||||
concatenated_features = []
|
||||
for key in ("chosen", "rejected"):
|
||||
for feature in features:
|
||||
target_feature = {
|
||||
"input_ids": feature["{}_input_ids".format(key)],
|
||||
"attention_mask": feature["{}_attention_mask".format(key)],
|
||||
"labels": feature["{}_labels".format(key)],
|
||||
}
|
||||
if "pixel_values" in feature:
|
||||
target_feature["pixel_values"] = feature["pixel_values"]
|
||||
|
||||
if "{}_token_type_ids".format(key) in feature:
|
||||
target_feature["token_type_ids"] = feature["{}_token_type_ids".format(key)]
|
||||
|
||||
concatenated_features.append(target_feature)
|
||||
|
||||
return super().__call__(concatenated_features)
|
||||
|
||||
|
||||
@dataclass
|
||||
class KTODataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for KTO data.
|
||||
"""
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
target_features = []
|
||||
kl_features = []
|
||||
kto_tags = []
|
||||
for feature in features:
|
||||
target_feature = {
|
||||
"input_ids": feature["input_ids"],
|
||||
"attention_mask": feature["attention_mask"],
|
||||
"labels": feature["labels"],
|
||||
}
|
||||
kl_feature = {
|
||||
"input_ids": feature["kl_input_ids"],
|
||||
"attention_mask": feature["kl_attention_mask"],
|
||||
"labels": feature["kl_labels"],
|
||||
}
|
||||
if "pixel_values" in feature:
|
||||
target_feature["pixel_values"] = feature["pixel_values"]
|
||||
|
||||
if "token_type_ids" in feature:
|
||||
target_feature["token_type_ids"] = feature["token_type_ids"]
|
||||
kl_feature["token_type_ids"] = feature["kl_token_type_ids"]
|
||||
|
||||
target_features.append(target_feature)
|
||||
kl_features.append(kl_feature)
|
||||
kto_tags.append(feature["kto_tags"])
|
||||
|
||||
batch = super().__call__(target_features)
|
||||
kl_batch = super().__call__(kl_features)
|
||||
batch["kl_input_ids"] = kl_batch["input_ids"]
|
||||
batch["kl_attention_mask"] = kl_batch["attention_mask"]
|
||||
batch["kl_labels"] = kl_batch["labels"]
|
||||
if "token_type_ids" in batch:
|
||||
batch["kl_token_type_ids"] = kl_batch["token_type_ids"]
|
||||
|
||||
batch["kto_tags"] = torch.tensor(kto_tags)
|
||||
return batch
|
||||
@@ -1,6 +1,5 @@
|
||||
import hashlib
|
||||
from enum import Enum, unique
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
|
||||
|
||||
from datasets import concatenate_datasets, interleave_datasets
|
||||
|
||||
@@ -11,7 +10,7 @@ if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
|
||||
from llmtuner.hparams import DataArguments
|
||||
from ..hparams import DataArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -26,25 +25,10 @@ class Role(str, Enum):
|
||||
OBSERVATION = "observation"
|
||||
|
||||
|
||||
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
|
||||
if file_sha1 is None:
|
||||
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
|
||||
return
|
||||
|
||||
if len(data_files) != 1:
|
||||
logger.warning("Checksum failed: too many files.")
|
||||
return
|
||||
|
||||
with open(data_files[0], "rb") as f:
|
||||
sha1 = hashlib.sha1(f.read()).hexdigest()
|
||||
if sha1 != file_sha1:
|
||||
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
|
||||
|
||||
|
||||
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
|
||||
max_target_len = int(max_len * (target_len / (source_len + target_len)))
|
||||
max_target_len = max(max_target_len, reserved_label_len)
|
||||
max_source_len = max_len - max_target_len
|
||||
max_source_len = max_len - min(max_target_len, target_len)
|
||||
return max_source_len, max_target_len
|
||||
|
||||
|
||||
@@ -78,9 +62,9 @@ def split_dataset(
|
||||
if training_args.do_train:
|
||||
if data_args.val_size > 1e-6: # Split the dataset
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
val_set = dataset.take(int(data_args.val_size))
|
||||
train_set = dataset.skip(int(data_args.val_size))
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
return {"train_dataset": train_set, "eval_dataset": val_set}
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
@@ -1,21 +1,24 @@
|
||||
import inspect
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Literal, Union
|
||||
import sys
|
||||
from typing import TYPE_CHECKING, Literal, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_dataset, load_from_disk
|
||||
|
||||
from ..extras.constants import FILEEXT2TYPE
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import has_tokenized_data
|
||||
from .aligner import align_dataset
|
||||
from .data_utils import merge_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .preprocess import get_preprocess_and_print_func
|
||||
from .template import get_template_and_fix_tokenizer
|
||||
from .utils import checksum, merge_dataset
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ..hparams import DataArguments, ModelArguments
|
||||
@@ -56,14 +59,12 @@ def load_single_dataset(
|
||||
data_files.append(local_path)
|
||||
data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None)
|
||||
else:
|
||||
raise ValueError("File not found.")
|
||||
raise ValueError("File {} not found.".format(local_path))
|
||||
|
||||
if data_path is None:
|
||||
raise ValueError("File extension must be txt, csv, json or jsonl.")
|
||||
|
||||
checksum(data_files, dataset_attr.file_sha1)
|
||||
raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys())))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from))
|
||||
|
||||
if dataset_attr.load_from == "ms_hub":
|
||||
try:
|
||||
@@ -80,7 +81,9 @@ def load_single_dataset(
|
||||
cache_dir=cache_dir,
|
||||
token=model_args.ms_hub_token,
|
||||
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
||||
).to_hf_dataset()
|
||||
)
|
||||
if isinstance(dataset, MsDataset):
|
||||
dataset = dataset.to_hf_dataset()
|
||||
except ImportError:
|
||||
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
||||
else:
|
||||
@@ -104,30 +107,43 @@ def load_single_dataset(
|
||||
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True
|
||||
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter
|
||||
|
||||
if dataset_attr.num_samples is not None and not data_args.streaming:
|
||||
target_num = dataset_attr.num_samples
|
||||
indexes = np.random.permutation(len(dataset))[:target_num]
|
||||
target_num -= len(indexes)
|
||||
if target_num > 0:
|
||||
expand_indexes = np.random.choice(len(dataset), target_num)
|
||||
indexes = np.concatenate((indexes, expand_indexes), axis=0)
|
||||
|
||||
assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
|
||||
dataset = dataset.select(indexes)
|
||||
logger.info("Sampled {} examples from dataset {}.".format(dataset_attr.num_samples, dataset_attr))
|
||||
|
||||
if data_args.max_samples is not None: # truncate dataset
|
||||
num_samples = min(data_args.max_samples, len(dataset))
|
||||
dataset = dataset.select(range(num_samples))
|
||||
max_samples = min(data_args.max_samples, len(dataset))
|
||||
dataset = dataset.select(range(max_samples))
|
||||
|
||||
return align_dataset(dataset, dataset_attr, data_args)
|
||||
|
||||
|
||||
def get_dataset(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo"],
|
||||
# split: Optional[str] = "train", # TODO: add split
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"] = None,
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
||||
if data_args.train_on_prompt and template.efficient_eos:
|
||||
raise ValueError("Current template does not support `train_on_prompt`.")
|
||||
|
||||
# Load from cache
|
||||
if data_args.cache_path is not None:
|
||||
if os.path.exists(data_args.cache_path):
|
||||
# Load tokenized dataset
|
||||
if data_args.tokenized_path is not None:
|
||||
if has_tokenized_data(data_args.tokenized_path):
|
||||
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
||||
dataset = load_from_disk(data_args.cache_path)
|
||||
dataset = load_from_disk(data_args.tokenized_path)
|
||||
logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path))
|
||||
if data_args.streaming:
|
||||
dataset = dataset.to_iterable_dataset()
|
||||
return dataset
|
||||
@@ -138,12 +154,15 @@ def get_dataset(
|
||||
with training_args.main_process_first(desc="load dataset"):
|
||||
all_datasets = []
|
||||
for dataset_attr in get_dataset_list(data_args):
|
||||
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
|
||||
raise ValueError("The dataset is not applicable in the current training stage.")
|
||||
|
||||
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
|
||||
dataset = merge_dataset(all_datasets, data_args, training_args)
|
||||
|
||||
with training_args.main_process_first(desc="pre-process dataset"):
|
||||
preprocess_func, print_function = get_preprocess_and_print_func(
|
||||
tokenizer, template, data_args, training_args, stage
|
||||
data_args, training_args, stage, template, tokenizer, processor
|
||||
)
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
kwargs = {}
|
||||
@@ -156,15 +175,21 @@ def get_dataset(
|
||||
|
||||
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
|
||||
|
||||
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path):
|
||||
if data_args.tokenized_path is not None:
|
||||
if training_args.should_save:
|
||||
dataset.save_to_disk(data_args.cache_path)
|
||||
logger.info("Dataset cache saved at {}.".format(data_args.cache_path))
|
||||
dataset.save_to_disk(data_args.tokenized_path)
|
||||
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path))
|
||||
logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path))
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
if training_args.should_log:
|
||||
try:
|
||||
print_function(next(iter(dataset)))
|
||||
except StopIteration:
|
||||
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
|
||||
if stage == "pt":
|
||||
raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.")
|
||||
else:
|
||||
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
|
||||
|
||||
return dataset
|
||||
@@ -20,23 +20,28 @@ class DatasetAttr:
|
||||
""" basic configs """
|
||||
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
|
||||
dataset_name: str
|
||||
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
|
||||
ranking: bool = False
|
||||
""" extra configs """
|
||||
file_sha1: Optional[str] = None
|
||||
subset: Optional[str] = None
|
||||
folder: Optional[str] = None
|
||||
ranking: bool = False
|
||||
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
|
||||
""" columns """
|
||||
num_samples: Optional[int] = None
|
||||
""" common columns """
|
||||
system: Optional[str] = None
|
||||
""" columns for the alpaca format """
|
||||
tools: Optional[str] = None
|
||||
images: Optional[str] = None
|
||||
""" rlhf columns """
|
||||
chosen: Optional[str] = None
|
||||
rejected: Optional[str] = None
|
||||
kto_tag: Optional[str] = None
|
||||
""" alpaca columns """
|
||||
prompt: Optional[str] = "instruction"
|
||||
query: Optional[str] = "input"
|
||||
response: Optional[str] = "output"
|
||||
history: Optional[str] = None
|
||||
""" columns for the sharegpt format """
|
||||
""" sharegpt columns """
|
||||
messages: Optional[str] = "conversations"
|
||||
tools: Optional[str] = None
|
||||
""" tags for the sharegpt format """
|
||||
""" sharegpt tags """
|
||||
role_tag: Optional[str] = "from"
|
||||
content_tag: Optional[str] = "value"
|
||||
user_tag: Optional[str] = "human"
|
||||
@@ -53,22 +58,35 @@ class DatasetAttr:
|
||||
|
||||
|
||||
def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")] if data_args.dataset is not None else []
|
||||
try:
|
||||
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f:
|
||||
dataset_info = json.load(f)
|
||||
except Exception as err:
|
||||
if data_args.dataset is not None:
|
||||
raise ValueError(
|
||||
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
|
||||
)
|
||||
if data_args.dataset is not None:
|
||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")]
|
||||
else:
|
||||
dataset_names = []
|
||||
|
||||
if data_args.dataset_dir == "ONLINE":
|
||||
dataset_info = None
|
||||
else:
|
||||
try:
|
||||
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f:
|
||||
dataset_info = json.load(f)
|
||||
except Exception as err:
|
||||
if len(dataset_names) != 0:
|
||||
raise ValueError(
|
||||
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
|
||||
)
|
||||
dataset_info = None
|
||||
|
||||
if data_args.interleave_probs is not None:
|
||||
data_args.interleave_probs = [float(prob.strip()) for prob in data_args.interleave_probs.split(",")]
|
||||
|
||||
dataset_list: List[DatasetAttr] = []
|
||||
for name in dataset_names:
|
||||
if dataset_info is None:
|
||||
load_from = "ms_hub" if use_modelscope() else "hf_hub"
|
||||
dataset_attr = DatasetAttr(load_from, dataset_name=name)
|
||||
dataset_list.append(dataset_attr)
|
||||
continue
|
||||
|
||||
if name not in dataset_info:
|
||||
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
|
||||
|
||||
@@ -85,18 +103,18 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
else:
|
||||
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
|
||||
|
||||
dataset_attr.set_attr("file_sha1", dataset_info[name])
|
||||
dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
|
||||
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
||||
dataset_attr.set_attr("subset", dataset_info[name])
|
||||
dataset_attr.set_attr("folder", dataset_info[name])
|
||||
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
||||
dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
|
||||
dataset_attr.set_attr("num_samples", dataset_info[name])
|
||||
|
||||
if "columns" in dataset_info[name]:
|
||||
column_names = ["system"]
|
||||
column_names = ["system", "tools", "images", "chosen", "rejected", "kto_tag"]
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
column_names.extend(["prompt", "query", "response", "history"])
|
||||
else:
|
||||
column_names.extend(["messages", "tools"])
|
||||
column_names.extend(["messages"])
|
||||
|
||||
for column_name in column_names:
|
||||
dataset_attr.set_attr(column_name, dataset_info[name]["columns"])
|
||||
@@ -0,0 +1,84 @@
|
||||
from functools import partial
|
||||
from typing import TYPE_CHECKING, Callable, Literal, Optional, Tuple
|
||||
|
||||
from .processors.feedback import preprocess_feedback_dataset
|
||||
from .processors.pairwise import preprocess_pairwise_dataset, print_pairwise_dataset_example
|
||||
from .processors.pretrain import preprocess_pretrain_dataset
|
||||
from .processors.supervised import (
|
||||
preprocess_packed_supervised_dataset,
|
||||
preprocess_supervised_dataset,
|
||||
print_supervised_dataset_example,
|
||||
)
|
||||
from .processors.unsupervised import preprocess_unsupervised_dataset, print_unsupervised_dataset_example
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from .template import Template
|
||||
|
||||
|
||||
def get_preprocess_and_print_func(
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Tuple[Callable, Callable]:
|
||||
if stage == "pt":
|
||||
preprocess_func = partial(
|
||||
preprocess_pretrain_dataset,
|
||||
tokenizer=tokenizer,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "sft" and not training_args.predict_with_generate:
|
||||
if data_args.packing:
|
||||
preprocess_func = partial(
|
||||
preprocess_packed_supervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
data_args=data_args,
|
||||
)
|
||||
else:
|
||||
preprocess_func = partial(
|
||||
preprocess_supervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
|
||||
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "rm":
|
||||
preprocess_func = partial(
|
||||
preprocess_pairwise_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "kto":
|
||||
preprocess_func = partial(
|
||||
preprocess_feedback_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
||||
else:
|
||||
preprocess_func = partial(
|
||||
preprocess_unsupervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
|
||||
return preprocess_func, print_function
|
||||
@@ -0,0 +1,126 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _encode_feedback_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
kl_response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
if response[0]["content"]: # desired example
|
||||
kto_tag = True
|
||||
messages = prompt + [response[0]]
|
||||
else: # undesired example
|
||||
kto_tag = False
|
||||
messages = prompt + [response[1]]
|
||||
|
||||
if kl_response[0]["content"]:
|
||||
kl_messages = prompt + [kl_response[0]]
|
||||
else:
|
||||
kl_messages = prompt + [kl_response[1]]
|
||||
|
||||
prompt_ids, response_ids = template.encode_oneturn(
|
||||
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
_, kl_response_ids = template.encode_oneturn(
|
||||
tokenizer, kl_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
response_ids += [tokenizer.eos_token_id]
|
||||
kl_response_ids += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
input_ids = prompt_ids + response_ids
|
||||
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
|
||||
kl_input_ids = prompt_ids + kl_response_ids
|
||||
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
|
||||
|
||||
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
|
||||
|
||||
|
||||
def preprocess_feedback_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
|
||||
kl_response = examples["response"][::-1]
|
||||
model_inputs = {
|
||||
"input_ids": [],
|
||||
"attention_mask": [],
|
||||
"labels": [],
|
||||
"kl_input_ids": [],
|
||||
"kl_attention_mask": [],
|
||||
"kl_labels": [],
|
||||
"kto_tags": [],
|
||||
}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
model_inputs["kl_token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
kl_response=kl_response[i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["kl_input_ids"].append(kl_input_ids)
|
||||
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
|
||||
model_inputs["kl_labels"].append(kl_labels)
|
||||
model_inputs["kto_tags"].append(kto_tag)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor))
|
||||
|
||||
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
||||
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
||||
if desirable_num == 0 or undesirable_num == 0:
|
||||
logger.warning("Your dataset only has one preference type.")
|
||||
|
||||
return model_inputs
|
||||
@@ -0,0 +1,123 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _encode_pairwise_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int], List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
chosen_messages = prompt + [response[0]]
|
||||
rejected_messages = prompt + [response[1]]
|
||||
prompt_ids, chosen_ids = template.encode_oneturn(
|
||||
tokenizer, chosen_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
_, rejected_ids = template.encode_oneturn(
|
||||
tokenizer, rejected_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
chosen_ids += [tokenizer.eos_token_id]
|
||||
rejected_ids += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
chosen_input_ids = prompt_ids + chosen_ids
|
||||
chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids
|
||||
rejected_input_ids = prompt_ids + rejected_ids
|
||||
rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids
|
||||
|
||||
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels
|
||||
|
||||
|
||||
def preprocess_pairwise_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
|
||||
model_inputs = {
|
||||
"chosen_input_ids": [],
|
||||
"chosen_attention_mask": [],
|
||||
"chosen_labels": [],
|
||||
"rejected_input_ids": [],
|
||||
"rejected_attention_mask": [],
|
||||
"rejected_labels": [],
|
||||
}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["chosen_token_type_ids"] = []
|
||||
model_inputs["rejected_token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = _encode_pairwise_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
||||
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
||||
model_inputs["chosen_labels"].append(chosen_labels)
|
||||
model_inputs["rejected_input_ids"].append(rejected_input_ids)
|
||||
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
|
||||
model_inputs["rejected_labels"].append(rejected_labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["chosen_token_type_ids"].append(
|
||||
get_paligemma_token_type_ids(len(chosen_input_ids), processor)
|
||||
)
|
||||
model_inputs["rejected_token_type_ids"].append(
|
||||
get_paligemma_token_type_ids(len(rejected_input_ids), processor)
|
||||
)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"]))
|
||||
valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"]))
|
||||
print("chosen_input_ids:\n{}".format(example["chosen_input_ids"]))
|
||||
print("chosen_inputs:\n{}".format(tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False)))
|
||||
print("chosen_label_ids:\n{}".format(example["chosen_labels"]))
|
||||
print("chosen_labels:\n{}".format(tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)))
|
||||
print("rejected_input_ids:\n{}".format(example["rejected_input_ids"]))
|
||||
print("rejected_inputs:\n{}".format(tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False)))
|
||||
print("rejected_label_ids:\n{}".format(example["rejected_labels"]))
|
||||
print("rejected_labels:\n{}".format(tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)))
|
||||
@@ -0,0 +1,36 @@
|
||||
from itertools import chain
|
||||
from typing import TYPE_CHECKING, Any, Dict, List
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
|
||||
|
||||
def preprocess_pretrain_dataset(
|
||||
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
|
||||
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
|
||||
|
||||
if not data_args.packing:
|
||||
if data_args.template == "gemma":
|
||||
text_examples = [tokenizer.bos_token + example for example in text_examples]
|
||||
|
||||
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len, truncation=True)
|
||||
else:
|
||||
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
|
||||
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
|
||||
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
|
||||
block_size = data_args.cutoff_len
|
||||
total_length = (total_length // block_size) * block_size
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
if data_args.template == "gemma":
|
||||
for i in range(len(result["input_ids"])):
|
||||
result["input_ids"][i][0] = tokenizer.bos_token_id
|
||||
|
||||
return result
|
||||
@@ -0,0 +1,64 @@
|
||||
import bisect
|
||||
from typing import TYPE_CHECKING, List, Sequence
|
||||
|
||||
from ...extras.packages import is_pillow_available
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from PIL.Image import Image as ImageObject
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
|
||||
|
||||
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
|
||||
r"""
|
||||
Finds the index of largest number that fits into the knapsack with the given capacity.
|
||||
"""
|
||||
index = bisect.bisect(numbers, capacity)
|
||||
return -1 if index == 0 else (index - 1)
|
||||
|
||||
|
||||
def greedy_knapsack(numbers: List[int], capacity: int) -> List[List[int]]:
|
||||
r"""
|
||||
An efficient greedy algorithm with binary search for the knapsack problem.
|
||||
"""
|
||||
numbers.sort() # sort numbers in ascending order for binary search
|
||||
knapsacks = []
|
||||
|
||||
while numbers:
|
||||
current_knapsack = []
|
||||
remaining_capacity = capacity
|
||||
|
||||
while True:
|
||||
index = search_for_fit(numbers, remaining_capacity)
|
||||
if index == -1:
|
||||
break # no more numbers fit in this knapsack
|
||||
|
||||
remaining_capacity -= numbers[index] # update the remaining capacity
|
||||
current_knapsack.append(numbers.pop(index)) # add the number to knapsack
|
||||
|
||||
knapsacks.append(current_knapsack)
|
||||
|
||||
return knapsacks
|
||||
|
||||
|
||||
def get_pixel_values(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
|
||||
r"""
|
||||
Processes visual inputs. (currently only supports a single image)
|
||||
"""
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
|
||||
return image_processor(image, return_tensors="pt")["pixel_values"][0] # shape (C, H, W)
|
||||
|
||||
|
||||
def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") -> List[int]:
|
||||
r"""
|
||||
Gets paligemma token type ids for computing loss.
|
||||
"""
|
||||
image_seq_length = getattr(processor, "image_seq_length")
|
||||
return [0] * image_seq_length + [1] * (input_len - image_seq_length)
|
||||
@@ -0,0 +1,169 @@
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _encode_supervised_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
messages = prompt + response
|
||||
input_ids, labels = [], []
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
input_ids += [image_token_id] * getattr(processor, "image_seq_length")
|
||||
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length")
|
||||
|
||||
encoded_pairs = template.encode_multiturn(
|
||||
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_mask + target_ids
|
||||
|
||||
if template.efficient_eos:
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
return input_ids, labels
|
||||
|
||||
|
||||
def preprocess_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
|
||||
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels = _encode_supervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def preprocess_packed_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
|
||||
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
|
||||
valid_num = 0
|
||||
batch_input_ids, batch_labels = [], []
|
||||
lengths = []
|
||||
length2indexes = defaultdict(list)
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels = _encode_supervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=None,
|
||||
data_args=data_args,
|
||||
)
|
||||
length = len(input_ids)
|
||||
if length > data_args.cutoff_len:
|
||||
logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len))
|
||||
else:
|
||||
lengths.append(length)
|
||||
length2indexes[length].append(valid_num)
|
||||
batch_input_ids.append(input_ids)
|
||||
batch_labels.append(labels)
|
||||
valid_num += 1
|
||||
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len)
|
||||
for knapsack in knapsacks:
|
||||
packed_input_ids, packed_labels = [], []
|
||||
for length in knapsack:
|
||||
index = length2indexes[length].pop()
|
||||
packed_input_ids += batch_input_ids[index]
|
||||
packed_labels += batch_labels[index]
|
||||
|
||||
if len(packed_input_ids) < data_args.cutoff_len:
|
||||
pad_length = data_args.cutoff_len - len(packed_input_ids)
|
||||
packed_input_ids += [tokenizer.pad_token_id] * pad_length
|
||||
packed_labels += [IGNORE_INDEX] * pad_length
|
||||
|
||||
if len(packed_input_ids) != data_args.cutoff_len:
|
||||
raise ValueError("The length of packed example should be identical to the cutoff length.")
|
||||
|
||||
model_inputs["input_ids"].append(packed_input_ids)
|
||||
model_inputs["attention_mask"].append([1] * data_args.cutoff_len)
|
||||
model_inputs["labels"].append(packed_labels)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print("label_ids:\n{}".format(example["labels"]))
|
||||
print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False)))
|
||||
@@ -0,0 +1,92 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..data_utils import Role
|
||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _encode_unsupervised_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
if len(response) == 1:
|
||||
messages = prompt + response
|
||||
else:
|
||||
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
|
||||
input_ids, labels = template.encode_oneturn(
|
||||
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
if template.efficient_eos:
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids
|
||||
|
||||
return input_ids, labels
|
||||
|
||||
|
||||
def preprocess_unsupervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X` and labels with format `Y <eos>`
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
input_ids, labels = _encode_unsupervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
@@ -2,8 +2,8 @@ from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from .data_utils import Role, infer_max_len
|
||||
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter
|
||||
from .utils import Role, infer_max_len
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -26,6 +26,7 @@ class Template:
|
||||
format_separator: "Formatter"
|
||||
default_system: str
|
||||
stop_words: List[str]
|
||||
image_token: str
|
||||
efficient_eos: bool
|
||||
replace_eos: bool
|
||||
force_system: bool
|
||||
@@ -68,8 +69,8 @@ class Template:
|
||||
self,
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
messages: List[Dict[str, str]],
|
||||
system: str,
|
||||
tools: str,
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
cutoff_len: int,
|
||||
reserved_label_len: int,
|
||||
) -> Sequence[Tuple[List[int], List[int]]]:
|
||||
@@ -195,7 +196,7 @@ class Llama2Template(Template):
|
||||
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len)
|
||||
|
||||
|
||||
templates: Dict[str, Template] = {}
|
||||
TEMPLATES: Dict[str, Template] = {}
|
||||
|
||||
|
||||
def _register_template(
|
||||
@@ -209,6 +210,7 @@ def _register_template(
|
||||
format_separator: Optional["Formatter"] = None,
|
||||
default_system: str = "",
|
||||
stop_words: List[str] = [],
|
||||
image_token: str = "<image>",
|
||||
efficient_eos: bool = False,
|
||||
replace_eos: bool = False,
|
||||
force_system: bool = False,
|
||||
@@ -246,7 +248,7 @@ def _register_template(
|
||||
default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots)
|
||||
default_tool_formatter = ToolFormatter(tool_format="default")
|
||||
default_separator_formatter = EmptyFormatter()
|
||||
templates[name] = template_class(
|
||||
TEMPLATES[name] = template_class(
|
||||
format_user=format_user or default_user_formatter,
|
||||
format_assistant=format_assistant or default_assistant_formatter,
|
||||
format_system=format_system or default_user_formatter,
|
||||
@@ -256,6 +258,7 @@ def _register_template(
|
||||
format_separator=format_separator or default_separator_formatter,
|
||||
default_system=default_system,
|
||||
stop_words=stop_words,
|
||||
image_token=image_token,
|
||||
efficient_eos=efficient_eos,
|
||||
replace_eos=replace_eos,
|
||||
force_system=force_system,
|
||||
@@ -276,7 +279,7 @@ def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str)
|
||||
|
||||
|
||||
def _jinja_escape(content: str) -> str:
|
||||
return content.replace("\n", r"\n").replace("'", r"\'")
|
||||
return content.replace("'", r"\'")
|
||||
|
||||
|
||||
def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str:
|
||||
@@ -290,10 +293,10 @@ def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", pl
|
||||
slot_items.append(placeholder)
|
||||
if slot_pieces[1]:
|
||||
slot_items.append("'" + _jinja_escape(slot_pieces[1]) + "'")
|
||||
elif isinstance(slot, set):
|
||||
if "bos_token" in slot:
|
||||
elif isinstance(slot, set): # do not use {{ eos_token }} since it may be replaced
|
||||
if "bos_token" in slot and tokenizer.bos_token_id is not None:
|
||||
slot_items.append("'" + tokenizer.bos_token + "'")
|
||||
elif "eos_token" in slot: # do not use {{ eos_token }} since it may be replaced
|
||||
elif "eos_token" in slot and tokenizer.eos_token_id is not None:
|
||||
slot_items.append("'" + tokenizer.eos_token + "'")
|
||||
elif isinstance(slot, dict):
|
||||
raise ValueError("Dict is not supported.")
|
||||
@@ -308,7 +311,7 @@ def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer")
|
||||
jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}"
|
||||
|
||||
jinja_template += (
|
||||
"{% if messages[0]['role'] == 'system' %}" "{% set system_message = messages[0]['content'] %}" "{% endif %}"
|
||||
"{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}"
|
||||
)
|
||||
|
||||
system_message = _convert_slots_to_jinja(template.format_system.apply(), tokenizer, placeholder="system_message")
|
||||
@@ -325,9 +328,11 @@ def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer")
|
||||
jinja_template += "{% if loop.index0 == 0 and system_message is defined %}"
|
||||
jinja_template += "{% set content = " + system_message + " + message['content'] %}"
|
||||
jinja_template += "{% endif %}"
|
||||
|
||||
jinja_template += "{% if message['role'] == 'user' %}"
|
||||
user_message = _convert_slots_to_jinja(template.format_user.apply(), tokenizer)
|
||||
jinja_template += "{{ " + user_message + " }}"
|
||||
|
||||
jinja_template += "{% elif message['role'] == 'assistant' %}"
|
||||
assistant_message = _convert_slots_to_jinja(
|
||||
template.format_assistant.apply() + template.format_separator.apply(), tokenizer
|
||||
@@ -343,9 +348,9 @@ def get_template_and_fix_tokenizer(
|
||||
name: Optional[str] = None,
|
||||
) -> Template:
|
||||
if name is None:
|
||||
template = templates["vanilla"] # placeholder
|
||||
template = TEMPLATES["empty"] # placeholder
|
||||
else:
|
||||
template = templates.get(name, None)
|
||||
template = TEMPLATES.get(name, None)
|
||||
if template is None:
|
||||
raise ValueError("Template {} does not exist.".format(name))
|
||||
|
||||
@@ -385,7 +390,8 @@ _register_template(
|
||||
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n\n"]),
|
||||
default_system=(
|
||||
"Below is an instruction that describes a task. " "Write a response that appropriately completes the request."
|
||||
"Below is an instruction that describes a task. "
|
||||
"Write a response that appropriately completes the request.\n\n"
|
||||
),
|
||||
)
|
||||
|
||||
@@ -414,7 +420,7 @@ _register_template(
|
||||
|
||||
_register_template(
|
||||
name="baichuan",
|
||||
format_user=StringFormatter(slots=["<reserved_102>{{content}}<reserved_103>"]),
|
||||
format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
@@ -441,6 +447,18 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="breeze",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
default_system=(
|
||||
"You are a helpful AI assistant built by MediaTek Research. "
|
||||
"The user you are helping speaks Traditional Chinese and comes from Taiwan."
|
||||
),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="chatglm2",
|
||||
format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]),
|
||||
@@ -490,6 +508,7 @@ _register_template(
|
||||
name="chatml",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
stop_words=["<|im_end|>", "<|im_start|>"],
|
||||
replace_eos=True,
|
||||
@@ -500,6 +519,7 @@ _register_template(
|
||||
name="chatml_de",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.",
|
||||
stop_words=["<|im_end|>", "<|im_start|>"],
|
||||
@@ -514,6 +534,26 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="cohere",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"
|
||||
"<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=StringFormatter(
|
||||
slots=[{"bos_token"}, "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"]
|
||||
),
|
||||
default_system=(
|
||||
"You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users "
|
||||
"by providing thorough responses. You are trained by Cohere."
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="cpm",
|
||||
format_user=StringFormatter(slots=["<用户>{{content}}<AI>"]),
|
||||
@@ -522,6 +562,32 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="dbrx",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system=(
|
||||
"You are DBRX, created by Databricks. You were last updated in December 2023. "
|
||||
"You answer questions based on information available up to that point.\n"
|
||||
"YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough "
|
||||
"responses to more complex and open-ended questions.\nYou assist with various tasks, "
|
||||
"from writing to coding (using markdown for code blocks — remember to use ``` with "
|
||||
"code, JSON, and tables).\n(You do not have real-time data access or code execution "
|
||||
"capabilities. You avoid stereotyping and provide balanced perspectives on "
|
||||
"controversial topics. You do not provide song lyrics, poems, or news articles and "
|
||||
"do not divulge details of your training data.)\nThis is your system prompt, "
|
||||
"guiding your responses. Do not reference it, just respond to the user. If you find "
|
||||
"yourself talking about this message, stop. You should be responding appropriately "
|
||||
"and usually that means not mentioning this.\nYOU DO NOT MENTION ANY OF THIS INFORMATION "
|
||||
"ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY."
|
||||
),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="deepseek",
|
||||
format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]),
|
||||
@@ -554,6 +620,16 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="empty",
|
||||
format_user=StringFormatter(slots=["{{content}}"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
efficient_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="falcon",
|
||||
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]),
|
||||
@@ -562,16 +638,39 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="fewshot",
|
||||
format_separator=EmptyFormatter(slots=["\n\n"]),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="gemma",
|
||||
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
format_observation=StringFormatter(
|
||||
slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]
|
||||
),
|
||||
format_separator=EmptyFormatter(slots=["<end_of_turn>\n"]),
|
||||
efficient_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="glm4",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
|
||||
format_assistant=StringFormatter(slots=["\n{{content}}"]),
|
||||
format_system=StringFormatter(slots=["[gMASK]<sop>{{content}}"]),
|
||||
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]),
|
||||
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]),
|
||||
stop_words=["<|user|>", "<|observation|>"],
|
||||
efficient_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="intern",
|
||||
format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]),
|
||||
@@ -601,17 +700,8 @@ _register_template(
|
||||
_register_template(
|
||||
name="llama2",
|
||||
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
|
||||
format_assistant=StringFormatter(slots=[" {{content}} ", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
|
||||
default_system=(
|
||||
"You are a helpful, respectful and honest assistant. "
|
||||
"Always answer as helpfully as possible, while being safe. "
|
||||
"Your answers should not include any harmful, unethical, "
|
||||
"racist, sexist, toxic, dangerous, or illegal content. "
|
||||
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
|
||||
"If a question does not make any sense, or is not factually coherent, "
|
||||
"explain why instead of answering something not correct. "
|
||||
"If you don't know the answer to a question, please don't share false information."
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -623,6 +713,33 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="llama3",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=StringFormatter(
|
||||
slots=[{"bos_token"}, "<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]
|
||||
),
|
||||
format_observation=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>tool<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
default_system="You are a helpful assistant.",
|
||||
stop_words=["<|eot_id|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="mistral",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]),
|
||||
@@ -633,8 +750,7 @@ _register_template(
|
||||
|
||||
_register_template(
|
||||
name="olmo",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]),
|
||||
format_system=StringFormatter(slots=[{"eos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
@@ -643,12 +759,28 @@ _register_template(
|
||||
_register_template(
|
||||
name="openchat",
|
||||
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="openchat-3.6",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>GPT4 Correct User<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
stop_words=["<|eot_id|>"],
|
||||
replace_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="orion",
|
||||
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]),
|
||||
@@ -657,10 +789,22 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="phi",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>\n"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "<|system|>\n{{content}}<|end|>\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="You are a helpful AI assistant.",
|
||||
stop_words=["<|end|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="qwen",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="You are a helpful assistant.",
|
||||
stop_words=["<|im_end|>"],
|
||||
@@ -688,7 +832,11 @@ _register_template(
|
||||
|
||||
|
||||
_register_template(
|
||||
name="vanilla",
|
||||
name="telechat",
|
||||
format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
|
||||
format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]),
|
||||
stop_words=["<_end>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
@@ -742,12 +890,29 @@ _register_template(
|
||||
_register_template(
|
||||
name="yi",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="yi_vl",
|
||||
format_user=StringFormatter(slots=["### Human: {{content}}\n### Assistant:"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system=(
|
||||
"This is a chat between an inquisitive human and an AI assistant. "
|
||||
"Assume the role of the AI assistant. Read all the images carefully, "
|
||||
"and respond to the human's questions with informative, helpful, detailed and polite answers. "
|
||||
"这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。"
|
||||
"仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。\n\n"
|
||||
),
|
||||
stop_words=["###"],
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="yuan",
|
||||
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
|
||||
@@ -762,7 +927,7 @@ _register_template(
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]),
|
||||
format_assistant=StringFormatter(slots=["\n{{content}}", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]),
|
||||
default_system="You are a friendly chatbot who always responds in the style of a pirate",
|
||||
default_system="You are Zephyr, a helpful assistant.",
|
||||
)
|
||||
|
||||
|
||||
@@ -14,16 +14,17 @@ from transformers.utils import cached_file
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.constants import CHOICES, SUBJECTS
|
||||
from ..hparams import get_eval_args
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .template import get_eval_template
|
||||
|
||||
|
||||
class Evaluator:
|
||||
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
||||
self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(self.model_args, finetuning_args)
|
||||
self.tokenizer = load_tokenizer(self.model_args)["tokenizer"]
|
||||
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args.template)
|
||||
self.model = load_model(self.tokenizer, self.model_args, finetuning_args)
|
||||
self.eval_template = get_eval_template(self.eval_args.lang)
|
||||
self.choice_inputs = [
|
||||
self.tokenizer.encode(self.eval_template.prefix + ch, add_special_tokens=False)[-1] for ch in CHOICES
|
||||
@@ -117,6 +118,5 @@ class Evaluator:
|
||||
f.write(score_info)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
evaluator = Evaluator()
|
||||
evaluator.eval()
|
||||
def run_eval() -> None:
|
||||
Evaluator().eval()
|
||||
@@ -1,14 +1,10 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, List, Tuple
|
||||
from typing import Dict, List, Sequence, Tuple
|
||||
|
||||
from ..data import Role
|
||||
from ..extras.constants import CHOICES
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset
|
||||
|
||||
|
||||
@dataclass
|
||||
class EvalTemplate:
|
||||
system: str
|
||||
@@ -16,22 +12,29 @@ class EvalTemplate:
|
||||
answer: str
|
||||
prefix: str
|
||||
|
||||
def parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
|
||||
def _parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
|
||||
r"""
|
||||
input: a dict with keys {"question", "A", "B", "C", "D", "answer"}
|
||||
output: a tuple of (prompt, response)
|
||||
"""
|
||||
candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in CHOICES if ch in example]
|
||||
return "".join([example["question"]] + candidates + [self.answer]), example["answer"]
|
||||
|
||||
def format_example(
|
||||
self, target_data: Dict[str, str], support_set: "Dataset", subject_name: str
|
||||
self, target_data: Dict[str, str], support_set: Sequence[Dict[str, str]], subject_name: str
|
||||
) -> List[Dict[str, str]]:
|
||||
r"""
|
||||
Converts dataset examples to messages.
|
||||
"""
|
||||
messages = []
|
||||
for k in range(len(support_set)):
|
||||
prompt, response = self.parse_example(support_set[k])
|
||||
messages.append({"role": Role.USER, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT, "content": response})
|
||||
prompt, response = self._parse_example(support_set[k])
|
||||
messages.append({"role": Role.USER.value, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT.value, "content": response})
|
||||
|
||||
prompt, response = self.parse_example(target_data)
|
||||
messages.append({"role": Role.USER, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT, "content": response})
|
||||
prompt, response = self._parse_example(target_data)
|
||||
messages.append({"role": Role.USER.value, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT.value, "content": response})
|
||||
messages[0]["content"] = self.system.format(subject=subject_name) + messages[0]["content"]
|
||||
return messages
|
||||
|
||||
@@ -39,7 +42,7 @@ class EvalTemplate:
|
||||
eval_templates: Dict[str, "EvalTemplate"] = {}
|
||||
|
||||
|
||||
def register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
|
||||
def _register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
|
||||
eval_templates[name] = EvalTemplate(system=system, choice=choice, answer=answer, prefix=prefix)
|
||||
|
||||
|
||||
@@ -49,7 +52,7 @@ def get_eval_template(name: str) -> "EvalTemplate":
|
||||
return eval_template
|
||||
|
||||
|
||||
register_eval_template(
|
||||
_register_eval_template(
|
||||
name="en",
|
||||
system="The following are multiple choice questions (with answers) about {subject}.\n\n",
|
||||
choice="\n{choice}. {content}",
|
||||
@@ -58,10 +61,10 @@ register_eval_template(
|
||||
)
|
||||
|
||||
|
||||
register_eval_template(
|
||||
_register_eval_template(
|
||||
name="zh",
|
||||
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
|
||||
choice="\n{choice}. {content}",
|
||||
answer="\n答案:",
|
||||
prefix="\n",
|
||||
prefix=" ",
|
||||
)
|
||||
@@ -0,0 +1,217 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import signal
|
||||
import sys
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from datetime import timedelta
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional
|
||||
|
||||
import transformers
|
||||
from transformers import TrainerCallback
|
||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
|
||||
|
||||
from .constants import TRAINER_LOG
|
||||
from .logging import LoggerHandler, get_logger
|
||||
from .misc import fix_valuehead_checkpoint
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import TrainerControl, TrainerState, TrainingArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class FixValueHeadModelCallback(TrainerCallback):
|
||||
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after a checkpoint save.
|
||||
"""
|
||||
if args.should_save:
|
||||
fix_valuehead_checkpoint(
|
||||
model=kwargs.pop("model"),
|
||||
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
|
||||
safe_serialization=args.save_safetensors,
|
||||
)
|
||||
|
||||
|
||||
class LogCallback(TrainerCallback):
|
||||
def __init__(self, output_dir: str) -> None:
|
||||
r"""
|
||||
Initializes a callback for logging training and evaluation status.
|
||||
"""
|
||||
""" Progress """
|
||||
self.start_time = 0
|
||||
self.cur_steps = 0
|
||||
self.max_steps = 0
|
||||
self.elapsed_time = ""
|
||||
self.remaining_time = ""
|
||||
self.thread_pool: Optional["ThreadPoolExecutor"] = None
|
||||
""" Status """
|
||||
self.aborted = False
|
||||
self.do_train = False
|
||||
""" Web UI """
|
||||
self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"]
|
||||
if self.webui_mode:
|
||||
signal.signal(signal.SIGABRT, self._set_abort)
|
||||
self.logger_handler = LoggerHandler(output_dir)
|
||||
logging.root.addHandler(self.logger_handler)
|
||||
transformers.logging.add_handler(self.logger_handler)
|
||||
|
||||
def _set_abort(self, signum, frame) -> None:
|
||||
self.aborted = True
|
||||
|
||||
def _reset(self, max_steps: int = 0) -> None:
|
||||
self.start_time = time.time()
|
||||
self.cur_steps = 0
|
||||
self.max_steps = max_steps
|
||||
self.elapsed_time = ""
|
||||
self.remaining_time = ""
|
||||
|
||||
def _timing(self, cur_steps: int) -> None:
|
||||
cur_time = time.time()
|
||||
elapsed_time = cur_time - self.start_time
|
||||
avg_time_per_step = elapsed_time / cur_steps if cur_steps != 0 else 0
|
||||
remaining_time = (self.max_steps - cur_steps) * avg_time_per_step
|
||||
self.cur_steps = cur_steps
|
||||
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
|
||||
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
|
||||
|
||||
def _write_log(self, output_dir: str, logs: Dict[str, Any]) -> None:
|
||||
with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
|
||||
f.write(json.dumps(logs) + "\n")
|
||||
|
||||
def _create_thread_pool(self, output_dir: str) -> None:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
self.thread_pool = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
def _close_thread_pool(self) -> None:
|
||||
if self.thread_pool is not None:
|
||||
self.thread_pool.shutdown(wait=True)
|
||||
self.thread_pool = None
|
||||
|
||||
def on_init_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of the initialization of the `Trainer`.
|
||||
"""
|
||||
if (
|
||||
args.should_save
|
||||
and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG))
|
||||
and args.overwrite_output_dir
|
||||
):
|
||||
logger.warning("Previous trainer log in this folder will be deleted.")
|
||||
os.remove(os.path.join(args.output_dir, TRAINER_LOG))
|
||||
|
||||
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the beginning of training.
|
||||
"""
|
||||
if args.should_save:
|
||||
self.do_train = True
|
||||
self._reset(max_steps=state.max_steps)
|
||||
self._create_thread_pool(output_dir=args.output_dir)
|
||||
|
||||
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of training.
|
||||
"""
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of an substep during gradient accumulation.
|
||||
"""
|
||||
if self.aborted:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
|
||||
def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of a training step.
|
||||
"""
|
||||
if self.aborted:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
|
||||
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after an evaluation phase.
|
||||
"""
|
||||
if not self.do_train:
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after a successful prediction.
|
||||
"""
|
||||
if not self.do_train:
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after logging the last logs.
|
||||
"""
|
||||
if not args.should_save:
|
||||
return
|
||||
|
||||
self._timing(cur_steps=state.global_step)
|
||||
logs = dict(
|
||||
current_steps=self.cur_steps,
|
||||
total_steps=self.max_steps,
|
||||
loss=state.log_history[-1].get("loss", None),
|
||||
eval_loss=state.log_history[-1].get("eval_loss", None),
|
||||
predict_loss=state.log_history[-1].get("predict_loss", None),
|
||||
reward=state.log_history[-1].get("reward", None),
|
||||
accuracy=state.log_history[-1].get("rewards/accuracies", None),
|
||||
learning_rate=state.log_history[-1].get("learning_rate", None),
|
||||
epoch=state.log_history[-1].get("epoch", None),
|
||||
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
|
||||
elapsed_time=self.elapsed_time,
|
||||
remaining_time=self.remaining_time,
|
||||
throughput="{:.2f}".format(state.num_input_tokens_seen / (time.time() - self.start_time)),
|
||||
total_tokens=state.num_input_tokens_seen,
|
||||
)
|
||||
logs = {k: v for k, v in logs.items() if v is not None}
|
||||
if self.webui_mode and all(key in logs for key in ["loss", "learning_rate", "epoch"]):
|
||||
logger.info(
|
||||
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}, 'throughput': {}}}".format(
|
||||
logs["loss"], logs["learning_rate"], logs["epoch"], logs["throughput"]
|
||||
)
|
||||
)
|
||||
|
||||
if self.thread_pool is not None:
|
||||
self.thread_pool.submit(self._write_log, args.output_dir, logs)
|
||||
|
||||
def on_prediction_step(
|
||||
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
|
||||
):
|
||||
r"""
|
||||
Event called after a prediction step.
|
||||
"""
|
||||
if self.do_train:
|
||||
return
|
||||
|
||||
if self.aborted:
|
||||
sys.exit(0)
|
||||
|
||||
if not args.should_save:
|
||||
return
|
||||
|
||||
eval_dataloader = kwargs.pop("eval_dataloader", None)
|
||||
if has_length(eval_dataloader):
|
||||
if self.max_steps == 0:
|
||||
self._reset(max_steps=len(eval_dataloader))
|
||||
self._create_thread_pool(output_dir=args.output_dir)
|
||||
|
||||
self._timing(cur_steps=self.cur_steps + 1)
|
||||
if self.cur_steps % 5 == 0 and self.thread_pool is not None:
|
||||
logs = dict(
|
||||
current_steps=self.cur_steps,
|
||||
total_steps=self.max_steps,
|
||||
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
|
||||
elapsed_time=self.elapsed_time,
|
||||
remaining_time=self.remaining_time,
|
||||
)
|
||||
self.thread_pool.submit(self._write_log, args.output_dir, logs)
|
||||
@@ -2,13 +2,24 @@ from collections import OrderedDict, defaultdict
|
||||
from enum import Enum
|
||||
from typing import Dict, Optional
|
||||
|
||||
from peft.utils import SAFETENSORS_WEIGHTS_NAME as SAFE_ADAPTER_WEIGHTS_NAME
|
||||
from peft.utils import WEIGHTS_NAME as ADAPTER_WEIGHTS_NAME
|
||||
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
||||
|
||||
|
||||
CHECKPOINT_NAMES = {
|
||||
SAFE_ADAPTER_WEIGHTS_NAME,
|
||||
ADAPTER_WEIGHTS_NAME,
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFE_WEIGHTS_NAME,
|
||||
WEIGHTS_INDEX_NAME,
|
||||
WEIGHTS_NAME,
|
||||
}
|
||||
|
||||
CHOICES = ["A", "B", "C", "D"]
|
||||
|
||||
DATA_CONFIG = "dataset_info.json"
|
||||
|
||||
DEFAULT_MODULE = defaultdict(str)
|
||||
|
||||
DEFAULT_TEMPLATE = defaultdict(str)
|
||||
|
||||
FILEEXT2TYPE = {
|
||||
@@ -24,28 +35,43 @@ IGNORE_INDEX = -100
|
||||
|
||||
LAYERNORM_NAMES = {"norm", "ln"}
|
||||
|
||||
LOG_FILE_NAME = "trainer_log.jsonl"
|
||||
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
|
||||
|
||||
METHODS = ["full", "freeze", "lora"]
|
||||
|
||||
PEFT_METHODS = ["lora"]
|
||||
MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}
|
||||
|
||||
PEFT_METHODS = {"lora"}
|
||||
|
||||
RUNNING_LOG = "running_log.txt"
|
||||
|
||||
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
|
||||
|
||||
SUPPORTED_MODELS = OrderedDict()
|
||||
|
||||
TRAINER_LOG = "trainer_log.jsonl"
|
||||
|
||||
TRAINING_ARGS = "training_args.yaml"
|
||||
|
||||
TRAINING_STAGES = {
|
||||
"Supervised Fine-Tuning": "sft",
|
||||
"Reward Modeling": "rm",
|
||||
"PPO": "ppo",
|
||||
"DPO": "dpo",
|
||||
"KTO": "kto",
|
||||
"Pre-Training": "pt",
|
||||
}
|
||||
|
||||
STAGES_USE_PAIR_DATA = {"rm", "dpo"}
|
||||
|
||||
SUPPORTED_CLASS_FOR_S2ATTN = {"llama"}
|
||||
|
||||
V_HEAD_WEIGHTS_NAME = "value_head.bin"
|
||||
|
||||
V_HEAD_SAFE_WEIGHTS_NAME = "value_head.safetensors"
|
||||
|
||||
VISION_MODELS = set()
|
||||
|
||||
|
||||
class DownloadSource(str, Enum):
|
||||
DEFAULT = "hf"
|
||||
@@ -54,8 +80,8 @@ class DownloadSource(str, Enum):
|
||||
|
||||
def register_model_group(
|
||||
models: Dict[str, Dict[DownloadSource, str]],
|
||||
module: Optional[str] = None,
|
||||
template: Optional[str] = None,
|
||||
vision: bool = False,
|
||||
) -> None:
|
||||
prefix = None
|
||||
for name, path in models.items():
|
||||
@@ -64,10 +90,23 @@ def register_model_group(
|
||||
else:
|
||||
assert prefix == name.split("-")[0], "prefix should be identical."
|
||||
SUPPORTED_MODELS[name] = path
|
||||
if module is not None:
|
||||
DEFAULT_MODULE[prefix] = module
|
||||
if template is not None:
|
||||
DEFAULT_TEMPLATE[prefix] = template
|
||||
if vision:
|
||||
VISION_MODELS.add(prefix)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Aya-23-8B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/aya-23-8B",
|
||||
},
|
||||
"Aya-23-35B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/aya-23-35B",
|
||||
},
|
||||
},
|
||||
template="cohere",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
@@ -85,7 +124,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Chat",
|
||||
},
|
||||
},
|
||||
module="W_pack",
|
||||
template="baichuan",
|
||||
)
|
||||
|
||||
@@ -109,7 +147,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Chat",
|
||||
},
|
||||
},
|
||||
module="W_pack",
|
||||
template="baichuan2",
|
||||
)
|
||||
|
||||
@@ -129,7 +166,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-7b1",
|
||||
},
|
||||
},
|
||||
module="query_key_value",
|
||||
)
|
||||
|
||||
|
||||
@@ -148,7 +184,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-7b1-mt",
|
||||
},
|
||||
},
|
||||
module="query_key_value",
|
||||
)
|
||||
|
||||
|
||||
@@ -167,6 +202,19 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Breeze-7B": {
|
||||
DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Base-v1_0",
|
||||
},
|
||||
"Breeze-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Instruct-v1_0",
|
||||
},
|
||||
},
|
||||
template="breeze",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"ChatGLM2-6B-Chat": {
|
||||
@@ -174,7 +222,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm2-6b",
|
||||
}
|
||||
},
|
||||
module="query_key_value",
|
||||
template="chatglm2",
|
||||
)
|
||||
|
||||
@@ -190,7 +237,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b",
|
||||
},
|
||||
},
|
||||
module="query_key_value",
|
||||
template="chatglm3",
|
||||
)
|
||||
|
||||
@@ -226,6 +272,73 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"CodeGemma-7B": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-7b",
|
||||
},
|
||||
"CodeGemma-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-7b-it",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/codegemma-7b-it",
|
||||
},
|
||||
"CodeGemma-1.1-2B": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-1.1-2b",
|
||||
},
|
||||
"CodeGemma-1.1-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-1.1-7b-it",
|
||||
},
|
||||
},
|
||||
template="gemma",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Codestral-22B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Codestral-22B-v0.1",
|
||||
},
|
||||
},
|
||||
template="mistral",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"CommandR-35B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-v01",
|
||||
},
|
||||
"CommandR-Plus-104B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-plus",
|
||||
},
|
||||
"CommandR-35B-4bit-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01-4bit",
|
||||
DownloadSource.MODELSCOPE: "mirror013/c4ai-command-r-v01-4bit",
|
||||
},
|
||||
"CommandR-Plus-104B-4bit-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus-4bit",
|
||||
},
|
||||
},
|
||||
template="cohere",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DBRX-132B-Base": {
|
||||
DownloadSource.DEFAULT: "databricks/dbrx-base",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-base",
|
||||
},
|
||||
"DBRX-132B-Chat": {
|
||||
DownloadSource.DEFAULT: "databricks/dbrx-instruct",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-instruct",
|
||||
},
|
||||
},
|
||||
template="dbrx",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DeepSeek-LLM-7B-Base": {
|
||||
@@ -246,18 +359,36 @@ register_model_group(
|
||||
},
|
||||
"DeepSeek-Math-7B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-base",
|
||||
},
|
||||
"DeepSeek-Math-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-instruct",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-instruct",
|
||||
},
|
||||
"DeepSeek-MoE-16B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-base",
|
||||
},
|
||||
"DeepSeek-MoE-16B-v2-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Lite",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Lite",
|
||||
},
|
||||
"DeepSeek-MoE-236B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2",
|
||||
},
|
||||
"DeepSeek-MoE-16B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-chat",
|
||||
},
|
||||
"DeepSeek-MoE-16B-v2-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Lite-Chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Lite-Chat",
|
||||
},
|
||||
"DeepSeek-MoE-236B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Chat",
|
||||
},
|
||||
},
|
||||
template="deepseek",
|
||||
)
|
||||
@@ -298,6 +429,9 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "tiiuae/falcon-7b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b",
|
||||
},
|
||||
"Falcon-11B": {
|
||||
DownloadSource.DEFAULT: "tiiuae/falcon-11B",
|
||||
},
|
||||
"Falcon-40B": {
|
||||
DownloadSource.DEFAULT: "tiiuae/falcon-40b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b",
|
||||
@@ -319,7 +453,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "modelscope/falcon-180B-chat",
|
||||
},
|
||||
},
|
||||
module="query_key_value",
|
||||
template="falcon",
|
||||
)
|
||||
|
||||
@@ -342,11 +475,36 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "google/gemma-7b-it",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b-it",
|
||||
},
|
||||
"Gemma-1.1-2B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/gemma-1.1-2b-it",
|
||||
},
|
||||
"Gemma-1.1-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/gemma-1.1-7b-it",
|
||||
},
|
||||
},
|
||||
template="gemma",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"GLM-4-9B": {
|
||||
DownloadSource.DEFAULT: "THUDM/glm-4-9b",
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b",
|
||||
},
|
||||
"GLM-4-9B-Chat": {
|
||||
DownloadSource.DEFAULT: "THUDM/glm-4-9b-chat",
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b-chat",
|
||||
},
|
||||
"GLM-4-9B-1M-Chat": {
|
||||
DownloadSource.DEFAULT: "THUDM/glm-4-9b-chat-1m",
|
||||
DownloadSource.MODELSCOPE: "ZhipuAI/glm-4-9b-chat-1m",
|
||||
},
|
||||
},
|
||||
template="glm4",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"InternLM-7B": {
|
||||
@@ -389,11 +547,20 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-20b",
|
||||
},
|
||||
},
|
||||
module="wqkv",
|
||||
template="intern2",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Jambda-v0.1": {
|
||||
DownloadSource.DEFAULT: "ai21labs/Jamba-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Jamba-v0.1",
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LingoWhale-8B": {
|
||||
@@ -401,7 +568,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "DeepLang/LingoWhale-8B",
|
||||
}
|
||||
},
|
||||
module="qkv_proj",
|
||||
)
|
||||
|
||||
|
||||
@@ -460,18 +626,72 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mistral-7B": {
|
||||
"LLaMA3-8B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B",
|
||||
},
|
||||
"LLaMA3-70B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B",
|
||||
},
|
||||
"LLaMA3-8B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B-Instruct",
|
||||
},
|
||||
"LLaMA3-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B-Instruct",
|
||||
},
|
||||
"LLaMA3-8B-Chinese-Chat": {
|
||||
DownloadSource.DEFAULT: "shenzhi-wang/Llama3-8B-Chinese-Chat",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Llama3-8B-Chinese-Chat",
|
||||
},
|
||||
"LLaMA3-70B-Chinese-Chat": {
|
||||
DownloadSource.DEFAULT: "shenzhi-wang/Llama3-70B-Chinese-Chat",
|
||||
},
|
||||
},
|
||||
template="llama3",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA1.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-1.5-7b-hf",
|
||||
},
|
||||
"LLaVA1.5-13B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-1.5-13b-hf",
|
||||
},
|
||||
},
|
||||
template="vicuna",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mistral-7B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.1",
|
||||
},
|
||||
"Mistral-7B-Chat": {
|
||||
"Mistral-7B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1",
|
||||
},
|
||||
"Mistral-7B-v0.2": {
|
||||
DownloadSource.DEFAULT: "alpindale/Mistral-7B-v0.2-hf",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.2-hf",
|
||||
},
|
||||
"Mistral-7B-v0.2-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.2",
|
||||
},
|
||||
"Mistral-7B-v0.3": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.3",
|
||||
},
|
||||
"Mistral-7B-v0.3-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.3",
|
||||
},
|
||||
},
|
||||
template="mistral",
|
||||
)
|
||||
@@ -479,14 +699,22 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mixtral-8x7B": {
|
||||
"Mixtral-8x7B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-v0.1",
|
||||
},
|
||||
"Mixtral-8x7B-Chat": {
|
||||
"Mixtral-8x7B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1",
|
||||
},
|
||||
"Mixtral-8x22B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x22B-v0.1",
|
||||
},
|
||||
"Mixtral-8x22B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-Instruct-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x22B-Instruct-v0.1",
|
||||
},
|
||||
},
|
||||
template="mistral",
|
||||
)
|
||||
@@ -495,18 +723,18 @@ register_model_group(
|
||||
register_model_group(
|
||||
models={
|
||||
"OLMo-1B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-1B",
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-1B-hf",
|
||||
},
|
||||
"OLMo-7B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-7B",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/OLMo-7B",
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-7B-hf",
|
||||
},
|
||||
"OLMo-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-7B-Instruct",
|
||||
DownloadSource.DEFAULT: "ssec-uw/OLMo-7B-Instruct-hf",
|
||||
},
|
||||
"OLMo-1.7-7B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-1.7-7B-hf",
|
||||
},
|
||||
},
|
||||
module="att_proj",
|
||||
template="olmo",
|
||||
)
|
||||
|
||||
|
||||
@@ -514,13 +742,23 @@ register_model_group(
|
||||
models={
|
||||
"OpenChat3.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "openchat/openchat-3.5-0106",
|
||||
DownloadSource.MODELSCOPE: "myxiongmodel/openchat_3.5",
|
||||
DownloadSource.MODELSCOPE: "xcwzxcwz/openchat-3.5-0106",
|
||||
}
|
||||
},
|
||||
template="openchat",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"OpenChat3.6-8B-Chat": {
|
||||
DownloadSource.DEFAULT: "openchat/openchat-3.6-8b-20240522",
|
||||
}
|
||||
},
|
||||
template="openchat-3.6",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Orion-14B-Base": {
|
||||
@@ -548,6 +786,33 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"PaliGemma-3B-pt-224": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-pt-224",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-pt-224",
|
||||
},
|
||||
"PaliGemma-3B-pt-448": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-pt-448",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-pt-448",
|
||||
},
|
||||
"PaliGemma-3B-pt-896": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-pt-896",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-pt-896",
|
||||
},
|
||||
"PaliGemma-3B-mix-224": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-mix-224",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-mix-224",
|
||||
},
|
||||
"PaliGemma-3B-mix-448": {
|
||||
DownloadSource.DEFAULT: "google/paligemma-3b-mix-448",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/paligemma-3b-mix-448",
|
||||
},
|
||||
},
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Phi-1.5-1.3B": {
|
||||
@@ -562,6 +827,37 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Phi3-4B-4k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-4k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-4k-instruct",
|
||||
},
|
||||
"Phi3-4B-128k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-128k-instruct",
|
||||
},
|
||||
"Phi3-7B-8k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-small-8k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-small-8k-instruct",
|
||||
},
|
||||
"Phi3-7B-128k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-small-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-small-128k-instruct",
|
||||
},
|
||||
"Phi3-14B-8k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-medium-4k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-medium-4k-instruct",
|
||||
},
|
||||
"Phi3-14B-128k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-medium-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-medium-128k-instruct",
|
||||
},
|
||||
},
|
||||
template="phi",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen-1.8B": {
|
||||
@@ -629,7 +925,6 @@ register_model_group(
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int4",
|
||||
},
|
||||
},
|
||||
module="c_attn",
|
||||
template="qwen",
|
||||
)
|
||||
|
||||
@@ -656,10 +951,26 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B",
|
||||
},
|
||||
"Qwen1.5-32B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B",
|
||||
},
|
||||
"Qwen1.5-72B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B",
|
||||
},
|
||||
"Qwen1.5-110B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B",
|
||||
},
|
||||
"Qwen1.5-Code-7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B",
|
||||
},
|
||||
"Qwen1.5-0.5B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat",
|
||||
@@ -680,10 +991,26 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat",
|
||||
},
|
||||
"Qwen1.5-32B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat",
|
||||
},
|
||||
"Qwen1.5-72B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat",
|
||||
},
|
||||
"Qwen1.5-110B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat",
|
||||
},
|
||||
"Qwen1.5-Code-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat",
|
||||
},
|
||||
"Qwen1.5-0.5B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
|
||||
@@ -724,6 +1051,10 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-32B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-72B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
|
||||
@@ -732,6 +1063,101 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-110B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"Qwen1.5-Code-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat-AWQ",
|
||||
},
|
||||
},
|
||||
template="qwen",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen2-0.5B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-0.5B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-0.5B",
|
||||
},
|
||||
"Qwen2-1.5B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-1.5B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-1.5B",
|
||||
},
|
||||
"Qwen2-7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-7B",
|
||||
},
|
||||
"Qwen2-72B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-72B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-72B",
|
||||
},
|
||||
"Qwen2-MoE-57B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-57B-A14B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-57B-A14B",
|
||||
},
|
||||
"Qwen2-0.5B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-0.5B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-0.5B-Instruct",
|
||||
},
|
||||
"Qwen2-1.5B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-1.5B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-1.5B-Instruct",
|
||||
},
|
||||
"Qwen2-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-7B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-7B-Instruct",
|
||||
},
|
||||
"Qwen2-72B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-72B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-72B-Instruct",
|
||||
},
|
||||
"Qwen2-MoE-57B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-57B-A14B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-57B-A14B-Instruct",
|
||||
},
|
||||
"Qwen2-0.5B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-0.5B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-0.5B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2-0.5B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-0.5B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-0.5B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2-1.5B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-1.5B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-1.5B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2-1.5B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-1.5B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-1.5B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2-7B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-7B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-7B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-7B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-7B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2-72B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-72B-Instruct-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-72B-Instruct-GPTQ-Int8",
|
||||
},
|
||||
"Qwen2-72B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-72B-Instruct-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-72B-Instruct-AWQ",
|
||||
},
|
||||
"Qwen2-MoE-57B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen2-57B-A14B-Instruct-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen2-57B-A14B-Instruct-GPTQ-Int4",
|
||||
},
|
||||
},
|
||||
template="qwen",
|
||||
)
|
||||
@@ -765,17 +1191,39 @@ register_model_group(
|
||||
models={
|
||||
"StarCoder2-3B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-3b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-3b",
|
||||
},
|
||||
"StarCoder2-7B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-7b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-7b",
|
||||
},
|
||||
"StarCoder2-15B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-15b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-15b",
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"TeleChat-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Tele-AI/telechat-7B",
|
||||
DownloadSource.MODELSCOPE: "TeleAI/telechat-7B",
|
||||
},
|
||||
"TeleChat-12B-Chat": {
|
||||
DownloadSource.DEFAULT: "Tele-AI/TeleChat-12B",
|
||||
DownloadSource.MODELSCOPE: "TeleAI/TeleChat-12B",
|
||||
},
|
||||
"TeleChat-12B-v2-Chat": {
|
||||
DownloadSource.DEFAULT: "Tele-AI/TeleChat-12B-v2",
|
||||
DownloadSource.MODELSCOPE: "TeleAI/TeleChat-12B-v2",
|
||||
},
|
||||
},
|
||||
template="telechat",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Vicuna1.5-7B-Chat": {
|
||||
@@ -793,17 +1241,53 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"XuanYuan-6B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B",
|
||||
},
|
||||
"XuanYuan-70B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B",
|
||||
},
|
||||
"XuanYuan-2-70B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B",
|
||||
},
|
||||
"XuanYuan-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat",
|
||||
},
|
||||
"XuanYuan-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat",
|
||||
},
|
||||
"XuanYuan-2-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat",
|
||||
},
|
||||
"XuanYuan-6B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-6B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
|
||||
},
|
||||
"XuanYuan-70B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-70B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
|
||||
},
|
||||
"XuanYuan-2-70B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-2-70B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
|
||||
},
|
||||
},
|
||||
template="xuanyuan",
|
||||
@@ -840,6 +1324,30 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat",
|
||||
},
|
||||
"XVERSE-MoE-A4.2B": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-MoE-A4.2B",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-MoE-A4.2B",
|
||||
},
|
||||
"XVERSE-7B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"XVERSE-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"XVERSE-13B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"XVERSE-13B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"XVERSE-65B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat-GPTQ-Int4",
|
||||
},
|
||||
},
|
||||
template="xverse",
|
||||
)
|
||||
@@ -898,11 +1406,49 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-4bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-4bits",
|
||||
},
|
||||
"Yi-1.5-6B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-6B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-6B",
|
||||
},
|
||||
"Yi-1.5-9B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-9B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-9B",
|
||||
},
|
||||
"Yi-1.5-34B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-34B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-34B",
|
||||
},
|
||||
"Yi-1.5-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-6B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-6B-Chat",
|
||||
},
|
||||
"Yi-1.5-9B-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-9B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-9B-Chat",
|
||||
},
|
||||
"Yi-1.5-34B-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-1.5-34B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-1.5-34B-Chat",
|
||||
},
|
||||
},
|
||||
template="yi",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"YiVL-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-6B-hf",
|
||||
},
|
||||
"YiVL-34B-Chat": {
|
||||
DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-34B-hf",
|
||||
},
|
||||
},
|
||||
template="yi_vl",
|
||||
vision=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Yuan2-2B-Chat": {
|
||||
@@ -932,21 +1478,9 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-beta",
|
||||
DownloadSource.MODELSCOPE: "modelscope/zephyr-7b-beta",
|
||||
},
|
||||
"Zephyr-141B-ORPO-Chat": {
|
||||
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
|
||||
},
|
||||
},
|
||||
template="zephyr",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Atom-7B": {
|
||||
DownloadSource.DEFAULT: "FlagAlpha/Atom-7B",
|
||||
DownloadSource.MODELSCOPE: "FlagAlpha/Atom-7B",
|
||||
},
|
||||
"Atom-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "FlagAlpha/Atom-7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "FlagAlpha/Atom-7B-Chat",
|
||||
},
|
||||
},
|
||||
template="atom",
|
||||
)
|
||||
@@ -0,0 +1,55 @@
|
||||
import platform
|
||||
|
||||
import accelerate
|
||||
import datasets
|
||||
import peft
|
||||
import torch
|
||||
import transformers
|
||||
import trl
|
||||
from transformers.integrations import is_deepspeed_available
|
||||
from transformers.utils import is_bitsandbytes_available, is_torch_cuda_available, is_torch_npu_available
|
||||
|
||||
from .packages import is_vllm_available
|
||||
|
||||
|
||||
VERSION = "0.8.0"
|
||||
|
||||
|
||||
def print_env() -> None:
|
||||
info = {
|
||||
"`llamafactory` version": VERSION,
|
||||
"Platform": platform.platform(),
|
||||
"Python version": platform.python_version(),
|
||||
"PyTorch version": torch.__version__,
|
||||
"Transformers version": transformers.__version__,
|
||||
"Datasets version": datasets.__version__,
|
||||
"Accelerate version": accelerate.__version__,
|
||||
"PEFT version": peft.__version__,
|
||||
"TRL version": trl.__version__,
|
||||
}
|
||||
|
||||
if is_torch_cuda_available():
|
||||
info["PyTorch version"] += " (GPU)"
|
||||
info["GPU type"] = torch.cuda.get_device_name()
|
||||
|
||||
if is_torch_npu_available():
|
||||
info["PyTorch version"] += " (NPU)"
|
||||
info["NPU type"] = torch.npu.get_device_name()
|
||||
info["CANN version"] = torch.version.cann
|
||||
|
||||
if is_deepspeed_available():
|
||||
import deepspeed # type: ignore
|
||||
|
||||
info["DeepSpeed version"] = deepspeed.__version__
|
||||
|
||||
if is_bitsandbytes_available():
|
||||
import bitsandbytes
|
||||
|
||||
info["Bitsandbytes version"] = bitsandbytes.__version__
|
||||
|
||||
if is_vllm_available():
|
||||
import vllm
|
||||
|
||||
info["vLLM version"] = vllm.__version__
|
||||
|
||||
print("\n" + "\n".join(["- {}: {}".format(key, value) for key, value in info.items()]) + "\n")
|
||||
@@ -0,0 +1,68 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
from .constants import RUNNING_LOG
|
||||
|
||||
|
||||
class LoggerHandler(logging.Handler):
|
||||
r"""
|
||||
Logger handler used in Web UI.
|
||||
"""
|
||||
|
||||
def __init__(self, output_dir: str) -> None:
|
||||
super().__init__()
|
||||
formatter = logging.Formatter(
|
||||
fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
|
||||
)
|
||||
self.setLevel(logging.INFO)
|
||||
self.setFormatter(formatter)
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
self.running_log = os.path.join(output_dir, RUNNING_LOG)
|
||||
if os.path.exists(self.running_log):
|
||||
os.remove(self.running_log)
|
||||
|
||||
self.thread_pool = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
def _write_log(self, log_entry: str) -> None:
|
||||
with open(self.running_log, "a", encoding="utf-8") as f:
|
||||
f.write(log_entry + "\n\n")
|
||||
|
||||
def emit(self, record) -> None:
|
||||
if record.name == "httpx":
|
||||
return
|
||||
|
||||
log_entry = self.format(record)
|
||||
self.thread_pool.submit(self._write_log, log_entry)
|
||||
|
||||
def close(self) -> None:
|
||||
self.thread_pool.shutdown(wait=True)
|
||||
return super().close()
|
||||
|
||||
|
||||
def get_logger(name: str) -> logging.Logger:
|
||||
r"""
|
||||
Gets a standard logger with a stream hander to stdout.
|
||||
"""
|
||||
formatter = logging.Formatter(
|
||||
fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
|
||||
)
|
||||
handler = logging.StreamHandler(sys.stdout)
|
||||
handler.setFormatter(formatter)
|
||||
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(logging.INFO)
|
||||
logger.addHandler(handler)
|
||||
|
||||
return logger
|
||||
|
||||
|
||||
def reset_logging() -> None:
|
||||
r"""
|
||||
Removes basic config of root logger. (unused in script)
|
||||
"""
|
||||
root = logging.getLogger()
|
||||
list(map(root.removeHandler, root.handlers))
|
||||
list(map(root.removeFilter, root.filters))
|
||||
@@ -30,7 +30,7 @@ except Exception:
|
||||
if TYPE_CHECKING:
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from llmtuner.hparams import ModelArguments
|
||||
from ..hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -58,14 +58,14 @@ class AverageMeter:
|
||||
|
||||
|
||||
def check_dependencies() -> None:
|
||||
if int(os.environ.get("DISABLE_VERSION_CHECK", "0")):
|
||||
if os.environ.get("DISABLE_VERSION_CHECK", "0").lower() in ["true", "1"]:
|
||||
logger.warning("Version checking has been disabled, may lead to unexpected behaviors.")
|
||||
else:
|
||||
require_version("transformers>=4.37.2", "To fix: pip install transformers>=4.37.2")
|
||||
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
|
||||
require_version("accelerate>=0.27.2", "To fix: pip install accelerate>=0.27.2")
|
||||
require_version("peft>=0.9.0", "To fix: pip install peft>=0.9.0")
|
||||
require_version("trl>=0.7.11", "To fix: pip install trl>=0.7.11")
|
||||
require_version("transformers>=4.41.2", "To fix: pip install transformers>=4.41.2")
|
||||
require_version("datasets>=2.16.0", "To fix: pip install datasets>=2.16.0")
|
||||
require_version("accelerate>=0.30.1", "To fix: pip install accelerate>=0.30.1")
|
||||
require_version("peft>=0.11.1", "To fix: pip install peft>=0.11.1")
|
||||
require_version("trl>=0.8.6", "To fix: pip install trl>=0.8.6")
|
||||
|
||||
|
||||
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
@@ -81,7 +81,14 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
|
||||
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2
|
||||
if param.__class__.__name__ == "Params4bit":
|
||||
num_params = num_params * 2
|
||||
if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"):
|
||||
num_bytes = param.quant_storage.itemsize
|
||||
elif hasattr(param, "element_size"): # for older pytorch version
|
||||
num_bytes = param.element_size()
|
||||
else:
|
||||
num_bytes = 1
|
||||
|
||||
num_params = num_params * 2 * num_bytes
|
||||
|
||||
all_param += num_params
|
||||
if param.requires_grad:
|
||||
@@ -158,13 +165,15 @@ def get_current_device() -> torch.device:
|
||||
|
||||
def get_device_count() -> int:
|
||||
r"""
|
||||
Gets the number of available GPU devices.
|
||||
Gets the number of available GPU or NPU devices.
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
if is_torch_npu_available():
|
||||
return torch.npu.device_count()
|
||||
elif is_torch_cuda_available():
|
||||
return torch.cuda.device_count()
|
||||
else:
|
||||
return 0
|
||||
|
||||
return torch.cuda.device_count()
|
||||
|
||||
|
||||
def get_logits_processor() -> "LogitsProcessorList":
|
||||
r"""
|
||||
@@ -187,30 +196,47 @@ def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
|
||||
return torch.float32
|
||||
|
||||
|
||||
def is_gpu_or_npu_available() -> bool:
|
||||
r"""
|
||||
Checks if the GPU or NPU is available.
|
||||
"""
|
||||
return is_torch_npu_available() or is_torch_cuda_available()
|
||||
|
||||
|
||||
def has_tokenized_data(path: os.PathLike) -> bool:
|
||||
r"""
|
||||
Checks if the path has a tokenized dataset.
|
||||
"""
|
||||
return os.path.isdir(path) and len(os.listdir(path)) > 0
|
||||
|
||||
|
||||
def torch_gc() -> None:
|
||||
r"""
|
||||
Collects GPU memory.
|
||||
Collects GPU or NPU memory.
|
||||
"""
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
if is_torch_xpu_available():
|
||||
torch.xpu.empty_cache()
|
||||
elif is_torch_npu_available():
|
||||
torch.npu.empty_cache()
|
||||
elif is_torch_mps_available():
|
||||
torch.mps.empty_cache()
|
||||
elif is_torch_cuda_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
def try_download_model_from_ms(model_args: "ModelArguments") -> None:
|
||||
def try_download_model_from_ms(model_args: "ModelArguments") -> str:
|
||||
if not use_modelscope() or os.path.exists(model_args.model_name_or_path):
|
||||
return
|
||||
return model_args.model_name_or_path
|
||||
|
||||
try:
|
||||
from modelscope import snapshot_download
|
||||
|
||||
revision = "master" if model_args.model_revision == "main" else model_args.model_revision
|
||||
model_args.model_name_or_path = snapshot_download(
|
||||
model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir
|
||||
)
|
||||
return snapshot_download(model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir)
|
||||
except ImportError:
|
||||
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
||||
|
||||
|
||||
def use_modelscope() -> bool:
|
||||
return bool(int(os.environ.get("USE_MODELSCOPE_HUB", "0")))
|
||||
return os.environ.get("USE_MODELSCOPE_HUB", "0").lower() in ["true", "1"]
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user