mirror of
https://github.com/AIDotNet/AntSK.git
synced 2026-02-18 06:20:11 +08:00
Compare commits
322 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f0f14889c7 | ||
|
|
dedafdd108 | ||
|
|
fad2b4e733 | ||
|
|
032de7a447 | ||
|
|
cb0df4d4af | ||
|
|
c810f85cea | ||
|
|
6700b75684 | ||
|
|
ab15dd6e99 | ||
|
|
13a4419705 | ||
|
|
cf03465e23 | ||
|
|
a441730508 | ||
|
|
6e30886bd2 | ||
|
|
bc2af42724 | ||
|
|
919fc5dea7 | ||
|
|
9ab287fabd | ||
|
|
cf02efc2da | ||
|
|
1c34ad5987 | ||
|
|
4e8039703e | ||
|
|
c2b97c7f82 | ||
|
|
1a621f5cbc | ||
|
|
836f898ffe | ||
|
|
0a9a737709 | ||
|
|
0df8c74ec2 | ||
|
|
5e3ff74eaa | ||
|
|
7c49ff0a6c | ||
|
|
63f5267bca | ||
|
|
e0c35aac06 | ||
|
|
27d52d3331 | ||
|
|
e7b2c6e193 | ||
|
|
7600397b79 | ||
|
|
874b8e5d7f | ||
|
|
3ac18086a1 | ||
|
|
16049c7413 | ||
|
|
7bb7a41bb3 | ||
|
|
6c37ed66b2 | ||
|
|
bc86f96159 | ||
|
|
8eb09fb783 | ||
|
|
eff5f69f0f | ||
|
|
e3f966d4f2 | ||
|
|
015f51b99c | ||
|
|
cd66b61014 | ||
|
|
f0bef7d2fa | ||
|
|
de051b047d | ||
|
|
ed6f5dada2 | ||
|
|
d2e3fde829 | ||
|
|
195551e9c1 | ||
|
|
855103c2a4 | ||
|
|
6150d543d3 | ||
|
|
d968d78982 | ||
|
|
0ec5d1f1cf | ||
|
|
31f44c1758 | ||
|
|
e5f63d605d | ||
|
|
7db62e3dc6 | ||
|
|
4408fa4345 | ||
|
|
c5e952b98e | ||
|
|
bedfeaf53d | ||
|
|
d605fd6685 | ||
|
|
e5e3f7cd8f | ||
|
|
657949694c | ||
|
|
10b6035f84 | ||
|
|
3f9fe27456 | ||
|
|
da3a0681e5 | ||
|
|
57b7948d86 | ||
|
|
40b8bd0439 | ||
|
|
6ed9cc9b70 | ||
|
|
e51bf35217 | ||
|
|
28f88438e7 | ||
|
|
85f4a330d5 | ||
|
|
21d7c719f1 | ||
|
|
4ef398bd57 | ||
|
|
dc70270362 | ||
|
|
97b7211cce | ||
|
|
3e762e13af | ||
|
|
e084317a46 | ||
|
|
531b4473e8 | ||
|
|
aefd0d2775 | ||
|
|
960468edf0 | ||
|
|
07ad1f58b5 | ||
|
|
095428be50 | ||
|
|
87fc8911fa | ||
|
|
58272e1ce8 | ||
|
|
700bbcb63f | ||
|
|
dde1d68876 | ||
|
|
71553a6153 | ||
|
|
d4f8de3e21 | ||
|
|
6cf5dea10d | ||
|
|
05379dfee6 | ||
|
|
5a6d49ff64 | ||
|
|
64ab940a26 | ||
|
|
55982ea36d | ||
|
|
21efcf2479 | ||
|
|
0dc7bfcadb | ||
|
|
22d99091e1 | ||
|
|
7558d3ffdc | ||
|
|
85ae41c44c | ||
|
|
91193850dd | ||
|
|
7cc04e3364 | ||
|
|
3da28090c6 | ||
|
|
1595ef2c0a | ||
|
|
83e3d81de7 | ||
|
|
18437ddda4 | ||
|
|
fd503171a1 | ||
|
|
7022139780 | ||
|
|
1e508e45af | ||
|
|
03d9ec2cad | ||
|
|
86fb48bab7 | ||
|
|
a4bc1e4a55 | ||
|
|
8681e15da5 | ||
|
|
ebc82f8b1b | ||
|
|
3bcd7bd7e1 | ||
|
|
b64d8669b1 | ||
|
|
0489044098 | ||
|
|
17e2062b72 | ||
|
|
4e4f5a698d | ||
|
|
b879d04bcd | ||
|
|
95f918f4c7 | ||
|
|
f0e1ad6088 | ||
|
|
61773af48d | ||
|
|
54cd04c3bf | ||
|
|
cd9f4ae11b | ||
|
|
3f9c748b41 | ||
|
|
d483005531 | ||
|
|
1d2db6a896 | ||
|
|
9a7a263055 | ||
|
|
6beb0b52c7 | ||
|
|
0ea167a204 | ||
|
|
6e6afa2a7c | ||
|
|
7a2a5d86bb | ||
|
|
a1a36c3494 | ||
|
|
4f350081dd | ||
|
|
b3ea0c4e1a | ||
|
|
e72a6acd03 | ||
|
|
9bb8ab89fe | ||
|
|
e78da66d1a | ||
|
|
9ee21fd5e5 | ||
|
|
a22c04c9b2 | ||
|
|
3bb5bfaca7 | ||
|
|
c4bf5ee7e5 | ||
|
|
5e1e688f84 | ||
|
|
80d9bf68f3 | ||
|
|
65f2e3e363 | ||
|
|
68d27ff2bc | ||
|
|
034da30811 | ||
|
|
3db0cdcd19 | ||
|
|
42181a6f1d | ||
|
|
ec8cbf2550 | ||
|
|
9a1bd079da | ||
|
|
4213c4379c | ||
|
|
05cda17e2e | ||
|
|
cda6e54f0b | ||
|
|
51d8ba6408 | ||
|
|
b571c7d22d | ||
|
|
a0c91f565e | ||
|
|
280c750165 | ||
|
|
fec9337fda | ||
|
|
b84f252f2f | ||
|
|
5c998ccce2 | ||
|
|
0e3cfd2cfb | ||
|
|
4040831a23 | ||
|
|
a3a2308659 | ||
|
|
6d43c71d13 | ||
|
|
8315b6f37f | ||
|
|
7bc708e6ae | ||
|
|
e6f2c5c2fe | ||
|
|
5cab781362 | ||
|
|
02d7994bae | ||
|
|
b740957157 | ||
|
|
2480ec1272 | ||
|
|
35c98a0d14 | ||
|
|
0964a5ad5b | ||
|
|
a95131efe9 | ||
|
|
7783cdf3c4 | ||
|
|
7a65f33cb6 | ||
|
|
6efd01db3f | ||
|
|
1e2322b573 | ||
|
|
2cb2241a66 | ||
|
|
64efdd7881 | ||
|
|
be28e32803 | ||
|
|
468422baee | ||
|
|
7b1c6c8c64 | ||
|
|
7ff0ea0bfe | ||
|
|
6bed4356f0 | ||
|
|
73b65f7305 | ||
|
|
0ea52eced9 | ||
|
|
498e9ba9f6 | ||
|
|
125695665b | ||
|
|
0e08b3ae85 | ||
|
|
7cb8f99e7e | ||
|
|
d15cb527d0 | ||
|
|
9cb36174fd | ||
|
|
6265f94ef2 | ||
|
|
09d90b654c | ||
|
|
64e2bca2e6 | ||
|
|
328ece6d73 | ||
|
|
fabb8c2044 | ||
|
|
6ca75df880 | ||
|
|
3d4dfaced1 | ||
|
|
d532bf3bb6 | ||
|
|
e1fd288875 | ||
|
|
91eae9cfa8 | ||
|
|
b0059942d3 | ||
|
|
a716982878 | ||
|
|
3d4e48f9f5 | ||
|
|
1f212d3156 | ||
|
|
7d91ef6ba1 | ||
|
|
2a450b00de | ||
|
|
3a97068248 | ||
|
|
1d9d95899a | ||
|
|
7ae8e52b57 | ||
|
|
f5c195a1d0 | ||
|
|
78a6b662d3 | ||
|
|
5f814eb76c | ||
|
|
d9e5ebb464 | ||
|
|
bce0e9183c | ||
|
|
c40a7bcf22 | ||
|
|
97a7d447ab | ||
|
|
f803b9538b | ||
|
|
1ac34c1702 | ||
|
|
e07b480da1 | ||
|
|
9036af57e3 | ||
|
|
93288f9b5c | ||
|
|
f40dd8b013 | ||
|
|
c6b83d0695 | ||
|
|
592c850198 | ||
|
|
4a3930ac7b | ||
|
|
c05ba0af3e | ||
|
|
630ee51df6 | ||
|
|
d0e75e26c3 | ||
|
|
62c36c3072 | ||
|
|
baef309064 | ||
|
|
d717cbad9c | ||
|
|
5ef0624605 | ||
|
|
af2930a371 | ||
|
|
98f0f9fe84 | ||
|
|
28a23271e9 | ||
|
|
f1ba0bdf10 | ||
|
|
0d5513f374 | ||
|
|
4812cc308c | ||
|
|
584f7faded | ||
|
|
08dcef2d8b | ||
|
|
68218733a2 | ||
|
|
eb64cbf3d4 | ||
|
|
f0e8a55522 | ||
|
|
5ec5a0bde4 | ||
|
|
1cc56dd553 | ||
|
|
64e949a88b | ||
|
|
a2390a7c97 | ||
|
|
559661bb6c | ||
|
|
79326de263 | ||
|
|
3815891b28 | ||
|
|
42d474382a | ||
|
|
fe691f2d44 | ||
|
|
3ee41a8ab1 | ||
|
|
7ca41dff8a | ||
|
|
ba2e86993e | ||
|
|
13878046a2 | ||
|
|
49ff8bf54f | ||
|
|
e9cc5a3993 | ||
|
|
b213964b63 | ||
|
|
bfbed44270 | ||
|
|
9b07d88392 | ||
|
|
3f8ed109f9 | ||
|
|
3f969627a4 | ||
|
|
d92970819a | ||
|
|
23e756fa9b | ||
|
|
5f58126fbf | ||
|
|
dcfd0ffb8f | ||
|
|
17221d056c | ||
|
|
4a9dcfada4 | ||
|
|
bb6c2bb020 | ||
|
|
a8760a34de | ||
|
|
1e432a5782 | ||
|
|
cb861ef2bb | ||
|
|
7cee8fd87a | ||
|
|
8ce0e5d348 | ||
|
|
90bce7c89f | ||
|
|
b840d0bcce | ||
|
|
bfa6d28289 | ||
|
|
f6e6ca9747 | ||
|
|
75f8d39648 | ||
|
|
9a939eba5a | ||
|
|
4e93efe821 | ||
|
|
8bdbee80a0 | ||
|
|
6bdf5dcc03 | ||
|
|
0bf0a9d78a | ||
|
|
38e9fea601 | ||
|
|
d2366b3b46 | ||
|
|
3aff93083a | ||
|
|
eb998199db | ||
|
|
1dd794af1b | ||
|
|
08c9923e7e | ||
|
|
06b109ca87 | ||
|
|
9b039335c7 | ||
|
|
041378e5fd | ||
|
|
6dc5ae10e3 | ||
|
|
5807f4c283 | ||
|
|
8ef4445908 | ||
|
|
8a0609e970 | ||
|
|
9f33b5009b | ||
|
|
50e66db8a1 | ||
|
|
c3e83b569a | ||
|
|
85d1c5ea7e | ||
|
|
ec1d126a02 | ||
|
|
e857695e70 | ||
|
|
fa9b2051fe | ||
|
|
d450efcffe | ||
|
|
2a6c84c200 | ||
|
|
138a952ace | ||
|
|
eb6528ecd2 | ||
|
|
2c30bbfa09 | ||
|
|
c5a78c2135 | ||
|
|
f03362ee41 | ||
|
|
fad3167d97 | ||
|
|
ad949681dd | ||
|
|
27999d76b0 | ||
|
|
83278352d6 | ||
|
|
fcc56f5fef | ||
|
|
4ebe2ecc32 | ||
|
|
e684cba527 | ||
|
|
888dc19ee0 | ||
|
|
731aea702f | ||
|
|
09e22bc76a |
4
.gitignore
vendored
4
.gitignore
vendored
@@ -324,10 +324,6 @@ ASALocalRun/
|
||||
# MSBuild Binary and Structured Log
|
||||
*.binlog
|
||||
|
||||
# NVidia Nsight GPU debugger configuration file
|
||||
*.nvuser
|
||||
*.dll
|
||||
*.pdb
|
||||
# MFractors (Xamarin productivity tool) working folder
|
||||
.mfractor/
|
||||
**/bin/
|
||||
|
||||
@@ -22,4 +22,5 @@ WORKDIR /app
|
||||
COPY --from=build /app/publish .
|
||||
RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
|
||||
RUN echo 'Asia/Shanghai' >/etc/timezone
|
||||
RUN apt update && apt install -y libpugixml-dev libtbb-dev
|
||||
ENTRYPOINT ["dotnet", "AntSK.dll"]
|
||||
|
||||
@@ -1,8 +1,4 @@
|
||||
# 1. Define the Python image to use for getting pip
|
||||
FROM pytorch/pytorch AS python-base
|
||||
|
||||
# 2. Define the .NET SDK image to build your application
|
||||
FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build
|
||||
FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build
|
||||
WORKDIR /src
|
||||
COPY ["src/AntSK/AntSK.csproj", "AntSK/"]
|
||||
RUN dotnet restore "AntSK/AntSK.csproj"
|
||||
@@ -11,18 +7,11 @@ WORKDIR "/src/AntSK"
|
||||
RUN dotnet build "AntSK.csproj" -c Release -o /app/build
|
||||
RUN dotnet publish "AntSK.csproj" -c Release -o /app/publish
|
||||
|
||||
# 3. Define the final image that will contain both .NET runtime and Python
|
||||
FROM mcr.microsoft.com/dotnet/aspnet:8.0 AS final
|
||||
|
||||
# Copy the Python/pip installation from the official Python image
|
||||
COPY --from=python-base /usr/local /usr/local
|
||||
COPY --from=python-base /opt/conda/ /opt/conda/
|
||||
FROM registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk-base:v1.0.0 AS final
|
||||
WORKDIR /app
|
||||
COPY --from=build /app/publish .
|
||||
# Make sure the app and Python directories are in PATH
|
||||
ENV PATH="/app:/opt/conda/bin:/usr/local/bin:${PATH}"
|
||||
|
||||
ENV PATH="/app:/opt/conda/bin:/usr/local/bin:${PATH}"
|
||||
RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
|
||||
RUN echo 'Asia/Shanghai' >/etc/timezone
|
||||
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
ENTRYPOINT ["dotnet", "AntSK.dll"]
|
||||
ENTRYPOINT ["dotnet", "AntSK.dll"]
|
||||
|
||||
12
LICENSE
12
LICENSE
@@ -1,9 +1,17 @@
|
||||
Apache License
|
||||
AntSK License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
This project follows the Apache 2.0 agreement, in addition to the following additional terms
|
||||
1.This project can be used for commercial purposes, but it has the right to prohibit you from using it if it violates the following provisions
|
||||
2. Without authorization, you are not allowed to modify AntSK's logo and title information
|
||||
3. Without authorization, you are not allowed to modify the copyright information at the bottom of the page
|
||||
4. If you need authorization, you can contact WeChat: xuzeyu91 or Email:antskpro@qq.com
|
||||
|
||||
|
||||
Apache 2.0 License
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
@@ -186,7 +194,7 @@
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
Copyright [2024] [许泽宇]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
||||
214
README.en.md
214
README.en.md
@@ -1,214 +0,0 @@
|
||||
[简体中文](./README.md) | English
|
||||
# AntSK
|
||||
## AI Knowledge Base/Intelligent Agent built on .Net8+AntBlazor+SemanticKernel
|
||||
|
||||
## ⭐Core Features
|
||||
|
||||
- **Semantic Kernel**: Utilizes advanced natural language processing technology to accurately understand, process, and respond to complex semantic queries, providing users with precise information retrieval and recommendation services.
|
||||
|
||||
- **Kernel Memory**: Capable of continuous learning and storing knowledge points, AntSK has long-term memory function, accumulates experience, and provides a more personalized interaction experience.
|
||||
|
||||
- **Knowledge Base**: Import knowledge base through documents (Word, PDF, Excel, Txt, Markdown, Json, PPT) and perform knowledge base Q&A.
|
||||
|
||||
- **GPT Generation**: This platform supports creating personalized GPT models, enabling users to build their own GPT models.
|
||||
|
||||
- **API Interface Publishing**: Exposes internal functions in the form of APIs, enabling developers to integrate AntSK into other applications and enhance application intelligence.
|
||||
|
||||
- **API Plugin System**: Open API plugin system that allows third-party developers or service providers to easily integrate their services into AntSK, continuously enhancing application functionality.
|
||||
|
||||
- **.Net Plugin System**: Open dll plugin system that allows third-party developers or service providers to easily integrate their business functions by generating dll in standard format code, continuously enhancing application functionality.
|
||||
|
||||
- **Online Search**: AntSK, real-time access to the latest information, ensuring users receive the most timely and relevant data.
|
||||
|
||||
- **Model Management**: Adapts and manages integration of different models from different manufacturers, including gguf types supported by **llama.cpp** and models offline running supported by **llamafactory**.
|
||||
|
||||
- **Domestic Innovation**: AntSK supports domestic models and databases and can run under domestic innovation conditions.
|
||||
|
||||
- **Model Fine-Tuning**: Planned based on llamafactory for model fine-tuning.
|
||||
|
||||
## ⛪Application Scenarios
|
||||
|
||||
AntSK is suitable for various business scenarios, such as:
|
||||
- Enterprise knowledge management system
|
||||
- Automatic customer service and chatbots
|
||||
- Enterprise search engine
|
||||
- Personalized recommendation system
|
||||
- Intelligent writing assistance
|
||||
- Education and online learning platforms
|
||||
- Other interesting AI Apps
|
||||
|
||||
## ✏️Function Examples
|
||||
### Online Demo
|
||||
```
|
||||
https://antsk.ai-dotnet.com/
|
||||
```
|
||||
```
|
||||
Default account: test
|
||||
|
||||
Default password: test
|
||||
|
||||
Due to the low configuration of the cloud server, the local model cannot be run, so the system settings permissions have been closed. You can simply view the interface. If you want to use the local model, please download and use it on your own.
|
||||
```
|
||||
|
||||
### Other Function Examples
|
||||
[Video Demonstration](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
|
||||
|
||||
## ❓How to get started?
|
||||
|
||||
Here I am using Postgres as the data and vector storage because Semantic Kernel and Kernel Memory support it, but you can also use other options.
|
||||
|
||||
The model by default supports the local model of openai, azure openai, and llama. If you need to use other models, you can integrate them using one-api.
|
||||
|
||||
The Login configuration in the configuration file is the default login account and password.
|
||||
|
||||
The following configuration file needs to be configured
|
||||
|
||||
## 1️⃣Using docker-compose
|
||||
|
||||
Provided the pg version **appsettings.json** and simplified version (Sqlite+disk) **docker-compose.simple.yml**
|
||||
|
||||
Download **docker-compose.yml** from the project root directory and place the configuration file **appsettings.json** in the same directory.
|
||||
|
||||
The pg image has already been prepared. You can modify the default username and password in docker-compose.yml, and then the database connection in your **appsettings.json** needs to be consistent.
|
||||
|
||||
Then you can execute the following command in the directory to start AntSK
|
||||
```
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
## 2️⃣How to mount local models and model download directory in docker
|
||||
```
|
||||
# Non-host version, do not use local proxy
|
||||
version: '3.8'
|
||||
services:
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/AIDotNet/antsk:v0.1.5ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
- antsk
|
||||
depends_on:
|
||||
- antskpg
|
||||
restart: always
|
||||
environment:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # Local configuration file needs to be placed in the same directory
|
||||
- D://model:/app/model
|
||||
networks:
|
||||
antsk:
|
||||
```
|
||||
Taking this as an example, it means mounting the local D://model folder of Windows into the container /app/model. If so, the model address in your appsettings.json should be configured as
|
||||
```
|
||||
model/xxx.gguf
|
||||
```
|
||||
|
||||
## 3️⃣Some meanings of configuration file
|
||||
```
|
||||
{
|
||||
"DBConnection": {
|
||||
"DbType": "Sqlite",
|
||||
"ConnectionStrings": "Data Source=AntSK.db;"
|
||||
},
|
||||
"KernelMemory": {
|
||||
"VectorDb": "Disk",
|
||||
"ConnectionString": "Host=;Port=;Database=antsk;Username=;Password=",
|
||||
"TableNamePrefix": "km-"
|
||||
},
|
||||
"LLamaSharp": {
|
||||
"RunType": "GPU",
|
||||
"FileDirectory": "D:\\Code\\AI\\AntBlazor\\model\\"
|
||||
},
|
||||
"Login": {
|
||||
"User": "admin",
|
||||
"Password": "xuzeyu"
|
||||
},
|
||||
"BackgroundTaskBroker": {
|
||||
"ImportKMSTask": {
|
||||
"WorkerCount": 1
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
```
|
||||
// Supports various databases, you can check SqlSugar, MySql, SqlServer, Sqlite, Oracle, PostgreSQL, Dm, Kdbndp, Oscar, MySqlConnector, Access, OpenGauss, QuestDB, HG, ClickHouse, GBase, Odbc, OceanBaseForOracle, TDengine, GaussDB, OceanBase, Tidb, Vastbase, PolarDB, Custom
|
||||
DBConnection.DbType
|
||||
|
||||
// Connection string, need to use the corresponding string according to the different DB types
|
||||
DBConnection.ConnectionStrings
|
||||
|
||||
//The type of vector storage, supporting Postgres, Disk, Memory, Qdrant, Redis, AzureAISearch
|
||||
//Postgres and Redis require ConnectionString configuration
|
||||
//The ConnectionString of Qdrant and AzureAISearch uses Endpoint | APIKey
|
||||
KernelMemory.VectorDb
|
||||
|
||||
//Local model execution options: GPU and CPU. When using the online API, any option can be used.
|
||||
LLamaSharp.RunType
|
||||
|
||||
//Local model path, used for quick selection of models under llama, as well as saving downloaded models.
|
||||
LLamaSharp.FileDirectory
|
||||
|
||||
//Default admin account password
|
||||
Login
|
||||
|
||||
//Import asynchronous processing thread count. A higher count can be used for online API, but for local models, 1 is recommended to avoid memory overflow issues.
|
||||
BackgroundTaskBroker.ImportKMSTask.WorkerCount
|
||||
|
||||
```
|
||||
|
||||
## ⚠️Fixing Style Issues:
|
||||
Run the following in AntSK/src/AntSK:
|
||||
```
|
||||
dotnet clean
|
||||
dotnet build
|
||||
dotnet publish "AntSK.csproj"
|
||||
```
|
||||
Then navigate to AntSK/src/AntSK/bin/Release/net8.0/publish and run:
|
||||
```
|
||||
dotnet AntSK.dll
|
||||
```
|
||||
The styles should now be applied after starting.
|
||||
|
||||
I'm using CodeFirst mode for the database, so as long as the database connection is properly configured, the table structure will be created automatically.
|
||||
|
||||
## ✔️Using llamafactory
|
||||
```
|
||||
1. First, ensure that Python and pip are installed in your environment. This step is not necessary if using an image, such as version v0.2.3.2, which already includes the complete Python environment.
|
||||
2. Go to the model add page and select llamafactory.
|
||||
3. Click "Initialize" to check whether the 'pip install' environment setup is complete.
|
||||
4. Choose a model that you like.
|
||||
5. Click "Start" to begin downloading the model from the tower. This may involve a somewhat lengthy wait.
|
||||
6. After the model has finished downloading, enter http://localhost:8000/ in the request address. The default port is 8000.
|
||||
7. Click "Save" and start chatting.
|
||||
8. Many people ask about the difference between LLamaSharp and llamafactory. In fact, LLamaSharp is a .NET implementation of llama.cpp, but only supports local gguf models, while llamafactory supports a wider variety of models and uses Python implementation. The main difference lies here. Additionally, llamafactory has the ability to fine-tune models, which is an area we will focus on integrating in the future.
|
||||
```
|
||||
|
||||
## 🤝 Contributing
|
||||
|
||||
[](https://github.com/AIDotNet/AntSK/pulls)
|
||||
|
||||
If you would like to contribute, feel free to create a [Pull Request](https://github.com/AIDotNet/AntSK/pulls), or give us [Bug Report](https://github.com/AIDotNet/AntSK/issues/new).
|
||||
|
||||
|
||||
## 💕 Contributors
|
||||
|
||||
This project exists thanks to all the people who contribute.
|
||||
|
||||
<a href="https://github.com/AIDotNet/AntSK/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=AIDotNet/AntSK&max=1000&columns=15&anon=1" />
|
||||
</a>
|
||||
|
||||
## 🚨 Code of Conduct
|
||||
|
||||
This project has adopted the code of conduct defined by the Contributor Covenant to clarify expected behavior in our community.
|
||||
For more information see the [.NET Foundation Code of Conduct](https://dotnetfoundation.org/code-of-conduct).
|
||||
|
||||
To learn more or get started with **AntSK**, follow my official WeChat account and join the discussion group.
|
||||
|
||||
## ☎️Contact Me
|
||||
If you have any questions or suggestions, please contact me through my official WeChat account. We also have a discussion group where you can send a message to join, and then I will add you to the group.
|
||||

|
||||
|
||||
---
|
||||
|
||||
We appreciate your interest in **AntSK** and look forward to collaborating with you to create an intelligent future!
|
||||
245
README.md
245
README.md
@@ -1,93 +1,92 @@
|
||||
中文|[English](https://github.com/AIDotNet/AntSK/blob/main/README.en.md)
|
||||
[简体中文](./README.zh.md) | English
|
||||
# AntSK
|
||||
## 使用.Net8+Blazor+SemanticKernel 打造的AI知识库/智能体
|
||||
## AI Knowledge Base/Intelligent Agent built on .Net8+AntBlazor+SemanticKernel
|
||||
|
||||
## ⭐核心功能
|
||||
## ⭐Core Features
|
||||
|
||||
- **语义内核 (Semantic Kernel)**:采用领先的自然语言处理技术,准确理解、处理和响应复杂的语义查询,为用户提供精确的信息检索和推荐服务。
|
||||
- **Semantic Kernel**: Utilizes advanced natural language processing technology to accurately understand, process, and respond to complex semantic queries, providing users with precise information retrieval and recommendation services.
|
||||
|
||||
- **内存内核 (Kernel Memory)**:具备持续学习和存储知识点的能力,AntSK 拥有长期记忆功能,累积经验,提供更个性化的交互体验。
|
||||
- **Kernel Memory**: Capable of continuous learning and storing knowledge points, AntSK has long-term memory function, accumulates experience, and provides a more personalized interaction experience.
|
||||
|
||||
- **知识库**:通过文档(Word、PDF、Excel、Txt、Markdown、Json、PPT)等形式导入知识库,可以进行知识库问答。
|
||||
- **Knowledge Base**: Import knowledge base through documents (Word, PDF, Excel, Txt, Markdown, Json, PPT) and perform knowledge base Q&A.
|
||||
|
||||
- **GPTs 生成**:此平台支持创建个性化的GPT模型,尝试构建您自己的GPT模型。
|
||||
- **GPT Generation**: This platform supports creating personalized GPT models, enabling users to build their own GPT models.
|
||||
|
||||
- **API接口发布**:将内部功能以API的形式对外提供,便于开发者将AntSK 集成进其他应用,增强应用智慧。
|
||||
- **API Interface Publishing**: Exposes internal functions in the form of APIs, enabling developers to integrate AntSK into other applications and enhance application intelligence.
|
||||
|
||||
- **API插件系统**:开放式API插件系统,允许第三方开发者或服务商轻松将其服务集成到AntSK,不断增强应用功能。
|
||||
- **API Plugin System**: Open API plugin system that allows third-party developers or service providers to easily integrate their services into AntSK, continuously enhancing application functionality.
|
||||
|
||||
- **.Net插件系统**:开放式dll插件系统,允许第三方开发者或服务商轻松将其业务功能通过标准格式的代码生成dll后集成到AntSK,不断增强应用功能。
|
||||
- **.Net Plugin System**: Open dll plugin system that allows third-party developers or service providers to easily integrate their business functions by generating dll in standard format code, continuously enhancing application functionality.
|
||||
|
||||
- **联网搜索**:AntSK,实时获取最新信息,确保用户接受到的资料总是最及时、最相关的。
|
||||
- **Online Search**: AntSK, real-time access to the latest information, ensuring users receive the most timely and relevant data.
|
||||
|
||||
- **模型管理**:适配和管理集成不同厂商的不同模型。并且支持**llama.cpp**所支持的gguf类型,以及**llamafactory**所支持的模型离线运行
|
||||
- **Model Management**: Adapts and manages integration of different models from different manufacturers, including gguf types supported by **llama.cpp** and models offline running supported by **llamafactory** and **ollama**.
|
||||
|
||||
- **国产信创**:AntSK支持国产模型,和国产数据库,可以在信创条件下运行
|
||||
- **Domestic Innovation**: AntSK supports domestic models and databases and can run under domestic innovation conditions.
|
||||
|
||||
- **模型微调**:规划中,基于llamafactory进行模型微调
|
||||
|
||||
- **Model Fine-Tuning**: Planned based on llamafactory for model fine-tuning.
|
||||
|
||||
## ⛪应用场景
|
||||
## ⛪Application Scenarios
|
||||
|
||||
AntSK 适用于多种业务场景,例如:
|
||||
- 企业级知识管理系统
|
||||
- 自动客服与聊天机器人
|
||||
- 企业级搜索引擎
|
||||
- 个性化推荐系统
|
||||
- 智能辅助写作
|
||||
- 教育与在线学习平台
|
||||
- 其他有意思的AI App
|
||||
AntSK is suitable for various business scenarios, such as:
|
||||
- Enterprise knowledge management system
|
||||
- Automatic customer service and chatbots
|
||||
- Enterprise search engine
|
||||
- Personalized recommendation system
|
||||
- Intelligent writing assistance
|
||||
- Education and online learning platforms
|
||||
- Other interesting AI Apps
|
||||
|
||||
## ✏️Function Examples
|
||||
### Online Demo
|
||||
[document](http://antsk.cn/)
|
||||
|
||||
[demo](https://demo.antsk.cn/)
|
||||
and
|
||||
[demo1](https://antsk.ai-dotnet.com/)
|
||||
|
||||
## ✏️功能示例
|
||||
### 在线演示
|
||||
```
|
||||
https://antsk.ai-dotnet.com/
|
||||
```
|
||||
```
|
||||
默认账号:test
|
||||
Default account: test
|
||||
|
||||
默认密码:test
|
||||
Default password: test
|
||||
|
||||
由于云服务器配置较低,无法运行本地模型,所以把系统设置权限关闭了,大家看看界面即可,要使用本地模型,请下载自行使用
|
||||
Due to the low configuration of the cloud server, the local model cannot be run, so the system settings permissions have been closed. You can simply view the interface. If you want to use the local model, please download and use it on your own.
|
||||
```
|
||||
|
||||
### 其他功能示例
|
||||
[视频示例](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
|
||||
### Other Function Examples
|
||||
[Video Demonstration](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
|
||||
|
||||
[在线文档:http://antsk.cn](http://antsk.cn)
|
||||
## ❓How to get started?
|
||||
|
||||
## ❓如何开始?
|
||||
Here I am using Postgres as the data and vector storage because Semantic Kernel and Kernel Memory support it, but you can also use other options.
|
||||
|
||||
在这里我使用的是Postgres 作为数据存储和向量存储,因为Semantic Kernel和Kernel Memory都支持他,当然你也可以换成其他的。
|
||||
The model by default supports the local model of openai, azure openai, and llama. If you need to use other models, you can integrate them using one-api.
|
||||
|
||||
模型默认支持openai、azure openai、讯飞星火、阿里云积、 和llama支持的gguf本地模型 以及llamafactory的本地模型,如果需要使用其他模型,可以使用one-api进行集成。
|
||||
The Login configuration in the configuration file is the default login account and password.
|
||||
|
||||
配置文件中的Login配置是默认的登录账号和密码
|
||||
The following configuration file needs to be configured
|
||||
|
||||
需要配置如下的配置文件
|
||||
## 1️⃣Using docker-compose
|
||||
|
||||
## 1️⃣使用docker-compose
|
||||
Provided the pg version **appsettings.json** and simplified version (Sqlite+disk) **docker-compose.simple.yml**
|
||||
|
||||
提供了pg版本 **appsettings.json** 和 简化版本(**Sqlite+disk**) **docker-compose.simple.yml**
|
||||
Download **docker-compose.yml** from the project root directory and place the configuration file **appsettings.json** in the same directory.
|
||||
|
||||
从项目根目录下载**docker-compose.yml**,然后把配置文件**appsettings.json**和它放在统一目录,
|
||||
The pg image has already been prepared. You can modify the default username and password in docker-compose.yml, and then the database connection in your **appsettings.json** needs to be consistent.
|
||||
|
||||
这里已经把pg的镜像做好了。在docker-compose.yml中可以修改默认账号密码,然后你的**appsettings.json**的数据库连接需要保持一致。
|
||||
|
||||
然后你可以进入到目录后执行
|
||||
Then you can execute the following command in the directory to start AntSK
|
||||
```
|
||||
docker-compose up -d
|
||||
```
|
||||
来启动AntSK
|
||||
|
||||
## 2️⃣如何在docker中挂载本地模型,和模型下载的目录
|
||||
## 2️⃣How to mount local models and model download directory in docker
|
||||
```
|
||||
# 非 host 版本, 不使用本机代理
|
||||
# Non-host version, do not use local proxy
|
||||
version: '3.8'
|
||||
services:
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/AIDotNet/antsk:v0.2.3
|
||||
image: registry.cn-hangzhou.aliyuncs.com/AIDotNet/antsk:v0.5.0
|
||||
ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
@@ -98,31 +97,36 @@ services:
|
||||
environment:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # 本地配置文件 需要放在同级目录
|
||||
- ./appsettings.json:/app/appsettings.json # Local configuration file needs to be placed in the same directory
|
||||
- D://model:/app/model
|
||||
networks:
|
||||
antsk:
|
||||
```
|
||||
以这个为示例,意思是把windows本地D://model的文件夹挂载进 容器内/app/model 如果是这样你的appsettings.json中的模型地址应该配置为
|
||||
```
|
||||
model/xxx.gguf
|
||||
```
|
||||
Taking this as an example, it means mounting the local D://model folder of Windows into the container /app/model. If so, the model address in your appsettings.json should be configured as
|
||||
|
||||
## 3️⃣配置文件的一些含义
|
||||
[LiteDockerCompose](https://github.com/AIDotNet/AntSK/blob/main/docker-compose.simple.yml)
|
||||
|
||||
The compact version is deployed with sqlite-disk by one click
|
||||
|
||||
[FullDockerCompose](https://github.com/AIDotNet/AntSK/blob/main/docker-compose.yml)
|
||||
|
||||
The full version uses pg+aspire
|
||||
|
||||
|
||||
## 3️⃣Some meanings of configuration file
|
||||
```
|
||||
{
|
||||
"DBConnection": {
|
||||
"DbType": "Sqlite",
|
||||
"DbType": "Sqlite",
|
||||
"ConnectionStrings": "Data Source=AntSK.db;"
|
||||
},
|
||||
"KernelMemory": {
|
||||
"VectorDb": "Disk",
|
||||
"VectorDb": "Disk",
|
||||
"ConnectionString": "Host=;Port=;Database=antsk;Username=;Password=",
|
||||
"TableNamePrefix": "km-"
|
||||
},
|
||||
"LLamaSharp": {
|
||||
"RunType": "GPU",
|
||||
"FileDirectory": "D:\\Code\\AI\\AntBlazor\\model\\"
|
||||
"FileDir": {
|
||||
"DirectoryPath": "D:\\git\\AntBlazor\\model"
|
||||
},
|
||||
"Login": {
|
||||
"User": "admin",
|
||||
@@ -136,86 +140,95 @@ model/xxx.gguf
|
||||
}
|
||||
```
|
||||
```
|
||||
//支持多种数据库,具体可以查看SqlSugar,MySql,SqlServer,Sqlite,Oracle,PostgreSQL,Dm,Kdbndp,Oscar,MySqlConnector,Access,OpenGauss,QuestDB,HG,ClickHouse,GBase,Odbc,OceanBaseForOracle,TDengine,GaussDB,OceanBase,Tidb,Vastbase,PolarDB,Custom
|
||||
// Supports various databases, you can check SqlSugar, MySql, SqlServer, Sqlite, Oracle, PostgreSQL, Dm, Kdbndp, Oscar, MySqlConnector, Access, OpenGauss, QuestDB, HG, ClickHouse, GBase, Odbc, OceanBaseForOracle, TDengine, GaussDB, OceanBase, Tidb, Vastbase, PolarDB, Custom
|
||||
DBConnection.DbType
|
||||
//连接字符串,需要根据不同DB类型,用对应的字符串
|
||||
|
||||
// Connection string, need to use the corresponding string according to the different DB types
|
||||
DBConnection.ConnectionStrings
|
||||
|
||||
//向量存储的类型,支持 Postgres、Disk、Memory、Qdrant、Redis、AzureAISearch
|
||||
//Postgres、Redis需要配置 ConnectionString
|
||||
//Qdrant 和AzureAISearch 的 ConnectionString 使用 Endpoint|APIKey
|
||||
//The type of vector storage, supporting Postgres, Disk, Memory, Qdrant, Redis, AzureAISearch
|
||||
//Postgres and Redis require ConnectionString configuration
|
||||
//The ConnectionString of Qdrant and AzureAISearch uses Endpoint | APIKey
|
||||
KernelMemory.VectorDb
|
||||
|
||||
//本地模型使用的运行方式 GUP CPU ,如果用在线API 这个随意使用一个即可
|
||||
LLamaSharp.RunType
|
||||
//Local model path, used for quick selection of models under llama, as well as saving downloaded models.
|
||||
FileDir.DirectoryPath
|
||||
|
||||
//本地模型路径,用于在选择llama时可以快速选择目录下的模型,以及保存下载的模型
|
||||
LLamaSharp.FileDirectory
|
||||
|
||||
//默认管理员账号密码
|
||||
//Default admin account password
|
||||
Login
|
||||
//导入异步处理的线程数,使用在线API可以高一点,本地模型建议1 否则容易内存溢出崩掉
|
||||
|
||||
//Import asynchronous processing thread count. A higher count can be used for online API, but for local models, 1 is recommended to avoid memory overflow issues.
|
||||
BackgroundTaskBroker.ImportKMSTask.WorkerCount
|
||||
|
||||
```
|
||||
|
||||
## ⚠️找不到样式问题解决:
|
||||
AntSK/src/AntSK下执行:
|
||||
## ⚠️Fixing Style Issues:
|
||||
Run the following in AntSK/src/AntSK:
|
||||
```
|
||||
dotnet clean
|
||||
dotnet build
|
||||
dotnet publish "AntSK.csproj"
|
||||
```
|
||||
再去AntSK/src/AntSK/bin/Release/net8.0/publish下
|
||||
Then navigate to AntSK/src/AntSK/bin/Release/net8.0/publish and run:
|
||||
```
|
||||
dotnet AntSK.dll
|
||||
```
|
||||
然后启动就有样式了
|
||||
The styles should now be applied after starting.
|
||||
|
||||
DB我使用的是CodeFirst模式,只要配置好数据库链接,表结构是自动创建的
|
||||
I'm using CodeFirst mode for the database, so as long as the database connection is properly configured, the table structure will be created automatically.
|
||||
|
||||
## ✔️使用llamafactory
|
||||
## ✔️Using llamafactory
|
||||
```
|
||||
1、首先需要确保你的环境已经安装了python和pip,如果使用镜像,例如p0.2.4版本已经包含了 python全套环境则无需此步骤
|
||||
2、进入模型添加页面选择llamafactory
|
||||
3、点击初始化,可以检查pip install 环境是否完成
|
||||
4、选择一个喜欢的模型
|
||||
5、点击启动,这会开始从魔塔下载模型,你可能需要有一个较为漫长的等待
|
||||
6、等待模型下载完毕后,在请求地址输入 http://localhost:8000/ 这里默认是使用8000端口
|
||||
7、点击保存,然后就可以开始聊天了
|
||||
8、很多人会问 LLamaSharp与llamafactory有什么区别?其实这两者LLamaSharp是llama.cpp的 dotnet实现,但是只支持本地gguf模型, 而llamafactory 支持的模型种类更多,但使用的是python的实现,其主要差异在这里,另外llamafactory具有模型微调的能力,这也是我们下一步需要重点集成的部分。
|
||||
1. First, ensure that Python and pip are installed in your environment. This step is not necessary if using an image, such as version v0.2.3.2, which already includes the complete Python environment.
|
||||
2. Go to the model add page and select llamafactory.
|
||||
3. Click "Initialize" to check whether the 'pip install' environment setup is complete.
|
||||
4. Choose a model that you like.
|
||||
5. Click "Start" to begin downloading the model from the tower. This may involve a somewhat lengthy wait.
|
||||
6. After the model has finished downloading, enter http://localhost:8000/ in the request address. The default port is 8000.
|
||||
7. Click "Save" and start chatting.
|
||||
8. Many people ask about the difference between LLamaSharp and llamafactory. In fact, LLamaSharp is a .NET implementation of llama.cpp, but only supports local gguf models, while llamafactory supports a wider variety of models and uses Python implementation. The main difference lies here. Additionally, llamafactory has the ability to fine-tune models, which is an area we will focus on integrating in the future.
|
||||
```
|
||||
|
||||
## 🤝 贡献
|
||||
## 💕 Contributors
|
||||
|
||||
[](https://github.com/AIDotNet/AntSK/pulls)
|
||||
|
||||
如果你想贡献,可以创建一个[拉取请求](https://github.com/AIDotNet/AntSK/pulls), 或给我们[错误报告](https://github.com/AIDotNet/AntSK/issues/new).
|
||||
|
||||
|
||||
## 💕 贡献者
|
||||
This project exists thanks to all the people who contribute.
|
||||
|
||||
这个项目的存在要感谢所有的贡献者。
|
||||
|
||||
<a href="https://github.com/AIDotNet/AntSK/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=AIDotNet/AntSK&max=1000&columns=15&anon=1" />
|
||||
</a>
|
||||
|
||||
## 🚨 行为准则
|
||||
|
||||
该项目采用了贡献者公约定义的行为准则,以阐明我们社区的预期行为。有关更多信息,请参见 .NET Foundation 行为准则。 [.NET Foundation Code of Conduct](https://dotnetfoundation.org/code-of-conduct).
|
||||
|
||||
想了解更多信息或开始使用 **AntSK**,可以关注我的公众号以及加入交流群。
|
||||
|
||||
## ☎️联系我
|
||||
如有任何问题或建议,请通过以下方式关注我的公众号,发消息与我联系,我们也有交流群,可以发送进群等消息,然后我会拉你进交流群
|
||||

|
||||
|
||||
## 🌟 Star History
|
||||
<a href="https://github.com/AIDotNet/AntSK/stargazers" target="_blank" style="display: block" align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date&theme=dark" />
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date" />
|
||||
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date" />
|
||||
</picture>
|
||||
<img src="https://contrib.rocks/image?repo=AIDotNet/AntSK&max=1000&columns=15&anon=1" />
|
||||
</a>
|
||||
|
||||
## 🚨 Use Protocol
|
||||
|
||||
This warehouse follows the [AntSK License](https://github.com/AIDotNet/AntSK?tab=Apache-2.0-1-ov-file) open source protocol.
|
||||
|
||||
This project follows the Apache 2.0 agreement, in addition to the following additional terms
|
||||
|
||||
1. This project can be used for commercial purposes, but it has the right to prohibit you from using it if it violates the following provisions
|
||||
|
||||
2. Without authorization, you are not allowed to modify AntSK's logo and title information
|
||||
|
||||
4. Without authorization, you are not allowed to modify the copyright information at the bottom of the page
|
||||
|
||||
6. If you need authorization, you can contact WeChat: **xuzeyu91**
|
||||
|
||||
If you plan to use AntSK in commercial projects, you need to ensure that you follow the following steps:
|
||||
|
||||
1. Copyright statement containing AntSK license. [AntSK License](https://github.com/AIDotNet/AntSK?tab=Apache-2.0-1-ov-file).
|
||||
|
||||
2. If you modify the software source code, you need to clearly indicate these modifications in the source code.
|
||||
|
||||
3. Meet the above requirements
|
||||
|
||||
## 💕 Special thanks
|
||||
Helping enterprise AI application development, we recommend [AntBlazor](https://antblazor.com)
|
||||
|
||||
## ☎️Contact Me
|
||||
If you have any questions or suggestions, please contact me through my official WeChat account. We also have a discussion group where you can send a message to join, and then I will add you to the group.
|
||||
|
||||
Additionally, you can also contact me via email: antskpro@qq.com
|
||||
|
||||

|
||||
|
||||
---
|
||||
|
||||
We appreciate your interest in **AntSK** and look forward to collaborating with you to create an intelligent future!
|
||||
|
||||
247
README.zh.md
Normal file
247
README.zh.md
Normal file
@@ -0,0 +1,247 @@
|
||||
中文|[English](./README.md)
|
||||
# AntSK
|
||||
## 使用.Net8+Blazor+SemanticKernel 打造的AI知识库/智能体
|
||||
|
||||
## ⭐核心功能
|
||||
|
||||
- **语义内核 (Semantic Kernel)**:采用领先的自然语言处理技术,准确理解、处理和响应复杂的语义查询,为用户提供精确的信息检索和推荐服务。
|
||||
|
||||
- **内存内核 (Kernel Memory)**:具备持续学习和存储知识点的能力,AntSK 拥有长期记忆功能,累积经验,提供更个性化的交互体验。
|
||||
|
||||
- **知识库**:通过文档(Word、PDF、Excel、Txt、Markdown、Json、PPT)等形式导入知识库,可以进行知识库问答,支持本地bge-embedding 向量模型 ,以及bge-rerank 重排模型。
|
||||
|
||||
- **文生图**:集成**StableDiffusion** 本地模型,可以进行文生图。
|
||||
|
||||
- **GPTs 生成**:此平台支持创建个性化的GPT模型,尝试构建您自己的GPT模型。
|
||||
|
||||
- **API接口发布**:将内部功能以API的形式对外提供,便于开发者将AntSK 集成进其他应用,增强应用智慧。
|
||||
|
||||
- **API插件系统**:开放式API插件系统,允许第三方开发者或服务商轻松将其服务集成到AntSK,不断增强应用功能。
|
||||
|
||||
- **.Net插件系统**:开放式dll插件系统,允许第三方开发者或服务商轻松将其业务功能通过标准格式的代码生成dll后集成到AntSK,不断增强应用功能。
|
||||
|
||||
- **联网搜索**:AntSK,实时获取最新信息,确保用户接受到的资料总是最及时、最相关的。
|
||||
|
||||
- **模型管理**:适配和管理集成不同厂商的不同模型。并且支持**llama.cpp**所支持的gguf类型,以及**llamafactory** 和 **ollama** 所支持的模型离线运行
|
||||
|
||||
- **国产信创**:AntSK支持国产模型,和国产数据库,可以在信创条件下运行
|
||||
|
||||
- **模型微调**:规划中,基于llamafactory进行模型微调
|
||||
|
||||
|
||||
## ⛪应用场景
|
||||
|
||||
AntSK 适用于多种业务场景,例如:
|
||||
- 企业级知识管理系统
|
||||
- 自动客服与聊天机器人
|
||||
- 企业级搜索引擎
|
||||
- 个性化推荐系统
|
||||
- 智能辅助写作
|
||||
- 教育与在线学习平台
|
||||
- 其他有意思的AI App
|
||||
|
||||
## ✏️功能示例
|
||||
### 在线演示
|
||||
|
||||
[体验地址1](https://demo.antsk.cn/)
|
||||
|
||||
和
|
||||
|
||||
[体验地址2](https://antsk.ai-dotnet.com/)
|
||||
```
|
||||
默认账号:test
|
||||
|
||||
默认密码:test
|
||||
|
||||
由于云服务器配置较低,无法运行本地模型,所以把系统设置权限关闭了,大家看看界面即可,要使用本地模型,请下载自行使用
|
||||
|
||||
请勿在演示站点上传敏感信息
|
||||
```
|
||||
|
||||
### 其他功能示例
|
||||
[视频示例](https://www.bilibili.com/video/BV1zH4y1h7Y9/)
|
||||
|
||||
[在线文档:http://antsk.cn](http://antsk.cn)
|
||||
|
||||
## ❓如何开始?
|
||||
|
||||
在这里我使用的是Postgres 作为数据存储和向量存储,因为Semantic Kernel和Kernel Memory都支持他,当然你也可以换成其他的。
|
||||
|
||||
模型默认支持openai、azure openai、讯飞星火、阿里云积、 和llama支持的gguf本地模型 以及llamafactory的本地模型,如果需要使用其他模型,可以使用one-api进行集成。
|
||||
|
||||
配置文件中的Login配置是默认的登录账号和密码
|
||||
|
||||
需要配置如下的配置文件
|
||||
|
||||
## 1️⃣使用docker-compose
|
||||
|
||||
提供了pg版本 **appsettings.json** 和 简化版本(**Sqlite+disk**) **docker-compose.simple.yml**
|
||||
|
||||
从项目根目录下载**docker-compose.yml**,然后把配置文件**appsettings.json**和它放在统一目录,
|
||||
|
||||
这里已经把pg的镜像做好了。在docker-compose.yml中可以修改默认账号密码,然后你的**appsettings.json**的数据库连接需要保持一致。
|
||||
|
||||
然后你可以进入到目录后执行
|
||||
```
|
||||
docker-compose up -d
|
||||
```
|
||||
来启动AntSK
|
||||
|
||||
## 2️⃣如何在docker中挂载本地模型,和模型下载的目录
|
||||
```
|
||||
# 非 host 版本, 不使用本机代理
|
||||
version: '3.8'
|
||||
services:
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/AIDotNet/antsk:v0.3.1
|
||||
ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
- antsk
|
||||
depends_on:
|
||||
- antskpg
|
||||
restart: always
|
||||
environment:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # 本地配置文件 需要放在同级目录
|
||||
- D://model:/app/model
|
||||
- D://model:/root/.cache/modelscope/hub/AI-ModelScope #使用Llamafactory时需要挂载 否则初始化的环境重启后会丢失
|
||||
networks:
|
||||
antsk:
|
||||
```
|
||||
以这个为示例,意思是把windows本地D://model的文件夹挂载进 容器内/app/model 如果是这样你的appsettings.json中的模型地址应该配置为
|
||||
|
||||
[LiteDockerCompose](https://github.com/AIDotNet/AntSK/blob/main/docker-compose.simple.yml)
|
||||
|
||||
精简版使用sqlite+disk向量模式,简化部署配置
|
||||
|
||||
[FullDockerCompose](https://github.com/AIDotNet/AntSK/blob/main/docker-compose.yml)
|
||||
|
||||
完整版使用pg+aspire 功能更完整,配置文件需要参考如下配置含义进行配置
|
||||
|
||||
|
||||
## 3️⃣配置文件的一些含义
|
||||
```
|
||||
{
|
||||
"DBConnection": {
|
||||
"DbType": "Sqlite",
|
||||
"ConnectionStrings": "Data Source=AntSK.db;"
|
||||
},
|
||||
"KernelMemory": {
|
||||
"VectorDb": "Disk",
|
||||
"ConnectionString": "Host=;Port=;Database=antsk;Username=;Password=",
|
||||
"TableNamePrefix": "km-"
|
||||
},
|
||||
"FileDir": {
|
||||
"DirectoryPath": "D:\\git\\AntBlazor\\model"
|
||||
},
|
||||
"Login": {
|
||||
"User": "admin",
|
||||
"Password": "xuzeyu"
|
||||
},
|
||||
"BackgroundTaskBroker": {
|
||||
"ImportKMSTask": {
|
||||
"WorkerCount": 1
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
```
|
||||
//支持多种数据库,具体可以查看SqlSugar,MySql,SqlServer,Sqlite,Oracle,PostgreSQL,Dm,Kdbndp,Oscar,MySqlConnector,Access,OpenGauss,QuestDB,HG,ClickHouse,GBase,Odbc,OceanBaseForOracle,TDengine,GaussDB,OceanBase,Tidb,Vastbase,PolarDB,Custom
|
||||
DBConnection.DbType
|
||||
//连接字符串,需要根据不同DB类型,用对应的字符串
|
||||
DBConnection.ConnectionStrings
|
||||
|
||||
//向量存储的类型,支持 Postgres、Disk、Memory、Qdrant、Redis、AzureAISearch
|
||||
//Postgres、Redis需要配置 ConnectionString
|
||||
//Qdrant 和AzureAISearch 的 ConnectionString 使用 Endpoint|APIKey
|
||||
KernelMemory.VectorDb
|
||||
|
||||
//本地模型路径,用于在选择llama时可以快速选择目录下的模型,以及保存下载的模型
|
||||
FileDir.DirectoryPath
|
||||
|
||||
//默认管理员账号密码
|
||||
Login
|
||||
//导入异步处理的线程数,使用在线API可以高一点,本地模型建议1 否则容易内存溢出崩掉
|
||||
BackgroundTaskBroker.ImportKMSTask.WorkerCount
|
||||
```
|
||||
|
||||
## ⚠️找不到样式问题解决:
|
||||
AntSK/src/AntSK下执行:
|
||||
```
|
||||
dotnet clean
|
||||
dotnet build
|
||||
dotnet publish "AntSK.csproj"
|
||||
```
|
||||
再去AntSK/src/AntSK/bin/Release/net8.0/publish下
|
||||
```
|
||||
dotnet AntSK.dll
|
||||
```
|
||||
然后启动就有样式了
|
||||
|
||||
DB我使用的是CodeFirst模式,只要配置好数据库链接,表结构是自动创建的
|
||||
|
||||
## ✔️使用llamafactory
|
||||
```
|
||||
1、首先需要确保你的环境已经安装了python和pip,如果使用镜像,例如p0.2.4版本已经包含了 python全套环境则无需此步骤
|
||||
2、进入模型添加页面选择llamafactory
|
||||
3、点击初始化,可以检查pip install 环境是否完成
|
||||
4、选择一个喜欢的模型
|
||||
5、点击启动,这会开始从魔塔下载模型,你可能需要有一个较为漫长的等待
|
||||
6、等待模型下载完毕后,在请求地址输入 http://localhost:8000/ 这里默认是使用8000端口
|
||||
7、点击保存,然后就可以开始聊天了
|
||||
8、很多人会问 LLamaSharp与llamafactory有什么区别?其实这两者LLamaSharp是llama.cpp的 dotnet实现,但是只支持本地gguf模型, 而llamafactory 支持的模型种类更多,但使用的是python的实现,其主要差异在这里,另外llamafactory具有模型微调的能力,这也是我们下一步需要重点集成的部分。
|
||||
```
|
||||
|
||||
## 💕 贡献者
|
||||
|
||||
这个项目的存在要感谢所有的贡献者。
|
||||
|
||||
<a href="https://github.com/AIDotNet/AntSK/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=AIDotNet/AntSK&max=1000&columns=15&anon=1" />
|
||||
</a>
|
||||
|
||||
## 🚨 使用协议
|
||||
|
||||
本仓库遵循 [AntSK License](https://github.com/AIDotNet/AntSK?tab=Apache-2.0-1-ov-file) 开源协议。
|
||||
|
||||
除以下附加条款外,该项目遵循Apache 2.0协议
|
||||
|
||||
1. 本项目可以用于商业目的,但如果违反以下规定,它有权禁止您使用
|
||||
|
||||
2. 未经授权,您不允许修改AntSK的徽标和标题信息
|
||||
|
||||
3. 未经授权,您不能修改页面底部的版权信息
|
||||
|
||||
4. 如果您需要授权,可以联系微信:xuzeyu91
|
||||
|
||||
如果您打算在商业项目中使用AntSK,您需要确保遵守以下步骤:
|
||||
|
||||
1. 包含AntSK许可证的版权声明。 [AntSK License](https://github.com/AIDotNet/AntSK?tab=Apache-2.0-1-ov-file) 。
|
||||
|
||||
2. 如果您修改了软件源代码,您需要在源代码中明确标明这些修改。
|
||||
|
||||
3. 满足以上要求
|
||||
|
||||
## 💕 特别感谢
|
||||
助力企业级AI应用开发,推荐使用 [AntBlazor](https://antblazor.com)
|
||||
|
||||
|
||||
## ☎️联系我
|
||||
如有任何问题或建议,请通过以下方式关注我的公众号《许泽宇的技术分享》,发消息与我联系,我们也有AIDotnet交流群,可以发送进群等消息,然后我会拉你进交流群
|
||||
|
||||
另外您也可以通过邮箱与我联系:antskpro@qq.com
|
||||
|
||||

|
||||
|
||||
## 🌟 Star History
|
||||
<a href="https://github.com/AIDotNet/AntSK/stargazers" target="_blank" style="display: block" align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date&theme=dark" />
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date" />
|
||||
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=AIDotNet/AntSK&type=Date" />
|
||||
</picture>
|
||||
</a>
|
||||
|
||||
@@ -3,9 +3,9 @@ version: '3.8'
|
||||
services:
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.2.4
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.5.5
|
||||
# 如果需要pytorch环境需要使用下面这个镜像,镜像比较大
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:p0.2.4
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:p0.5.5
|
||||
ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
@@ -15,5 +15,7 @@ services:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # 本地配置文件 需要放在同级目录
|
||||
- /AntSK/model:/app/model
|
||||
- /AntSK/model:/root/.cache/modelscope/hub/AI-ModelScope # LLamaFactory模型文件
|
||||
networks:
|
||||
antsk:
|
||||
|
||||
@@ -1,6 +1,20 @@
|
||||
# 非 host 版本, 不使用本机代理
|
||||
version: '3.8'
|
||||
services:
|
||||
aspire-dashboard:
|
||||
container_name: aspire-dashboard
|
||||
image: mcr.microsoft.com/dotnet/aspire-dashboard:8.0
|
||||
networks:
|
||||
- antsk
|
||||
environment:
|
||||
- DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS=true
|
||||
- ASPIRE_ALLOW_UNSECURED_TRANSPORT=true
|
||||
- DASHBOARD_OTLP_AUTHMODE=ApiKey
|
||||
- DASHBOARD_OTLP_PRIMARYAPIKEY=antsk
|
||||
ports:
|
||||
- 18888:18888
|
||||
- 18889:18889
|
||||
restart: unless-stopped
|
||||
antskpg:
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/pg:v0.5.0
|
||||
container_name: antskpg
|
||||
@@ -18,9 +32,9 @@ services:
|
||||
- ./pg/data:/var/lib/postgresql/data
|
||||
antsk:
|
||||
container_name: antsk
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.2.4
|
||||
image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:v0.5.5
|
||||
# 如果需要pytorch环境需要使用下面这个镜像,镜像比较大
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:p0.2.4
|
||||
# image: registry.cn-hangzhou.aliyuncs.com/xuzeyu91/antsk:p0.5.5
|
||||
ports:
|
||||
- 5000:5000
|
||||
networks:
|
||||
@@ -30,7 +44,15 @@ services:
|
||||
restart: always
|
||||
environment:
|
||||
- ASPNETCORE_URLS=http://*:5000
|
||||
- ASPNETCORE_FORWARDEDHEADERS_ENABLED=true
|
||||
- OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES=true
|
||||
- OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES= true
|
||||
- OTEL_DOTNET_EXPERIMENTAL_OTLP_RETRY=in_memory
|
||||
- OTEL_EXPORTER_OTLP_ENDPOINT=http://aspire-dashboard:18889
|
||||
- OTEL_SERVICE_NAME=antsk
|
||||
volumes:
|
||||
- ./appsettings.json:/app/appsettings.json # 本地配置文件 需要放在同级目录
|
||||
- /AntSK/model:/app/model
|
||||
- /AntSK/model:/root/.cache/modelscope/hub/AI-ModelScope # LLamaFactory模型文件
|
||||
networks:
|
||||
antsk:
|
||||
|
||||
20
src/AntSK.AppHost/AntSK.AppHost.csproj
Normal file
20
src/AntSK.AppHost/AntSK.AppHost.csproj
Normal file
@@ -0,0 +1,20 @@
|
||||
<Project Sdk="Microsoft.NET.Sdk">
|
||||
|
||||
<PropertyGroup>
|
||||
<OutputType>Exe</OutputType>
|
||||
<TargetFramework>net8.0</TargetFramework>
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Nullable>enable</Nullable>
|
||||
<IsAspireHost>true</IsAspireHost>
|
||||
<UserSecretsId>32ac67c8-178a-4eeb-871d-879023582e06</UserSecretsId>
|
||||
</PropertyGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<PackageReference Include="Aspire.Hosting.AppHost" Version="8.0.1" />
|
||||
</ItemGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\AntSK\AntSK.csproj" />
|
||||
</ItemGroup>
|
||||
|
||||
</Project>
|
||||
5
src/AntSK.AppHost/Program.cs
Normal file
5
src/AntSK.AppHost/Program.cs
Normal file
@@ -0,0 +1,5 @@
|
||||
var builder = DistributedApplication.CreateBuilder(args);
|
||||
|
||||
builder.AddProject<Projects.AntSK>("antsk");
|
||||
|
||||
builder.Build().Run();
|
||||
8
src/AntSK.AppHost/appsettings.Development.json
Normal file
8
src/AntSK.AppHost/appsettings.Development.json
Normal file
@@ -0,0 +1,8 @@
|
||||
{
|
||||
"Logging": {
|
||||
"LogLevel": {
|
||||
"Default": "Information",
|
||||
"Microsoft.AspNetCore": "Warning"
|
||||
}
|
||||
}
|
||||
}
|
||||
9
src/AntSK.AppHost/appsettings.json
Normal file
9
src/AntSK.AppHost/appsettings.json
Normal file
@@ -0,0 +1,9 @@
|
||||
{
|
||||
"Logging": {
|
||||
"LogLevel": {
|
||||
"Default": "Information",
|
||||
"Microsoft.AspNetCore": "Warning",
|
||||
"Aspire.Hosting.Dcp": "Warning"
|
||||
}
|
||||
}
|
||||
}
|
||||
26
src/AntSK.AppHost/aspirate-output/docker-compose.yaml
Normal file
26
src/AntSK.AppHost/aspirate-output/docker-compose.yaml
Normal file
@@ -0,0 +1,26 @@
|
||||
services:
|
||||
aspire-dashboard:
|
||||
container_name: "aspire-dashboard"
|
||||
image: "mcr.microsoft.com/dotnet/aspire-dashboard:8.0"
|
||||
environment:
|
||||
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS: "true"
|
||||
ports:
|
||||
- target: 18888
|
||||
published: 18888
|
||||
restart: unless-stopped
|
||||
antsk:
|
||||
container_name: "antsk"
|
||||
image: "antsk:latest"
|
||||
environment:
|
||||
OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES: "true"
|
||||
OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES: "true"
|
||||
OTEL_DOTNET_EXPERIMENTAL_OTLP_RETRY: "in_memory"
|
||||
ASPNETCORE_FORWARDEDHEADERS_ENABLED: "true"
|
||||
OTEL_EXPORTER_OTLP_ENDPOINT: "http://aspire-dashboard:18889"
|
||||
OTEL_SERVICE_NAME: "antsk"
|
||||
ports:
|
||||
- target: 8080
|
||||
published: 10000
|
||||
- target: 8443
|
||||
published: 10001
|
||||
restart: unless-stopped
|
||||
17
src/AntSK.AppHost/aspirate-state.json
Normal file
17
src/AntSK.AppHost/aspirate-state.json
Normal file
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"projectPath": ".",
|
||||
"outputPath": "aspirate-output",
|
||||
"containerImageTags": [
|
||||
"latest"
|
||||
],
|
||||
"containerBuilder": "docker",
|
||||
"outputFormat": "compose",
|
||||
"privateRegistryEmail": "aspir8@aka.ms",
|
||||
"includeDashboard": true,
|
||||
"secrets": {
|
||||
"salt": "fjamZa3pQbM1UyY4",
|
||||
"hash": "QR\u002BSEr3p2SwD/w2oPE21vrWh/EerhNyVyTkr0atIREw=",
|
||||
"secrets": {}
|
||||
},
|
||||
"processAllComponents": true
|
||||
}
|
||||
26
src/AntSK.AppHost/manifest.json
Normal file
26
src/AntSK.AppHost/manifest.json
Normal file
@@ -0,0 +1,26 @@
|
||||
{
|
||||
"resources": {
|
||||
"antsk": {
|
||||
"type": "project.v0",
|
||||
"path": "../AntSK/AntSK.csproj",
|
||||
"env": {
|
||||
"OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES": "true",
|
||||
"OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES": "true",
|
||||
"OTEL_DOTNET_EXPERIMENTAL_OTLP_RETRY": "in_memory",
|
||||
"ASPNETCORE_FORWARDEDHEADERS_ENABLED": "true"
|
||||
},
|
||||
"bindings": {
|
||||
"http": {
|
||||
"scheme": "http",
|
||||
"protocol": "tcp",
|
||||
"transport": "http"
|
||||
},
|
||||
"https": {
|
||||
"scheme": "https",
|
||||
"protocol": "tcp",
|
||||
"transport": "http"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
53
src/AntSK.Domain/AntSK - Backup.Domain.csproj
Normal file
53
src/AntSK.Domain/AntSK - Backup.Domain.csproj
Normal file
@@ -0,0 +1,53 @@
|
||||
<Project Sdk="Microsoft.NET.Sdk">
|
||||
|
||||
<PropertyGroup>
|
||||
<TargetFramework>net8.0</TargetFramework>
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Nullable>enable</Nullable>
|
||||
<DocumentationFile>AntSK.Domain.xml</DocumentationFile>
|
||||
<NoWarn>CA1050,CA1707,CA2007,VSTHRD111,CS1591,RCS1110,CA5394,SKEXP0001,SKEXP0002,SKEXP0003,SKEXP0004,SKEXP0010,SKEXP0011,,SKEXP0012,SKEXP0020,SKEXP0021,SKEXP0022,SKEXP0023,SKEXP0024,SKEXP0025,SKEXP0026,SKEXP0027,SKEXP0028,SKEXP0029,SKEXP0030,SKEXP0031,SKEXP0032,SKEXP0040,SKEXP0041,SKEXP0042,SKEXP0050,SKEXP0051,SKEXP0052,SKEXP0053,SKEXP0054,SKEXP0055,SKEXP0060,SKEXP0061,SKEXP0101,SKEXP0102</NoWarn>
|
||||
</PropertyGroup>
|
||||
<ItemGroup>
|
||||
<PackageReference Include="AntDesign.Charts" Version="0.5.1" />
|
||||
<PackageReference Include="AntDesign.ProLayout" Version="0.18.2" />
|
||||
<PackageReference Include="BlazorComponents.Terminal" Version="0.6.0" />
|
||||
<PackageReference Include="Blazored.LocalStorage" Version="4.5.0" />
|
||||
|
||||
<PackageReference Include="pythonnet" Version="3.0.3" />
|
||||
|
||||
<PackageReference Include="Swashbuckle.AspNetCore" Version="6.5.0" />
|
||||
|
||||
<PackageReference Include="AutoMapper" Version="8.1.0" />
|
||||
<PackageReference Include="BCrypt.Net-Next" Version="4.0.3" />
|
||||
<PackageReference Include="Markdig" Version="0.37.0" />
|
||||
<PackageReference Include="Newtonsoft.Json" Version="13.0.3" />
|
||||
<PackageReference Include="SqlSugarCore" Version="5.1.4.151" />
|
||||
<PackageReference Include="System.Data.SQLite.Core" Version="1.0.118" />
|
||||
<PackageReference Include="RestSharp" Version="110.2.0" />
|
||||
<PackageReference Include="NPOI" Version="2.7.0" />
|
||||
|
||||
<PackageReference Include="Microsoft.SemanticKernel" Version="1.7.1" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Core" Version="1.7.1" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Plugins.Core" Version="1.7.1-alpha" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.Core" Version="0.36.240415.2" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Postgres" Version="0.36.240415.2" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Qdrant" Version="0.36.240415.2" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Redis" Version="0.36.240415.2" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.AzureAISearch" Version="0.36.240415.2" />
|
||||
|
||||
<PackageReference Include="LLamaSharp" Version="0.11.2" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cpu" Version="0.11.2" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cuda12" Version="0.11.2" />
|
||||
<PackageReference Include="LLamaSharp.kernel-memory" Version="0.11.2" />
|
||||
<PackageReference Include="LLamaSharp.semantic-kernel" Version="0.11.2" />
|
||||
|
||||
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\AntSK.LLamaFactory\AntSK.LLamaFactory.csproj" />
|
||||
<ProjectReference Include="..\AntSk.LLM\AntSK.LLM.csproj" />
|
||||
<ProjectReference Include="..\AntSK.OCR\AntSK.OCR.csproj" />
|
||||
<ProjectReference Include="..\MiddleWare\AntSK.BackgroundTask\AntSK.BackgroundTask.csproj" />
|
||||
</ItemGroup>
|
||||
|
||||
</Project>
|
||||
@@ -5,46 +5,48 @@
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Nullable>enable</Nullable>
|
||||
<DocumentationFile>AntSK.Domain.xml</DocumentationFile>
|
||||
<NoWarn>CA1050,CA1707,CA2007,VSTHRD111,CS1591,RCS1110,CA5394,SKEXP0001,SKEXP0002,SKEXP0003,SKEXP0004,SKEXP0010,SKEXP0011,,SKEXP0012,SKEXP0020,SKEXP0021,SKEXP0022,SKEXP0023,SKEXP0024,SKEXP0025,SKEXP0026,SKEXP0027,SKEXP0028,SKEXP0029,SKEXP0030,SKEXP0031,SKEXP0032,SKEXP0040,SKEXP0041,SKEXP0042,SKEXP0050,SKEXP0051,SKEXP0052,SKEXP0053,SKEXP0054,SKEXP0055,SKEXP0060,SKEXP0061,SKEXP0101,SKEXP0102</NoWarn>
|
||||
<NoWarn>CA1050,CA1707,CA2007,VSTHRD111,CS1591,RCS1110,CA5394,SKEXP0001,SKEXP0002,SKEXP0003,SKEXP0004,SKEXP0010,SKEXP0011,,SKEXP0012,SKEXP0020,SKEXP0021,SKEXP0022,SKEXP0023,SKEXP0024,SKEXP0025,SKEXP0026,SKEXP0027,SKEXP0028,SKEXP0029,SKEXP0030,SKEXP0031,SKEXP0032,SKEXP0040,SKEXP0041,SKEXP0042,SKEXP0050,SKEXP0051,SKEXP0052,SKEXP0053,SKEXP0054,SKEXP0055,SKEXP0060,SKEXP0061,SKEXP0101,SKEXP0102,KMEXP00</NoWarn>
|
||||
</PropertyGroup>
|
||||
<ItemGroup>
|
||||
<PackageReference Include="AntDesign.Charts" Version="0.5.1" />
|
||||
<PackageReference Include="AntDesign.ProLayout" Version="0.18.1" />
|
||||
<PackageReference Include="AntDesign.Charts" Version="0.5.6" />
|
||||
<PackageReference Include="AntDesign.ProLayout" Version="0.20.3" />
|
||||
<PackageReference Include="BlazorComponents.Terminal" Version="0.6.0" />
|
||||
<PackageReference Include="Blazored.LocalStorage" Version="4.5.0" />
|
||||
|
||||
<PackageReference Include="pythonnet" Version="3.0.3" />
|
||||
|
||||
<PackageReference Include="Swashbuckle.AspNetCore" Version="6.5.0" />
|
||||
<PackageReference Include="pythonnet" Version="3.0.4" />
|
||||
|
||||
<PackageReference Include="Swashbuckle.AspNetCore" Version="6.9.0" />
|
||||
|
||||
<PackageReference Include="AutoMapper" Version="8.1.0" />
|
||||
<PackageReference Include="BCrypt.Net-Next" Version="4.0.3" />
|
||||
<PackageReference Include="Markdig" Version="0.36.2" />
|
||||
<PackageReference Include="Newtonsoft.Json" Version="13.0.3" />
|
||||
<PackageReference Include="SqlSugarCore" Version="5.1.4.149" />
|
||||
<PackageReference Include="System.Data.SQLite.Core" Version="1.0.118" />
|
||||
<PackageReference Include="RestSharp" Version="110.2.0" />
|
||||
|
||||
<PackageReference Include="Microsoft.SemanticKernel" Version="1.6.3" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Core" Version="1.6.3" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Plugins.Core" Version="1.6.3-alpha" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.Core" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Postgres" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Qdrant" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Redis" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.AzureAISearch" Version="0.35.240321.1" />
|
||||
<PackageReference Include="Markdig" Version="0.37.0" />
|
||||
<PackageReference Include="Newtonsoft.Json" Version="$(NewtonsoftVersion)" />
|
||||
<PackageReference Include="SqlSugarCore" Version="5.1.4.169" />
|
||||
<PackageReference Include="System.Data.SQLite.Core" Version="1.0.119" />
|
||||
<PackageReference Include="RestSharp" Version="$(RestSharpVersion)" />
|
||||
<PackageReference Include="NPOI" Version="2.7.1" />
|
||||
|
||||
<PackageReference Include="LLamaSharp" Version="0.11.1" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cpu" Version="0.11.1" />
|
||||
<PackageReference Include="LLamaSharp.Backend.Cuda12" Version="0.11.1" />
|
||||
<PackageReference Include="LLamaSharp.kernel-memory" Version="0.11.1" />
|
||||
<PackageReference Include="LLamaSharp.semantic-kernel" Version="0.11.1" />
|
||||
|
||||
|
||||
<PackageReference Include="Microsoft.SemanticKernel" Version="$(SKVersion)" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Core" Version="$(SKVersion)" />
|
||||
<PackageReference Include="Microsoft.SemanticKernel.Plugins.Core" Version="$(SKVersion)-alpha" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.Core" Version="$(KMVersion)" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Postgres" Version="$(KMVersion)" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Qdrant" Version="$(KMVersion)" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.Redis" Version="$(KMVersion)" />
|
||||
<PackageReference Include="Microsoft.KernelMemory.MemoryDb.AzureAISearch" Version="$(KMVersion)" />
|
||||
|
||||
<PackageReference Include="Serilog" Version="4.1.0" />
|
||||
<PackageReference Include="Serilog.Sinks.Console" Version="6.0.0" />
|
||||
<PackageReference Include="Serilog.Sinks.File" Version="6.0.0" />
|
||||
<PackageReference Include="Serilog.Extensions.Logging" Version="8.0.1-dev-10391" />
|
||||
<PackageReference Include="Serilog.Settings.Configuration" Version="8.0.4" />
|
||||
<PackageReference Include="Serilog.Sinks.Seq" Version="8.0.0" />
|
||||
<PackageReference Include="Serilog.Sinks.OpenTelemetry" Version="4.1.1" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\AntSK.LLamaFactory\AntSK.LLamaFactory.csproj" />
|
||||
<ProjectReference Include="..\AntSk.LLM\AntSK.LLM.csproj" />
|
||||
<ProjectReference Include="..\AntSK.LLM\AntSK.LLM.csproj" />
|
||||
<ProjectReference Include="..\AntSK.OCR\AntSK.OCR.csproj" />
|
||||
<ProjectReference Include="..\MiddleWare\AntSK.BackgroundTask\AntSK.BackgroundTask.csproj" />
|
||||
</ItemGroup>
|
||||
|
||||
|
||||
@@ -69,6 +69,84 @@
|
||||
<param name="value"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ExcelToDataTable(System.String,System.Boolean)">
|
||||
<summary>
|
||||
将excel导入到datatable
|
||||
</summary>
|
||||
<param name="filePath">excel路径</param>
|
||||
<param name="isColumnName">第一行是否是列名</param>
|
||||
<returns>返回datatable</returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ExcelToDataTable(System.IO.Stream,System.Boolean)">
|
||||
<summary>
|
||||
将excel导入到datatable
|
||||
</summary>
|
||||
<param name="stream">流</param>
|
||||
<param name="isColumnName">第一行是否是列名</param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ExcelToList``1(System.IO.Stream)">
|
||||
<summary>
|
||||
excel转list
|
||||
</summary>
|
||||
<typeparam name="TResult"></typeparam>
|
||||
<param name="stream"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ExcelToList``1(System.IO.Stream,System.String)">
|
||||
<summary>
|
||||
excel转list-根据sheetName得到List
|
||||
</summary>
|
||||
<typeparam name="TResult"></typeparam>
|
||||
<param name="stream"></param>
|
||||
<param name="sheetName"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ListToExcel``1(``0[],System.String)">
|
||||
<summary>
|
||||
List导出excel 二进制流
|
||||
</summary>
|
||||
<typeparam name="T">实体</typeparam>
|
||||
<param name="data">List</param>
|
||||
<param name="sheetName">sheetname 可不填,默认Sheet0</param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.DataTableToExcel(System.Data.DataTable,System.String,System.String)">
|
||||
<summary>
|
||||
Dt导出excel 二进制流
|
||||
</summary>
|
||||
<param name="dt">datatable</param>
|
||||
<param name="strFile">strFile</param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.ListWriteExcel``1(``0[],System.String,System.String)">
|
||||
<summary>
|
||||
List写入excel
|
||||
</summary>
|
||||
<typeparam name="T"></typeparam>
|
||||
<param name="data"></param>
|
||||
<param name="strFile">路径</param>
|
||||
<param name="sheetName"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.DataTableWriteExcel(System.Data.DataTable,System.String,System.String)">
|
||||
<summary>
|
||||
dt写入excel
|
||||
</summary>
|
||||
<param name="dt">datatable</param>
|
||||
<param name="strFile">路径</param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.ExeclHelper.SetCellDropdownList(NPOI.SS.UserModel.IWorkbook,NPOI.SS.UserModel.ISheet,System.Collections.Generic.List{System.String},System.String,System.Int32,System.Int32,System.Int32)">
|
||||
<summary>
|
||||
设置单元格下拉框(除去标题行)
|
||||
</summary>
|
||||
<param name="workbook"></param>
|
||||
<param name="sheet"></param>
|
||||
<param name="ddlList"></param>
|
||||
<param name="firstcol"></param>
|
||||
<param name="lastcol"></param>
|
||||
</member>
|
||||
<member name="T:AntSK.Domain.Domain.Model.Enum.AIType">
|
||||
<summary>
|
||||
AI类型
|
||||
@@ -79,11 +157,6 @@
|
||||
模型类型
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Domain.Model.MessageInfo.IsSend">
|
||||
<summary>
|
||||
发送是true 接收是false
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Domain.Model.PageList`1.PageIndex">
|
||||
<summary>
|
||||
当前页,从1开始
|
||||
@@ -99,17 +172,29 @@
|
||||
总数
|
||||
</summary>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Other.EmbeddingConfig.LoadModel(System.String,System.String)">
|
||||
<member name="M:AntSK.Domain.Domain.Other.Bge.BegRerankConfig.LoadModel(System.String,System.String)">
|
||||
<summary>
|
||||
模型写死
|
||||
</summary>
|
||||
</member>
|
||||
<member name="F:AntSK.Domain.Domain.Other.LLamaConfig.dicLLamaWeights">
|
||||
<member name="M:AntSK.Domain.Domain.Other.Bge.BgeEmbeddingConfig.LoadModel(System.String,System.String)">
|
||||
<summary>
|
||||
避免模型重复加载,本地缓存
|
||||
模型写死
|
||||
</summary>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Service.ChatService.SendChatByAppAsync(AntSK.Domain.Repositories.Apps,System.String,Microsoft.SemanticKernel.ChatCompletion.ChatHistory)">
|
||||
<member name="P:AntSK.Domain.Domain.Other.KMExcelHandler.StepName">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Other.KMExcelHandler.InvokeAsync(Microsoft.KernelMemory.Pipeline.DataPipeline,System.Threading.CancellationToken)">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Domain.Other.QAHandler.StepName">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Other.QAHandler.InvokeAsync(Microsoft.KernelMemory.Pipeline.DataPipeline,System.Threading.CancellationToken)">
|
||||
<inheritdoc />
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Domain.Service.ChatService.SendChatByAppAsync(AntSK.Domain.Repositories.Apps,Microsoft.SemanticKernel.ChatCompletion.ChatHistory)">
|
||||
<summary>
|
||||
发送消息
|
||||
</summary>
|
||||
@@ -292,6 +377,56 @@
|
||||
API调用秘钥
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Apps.Relevance">
|
||||
<summary>
|
||||
相似度
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Apps.MaxAskPromptSize">
|
||||
<summary>
|
||||
提问最大token数
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Apps.MaxMatchesCount">
|
||||
<summary>
|
||||
向量匹配数
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Apps.AnswerTokens">
|
||||
<summary>
|
||||
回答最大token数
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.UserName">
|
||||
<summary>
|
||||
用户名
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.AppId">
|
||||
<summary>
|
||||
应用ID
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.Context">
|
||||
<summary>
|
||||
消息内容
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.IsSend">
|
||||
<summary>
|
||||
发送是true 接收是false
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.CreateTime">
|
||||
<summary>
|
||||
创建事件
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Chats.FileName">
|
||||
<summary>
|
||||
文件名
|
||||
</summary>
|
||||
</member>
|
||||
<member name="P:AntSK.Domain.Repositories.Funs.Path">
|
||||
<summary>
|
||||
接口描述
|
||||
@@ -784,6 +919,20 @@
|
||||
<param name="value"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Utils.ConvertUtils.Unescape(System.String)">
|
||||
<summary>
|
||||
\uxxxx转中文,保留换行符号
|
||||
</summary>
|
||||
<param name="unicodeString"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Utils.ConvertUtils.IsStream(System.String)">
|
||||
<summary>
|
||||
是否为流式请求
|
||||
</summary>
|
||||
<param name="value"></param>
|
||||
<returns></returns>
|
||||
</member>
|
||||
<member name="M:AntSK.Domain.Utils.RepoFiles.SamplePluginsPath">
|
||||
<summary>
|
||||
Scan the local folders from the repo, looking for "samples/plugins" folder.
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
namespace AntSK.Domain.Common
|
||||
{
|
||||
[AttributeUsage(AttributeTargets.Method)]
|
||||
public class AntSkFunctionAttribute : Attribute
|
||||
public class AntSKFunctionAttribute : Attribute
|
||||
{
|
||||
// 自定义的ActionAttribute
|
||||
}
|
||||
|
||||
@@ -5,6 +5,7 @@ using DocumentFormat.OpenXml.Office2016.Drawing.ChartDrawing;
|
||||
using Microsoft.AspNetCore.Builder;
|
||||
using Microsoft.AspNetCore.Mvc;
|
||||
using Microsoft.Extensions.DependencyInjection;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Microsoft.OpenApi.Models;
|
||||
using SqlSugar;
|
||||
using Swashbuckle.AspNetCore.SwaggerGen;
|
||||
@@ -19,6 +20,12 @@ namespace AntSK.Domain.Common.DependencyInjection
|
||||
{
|
||||
public static class InitExtensions
|
||||
{
|
||||
private static ILogger _logger;
|
||||
|
||||
public static void InitLog(ILogger logger)
|
||||
{
|
||||
_logger = logger;
|
||||
}
|
||||
/// <summary>
|
||||
/// 使用codefirst创建数据库表
|
||||
/// </summary>
|
||||
@@ -50,6 +57,10 @@ namespace AntSK.Domain.Common.DependencyInjection
|
||||
_repository.GetDB().CodeFirst.InitTables(type);
|
||||
}
|
||||
}
|
||||
//安装向量插件
|
||||
_repository.GetDB().Ado.ExecuteCommandAsync($"CREATE EXTENSION IF NOT EXISTS vector;");
|
||||
|
||||
_logger.LogInformation("初始化表结构完成");
|
||||
}
|
||||
return app;
|
||||
}
|
||||
@@ -70,7 +81,7 @@ namespace AntSK.Domain.Common.DependencyInjection
|
||||
llamafactoryStart.Value = "false";
|
||||
_dic_Repository.Insert(llamafactoryStart);
|
||||
}
|
||||
|
||||
_logger.LogInformation("初始化数据库初始数据完成");
|
||||
}
|
||||
return app;
|
||||
}
|
||||
@@ -97,7 +108,7 @@ namespace AntSK.Domain.Common.DependencyInjection
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
Console.WriteLine(ex.Message + " ---- " + ex.StackTrace);
|
||||
_logger.LogError(ex.Message + " ---- " + ex.StackTrace);
|
||||
}
|
||||
return app;
|
||||
}
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
using LLamaSharp.KernelMemory;
|
||||
using Microsoft.KernelMemory.AI;
|
||||
using Microsoft.KernelMemory.AI;
|
||||
using Microsoft.KernelMemory;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
|
||||
@@ -1,13 +1,5 @@
|
||||
using LLama.Common;
|
||||
using LLama;
|
||||
using LLamaSharp.KernelMemory;
|
||||
using Microsoft.KernelMemory.AI;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using AntSK.Domain.Domain.Other;
|
||||
using Microsoft.KernelMemory.AI;
|
||||
using AntSK.Domain.Domain.Other.Bge;
|
||||
|
||||
namespace AntSK.Domain.Common.Embedding
|
||||
{
|
||||
@@ -22,12 +14,12 @@ namespace AntSK.Domain.Common.Embedding
|
||||
|
||||
public HuggingfaceTextEmbeddingGenerator(string pyDllPath,string modelName)
|
||||
{
|
||||
_embedder = EmbeddingConfig.LoadModel(pyDllPath, modelName);
|
||||
_embedder = BgeEmbeddingConfig.LoadModel(pyDllPath, modelName);
|
||||
}
|
||||
|
||||
public void Dispose()
|
||||
{
|
||||
EmbeddingConfig.Dispose();
|
||||
BgeEmbeddingConfig.Dispose();
|
||||
}
|
||||
|
||||
//public async Task<IList<ReadOnlyMemory<float>>> GenerateEmbeddingAsync(IList<string> data, CancellationToken cancellationToken = default)
|
||||
@@ -44,13 +36,18 @@ namespace AntSK.Domain.Common.Embedding
|
||||
|
||||
public async Task<Microsoft.KernelMemory.Embedding> GenerateEmbeddingAsync(string text, CancellationToken cancellationToken = default)
|
||||
{
|
||||
var embeddings = await EmbeddingConfig.GetEmbedding(text);
|
||||
var embeddings = await BgeEmbeddingConfig.GetEmbedding(text);
|
||||
return new Microsoft.KernelMemory.Embedding(embeddings);
|
||||
}
|
||||
|
||||
public int CountTokens(string text)
|
||||
{
|
||||
return EmbeddingConfig.TokenCount(text);
|
||||
return BgeEmbeddingConfig.TokenCount(text);
|
||||
}
|
||||
|
||||
public IReadOnlyList<string> GetTokens(string text)
|
||||
{
|
||||
return new List<string>();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
822
src/AntSK.Domain/Common/Excel/ExeclHelper.cs
Normal file
822
src/AntSK.Domain/Common/Excel/ExeclHelper.cs
Normal file
@@ -0,0 +1,822 @@
|
||||
using NPOI.HSSF.UserModel;
|
||||
using NPOI.SS.UserModel;
|
||||
using NPOI.SS.Util;
|
||||
using NPOI.XSSF.Streaming;
|
||||
using NPOI.XSSF.UserModel;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Data;
|
||||
using System.IO;
|
||||
using System.Linq;
|
||||
using System.Reflection;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain
|
||||
{
|
||||
public class ExeclHelper
|
||||
{
|
||||
/// <summary>
|
||||
/// 将excel导入到datatable
|
||||
/// </summary>
|
||||
/// <param name="filePath">excel路径</param>
|
||||
/// <param name="isColumnName">第一行是否是列名</param>
|
||||
/// <returns>返回datatable</returns>
|
||||
public static DataTable ExcelToDataTable(string filePath, bool isColumnName)
|
||||
{
|
||||
DataTable dataTable = null;
|
||||
FileStream fs = null;
|
||||
DataColumn column = null;
|
||||
DataRow dataRow = null;
|
||||
IWorkbook workbook = null;
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 0;
|
||||
try
|
||||
{
|
||||
using (fs = File.OpenRead(filePath))
|
||||
{
|
||||
// 2007版本
|
||||
if (filePath.Contains(".xlsx"))
|
||||
workbook = new XSSFWorkbook(fs);
|
||||
// 2003版本
|
||||
else if (filePath.Contains(".xls"))
|
||||
workbook = new HSSFWorkbook(fs);
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheetAt(0);//读取第一个sheet,当然也可以循环读取每个sheet
|
||||
dataTable = new DataTable();
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//构建datatable的列
|
||||
if (isColumnName)
|
||||
{
|
||||
startRow = 1;//如果第一行是列名,则从第二行开始读取
|
||||
for (int i = firstRow.FirstCellNum; i < cellCount; ++i)
|
||||
{
|
||||
cell = firstRow.GetCell(i);
|
||||
if (cell != null)
|
||||
{
|
||||
if (cell.StringCellValue != null)
|
||||
{
|
||||
column = new DataColumn(cell.StringCellValue);
|
||||
dataTable.Columns.Add(column);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = firstRow.FirstCellNum; i < cellCount; ++i)
|
||||
{
|
||||
column = new DataColumn("column" + (i + 1));
|
||||
dataTable.Columns.Add(column);
|
||||
}
|
||||
}
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
|
||||
dataRow = dataTable.NewRow();
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
dataRow[j] = "";
|
||||
}
|
||||
else
|
||||
{
|
||||
//CellType(Unknown = -1,Numeric = 0,String = 1,Formula = 2,Blank = 3,Boolean = 4,Error = 5,)
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
dataRow[j] = "";
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
dataRow[j] = cell.DateCellValue;
|
||||
else
|
||||
dataRow[j] = cell.NumericCellValue;
|
||||
break;
|
||||
case CellType.String:
|
||||
dataRow[j] = cell.StringCellValue;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
dataTable.Rows.Add(dataRow);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return dataTable;
|
||||
}
|
||||
catch (Exception)
|
||||
{
|
||||
if (fs != null)
|
||||
{
|
||||
fs.Close();
|
||||
}
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 将excel导入到datatable
|
||||
/// </summary>
|
||||
/// <param name="stream">流</param>
|
||||
/// <param name="isColumnName">第一行是否是列名</param>
|
||||
/// <returns></returns>
|
||||
public static DataTable ExcelToDataTable(Stream stream, bool isColumnName)
|
||||
{
|
||||
DataTable dataTable = null;
|
||||
DataColumn column = null;
|
||||
DataRow dataRow = null;
|
||||
IWorkbook workbook = new XSSFWorkbook(stream);
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 0;
|
||||
try
|
||||
{
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheetAt(0);//读取第一个sheet,当然也可以循环读取每个sheet
|
||||
dataTable = new DataTable();
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//构建datatable的列
|
||||
if (isColumnName)
|
||||
{
|
||||
startRow = 1;//如果第一行是列名,则从第二行开始读取
|
||||
for (int i = firstRow.FirstCellNum; i < cellCount; ++i)
|
||||
{
|
||||
cell = firstRow.GetCell(i);
|
||||
if (cell != null)
|
||||
{
|
||||
if (cell.StringCellValue != null)
|
||||
{
|
||||
column = new DataColumn(cell.StringCellValue);
|
||||
dataTable.Columns.Add(column);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = firstRow.FirstCellNum; i < cellCount; ++i)
|
||||
{
|
||||
column = new DataColumn("column" + (i + 1));
|
||||
dataTable.Columns.Add(column);
|
||||
}
|
||||
}
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
|
||||
dataRow = dataTable.NewRow();
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
dataRow[j] = "";
|
||||
}
|
||||
else
|
||||
{
|
||||
//CellType(Unknown = -1,Numeric = 0,String = 1,Formula = 2,Blank = 3,Boolean = 4,Error = 5,)
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
dataRow[j] = "";
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
dataRow[j] = cell.DateCellValue;
|
||||
else
|
||||
dataRow[j] = cell.NumericCellValue;
|
||||
break;
|
||||
case CellType.String:
|
||||
dataRow[j] = cell.StringCellValue;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
dataTable.Rows.Add(dataRow);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return dataTable;
|
||||
}
|
||||
catch (Exception)
|
||||
{
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// excel转list
|
||||
/// </summary>
|
||||
/// <typeparam name="TResult"></typeparam>
|
||||
/// <param name="stream"></param>
|
||||
/// <returns></returns>
|
||||
public static IEnumerable<TResult> ExcelToList<TResult>(Stream stream) where TResult : new()
|
||||
{
|
||||
var propertyInfos = typeof(TResult).GetProperties(BindingFlags.Public | BindingFlags.Instance).Where(p => p.CustomAttributes.Count() > 0)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
|
||||
List<TResult> list = new List<TResult>();
|
||||
|
||||
IWorkbook workbook = new XSSFWorkbook(stream);
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 1;
|
||||
try
|
||||
{
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheetAt(0);//读取第一个sheet,当然也可以循环读取每个sheet
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
bool emptyRow = true;//是否空行
|
||||
TResult dataModel = new TResult();
|
||||
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
var execlPropertyAttribute = propertyInfos[j].GetCustomAttribute<ExeclPropertyAttribute>();
|
||||
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
propertyInfos[j].SetValue(dataModel, cell.DateCellValue);
|
||||
else
|
||||
{
|
||||
if (execlPropertyAttribute.CellType == CellType.String)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue.ToString());
|
||||
}
|
||||
else
|
||||
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CellType.String:
|
||||
propertyInfos[j].SetValue(dataModel, cell.StringCellValue);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (cell != null && !string.IsNullOrEmpty(cell.ToString().Trim()))
|
||||
{
|
||||
emptyRow = false;
|
||||
}
|
||||
}
|
||||
//非空数据行数据添加到DataTable
|
||||
if (!emptyRow)
|
||||
{
|
||||
list.Add(dataModel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return list;
|
||||
}
|
||||
catch (Exception)
|
||||
{
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public static IEnumerable<TResult> ExcelToListFileName<TResult>(Stream stream, string fileName) where TResult : new()
|
||||
{
|
||||
var propertyInfos = typeof(TResult).GetProperties(BindingFlags.Public | BindingFlags.Instance).Where(p => p.CustomAttributes.Count() > 0)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
|
||||
List<TResult> list = new List<TResult>();
|
||||
|
||||
IWorkbook workbook = null;
|
||||
if (fileName.Contains(".xlsx"))
|
||||
workbook = new XSSFWorkbook(stream);
|
||||
// 2003版本
|
||||
else if (fileName.Contains(".xls"))
|
||||
workbook = new HSSFWorkbook(stream);
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 1;
|
||||
try
|
||||
{
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheetAt(0);//读取第一个sheet,当然也可以循环读取每个sheet
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
bool emptyRow = true;//是否空行
|
||||
TResult dataModel = new TResult();
|
||||
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
var execlPropertyAttribute = propertyInfos[j].GetCustomAttribute<ExeclPropertyAttribute>();
|
||||
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
propertyInfos[j].SetValue(dataModel, cell.DateCellValue);
|
||||
else
|
||||
{
|
||||
if (execlPropertyAttribute.CellType == CellType.String)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue.ToString());
|
||||
}
|
||||
else
|
||||
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CellType.String:
|
||||
propertyInfos[j].SetValue(dataModel, cell.StringCellValue);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (cell != null && !string.IsNullOrEmpty(cell.ToString().Trim()))
|
||||
{
|
||||
emptyRow = false;
|
||||
}
|
||||
}
|
||||
//非空数据行数据添加到DataTable
|
||||
if (!emptyRow)
|
||||
{
|
||||
list.Add(dataModel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return list;
|
||||
}
|
||||
catch (Exception)
|
||||
{
|
||||
throw;
|
||||
}
|
||||
}
|
||||
/// <summary>
|
||||
/// excel转list-根据sheetName得到List
|
||||
/// </summary>
|
||||
/// <typeparam name="TResult"></typeparam>
|
||||
/// <param name="stream"></param>
|
||||
/// <param name="sheetName"></param>
|
||||
/// <returns></returns>
|
||||
public static IEnumerable<TResult> ExcelToList<TResult>(Stream stream, string sheetName) where TResult : new()
|
||||
{
|
||||
var propertyInfos = typeof(TResult).GetProperties(BindingFlags.Public | BindingFlags.Instance)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
|
||||
List<TResult> list = new List<TResult>();
|
||||
|
||||
IWorkbook workbook = new XSSFWorkbook(stream);
|
||||
ISheet sheet = null;
|
||||
IRow row = null;
|
||||
ICell cell = null;
|
||||
int startRow = 1;
|
||||
try
|
||||
{
|
||||
|
||||
if (workbook != null)
|
||||
{
|
||||
sheet = workbook.GetSheet(sheetName);//根据sheet读取对应的DataTable
|
||||
if (sheet != null)
|
||||
{
|
||||
int rowCount = sheet.LastRowNum;//总行数
|
||||
if (rowCount > 0)
|
||||
{
|
||||
IRow firstRow = sheet.GetRow(0);//第一行
|
||||
int cellCount = firstRow.LastCellNum;//列数
|
||||
|
||||
//填充行
|
||||
for (int i = startRow; i <= rowCount; ++i)
|
||||
{
|
||||
row = sheet.GetRow(i);
|
||||
if (row == null) continue;
|
||||
bool emptyRow = true;//是否空行
|
||||
|
||||
TResult dataModel = new TResult();
|
||||
|
||||
for (int j = row.FirstCellNum; j < cellCount; ++j)
|
||||
{
|
||||
var execlPropertyAttribute = propertyInfos[j].GetCustomAttribute<ExeclPropertyAttribute>();
|
||||
|
||||
cell = row.GetCell(j);
|
||||
if (cell == null)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (cell.CellType)
|
||||
{
|
||||
case CellType.Blank:
|
||||
propertyInfos[j].SetValue(dataModel, "");
|
||||
break;
|
||||
case CellType.Numeric:
|
||||
short format = cell.CellStyle.DataFormat;
|
||||
//对时间格式(2015.12.5、2015/12/5、2015-12-5等)的处理
|
||||
if (format == 14 || format == 31 || format == 57 || format == 58)
|
||||
propertyInfos[j].SetValue(dataModel, cell.DateCellValue);
|
||||
else
|
||||
{
|
||||
if (execlPropertyAttribute.CellType == CellType.String)
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue.ToString());
|
||||
}
|
||||
else
|
||||
|
||||
{
|
||||
propertyInfos[j].SetValue(dataModel, cell.NumericCellValue);
|
||||
}
|
||||
|
||||
}
|
||||
break;
|
||||
case CellType.String:
|
||||
propertyInfos[j].SetValue(dataModel, cell.StringCellValue);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (cell != null && !string.IsNullOrEmpty(cell.ToString().Trim()))
|
||||
{
|
||||
emptyRow = false;
|
||||
}
|
||||
}
|
||||
//非空数据行数据添加到DataTable
|
||||
if (!emptyRow)
|
||||
{
|
||||
list.Add(dataModel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return list;
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// List导出excel 二进制流
|
||||
/// </summary>
|
||||
/// <typeparam name="T">实体</typeparam>
|
||||
/// <param name="data">List</param>
|
||||
/// <param name="sheetName">sheetname 可不填,默认Sheet0</param>
|
||||
/// <returns></returns>
|
||||
public static byte[] ListToExcel<T>(T[] data, string sheetName = "Sheet0")
|
||||
{
|
||||
IWorkbook workbook = null;
|
||||
IRow row = null;
|
||||
ISheet sheet = null;
|
||||
ICell cell = null;
|
||||
var propertyInfos = typeof(T).GetProperties(BindingFlags.Public | BindingFlags.Instance)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
workbook = new XSSFWorkbook();
|
||||
sheet = workbook.CreateSheet(sheetName);//创建一个名称为Sheet0的表
|
||||
int rowCount = data.Count();//行数
|
||||
int columnCount = propertyInfos.Length;//列数
|
||||
//设置列头
|
||||
row = sheet.CreateRow(0);//excel第一行设为列头
|
||||
for (int c = 0; c < columnCount; c++)
|
||||
{
|
||||
cell = row.CreateCell(c);
|
||||
cell.SetCellValue(propertyInfos[c].GetCustomAttribute<ExeclPropertyAttribute>().DisplayName);
|
||||
}
|
||||
//设置每行每列的单元格,
|
||||
for (int i = 0; i < rowCount; i++)
|
||||
{
|
||||
row = sheet.CreateRow(i + 1);
|
||||
for (int j = 0; j < columnCount; j++)
|
||||
{
|
||||
cell = row.CreateCell(j);//excel第二行开始写入数据
|
||||
cell.SetCellValue(propertyInfos[j].GetValue(data[i])?.ToString());
|
||||
}
|
||||
}
|
||||
using (MemoryStream memoryStream = new MemoryStream())
|
||||
{
|
||||
workbook.Write(memoryStream);//向打开的这个xls文件中写入数据
|
||||
return memoryStream.ToArray();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Dt导出excel 二进制流
|
||||
/// </summary>
|
||||
/// <param name="dt">datatable</param>
|
||||
/// <param name="strFile">strFile</param>
|
||||
/// <returns></returns>
|
||||
public static byte[] DataTableToExcel(DataTable dt, string strFile, string sheetName = "Sheet0")
|
||||
{
|
||||
bool result = false;
|
||||
IWorkbook workbook = null;
|
||||
FileStream fs = null;
|
||||
IRow row = null;
|
||||
ISheet sheet = null;
|
||||
ICell cell = null;
|
||||
|
||||
if (dt != null && dt.Rows.Count > 0)
|
||||
{
|
||||
workbook = new XSSFWorkbook();
|
||||
sheet = workbook.CreateSheet(sheetName);//创建一个名称为Sheet0的表
|
||||
int rowCount = dt.Rows.Count;//行数
|
||||
int columnCount = dt.Columns.Count;//列数
|
||||
|
||||
//设置列头
|
||||
row = sheet.CreateRow(0);//excel第一行设为列头
|
||||
for (int c = 0; c < columnCount; c++)
|
||||
{
|
||||
cell = row.CreateCell(c);
|
||||
cell.SetCellValue(dt.Columns[c].ColumnName);
|
||||
}
|
||||
|
||||
//设置每行每列的单元格,
|
||||
for (int i = 0; i < rowCount; i++)
|
||||
{
|
||||
row = sheet.CreateRow(i + 1);
|
||||
for (int j = 0; j < columnCount; j++)
|
||||
{
|
||||
cell = row.CreateCell(j);//excel第二行开始写入数据
|
||||
cell.SetCellValue(dt.Rows[i][j].ToString());
|
||||
}
|
||||
}
|
||||
using (MemoryStream memoryStream = new MemoryStream())
|
||||
{
|
||||
workbook.Write(memoryStream);//向打开的这个xls文件中写入数据
|
||||
return memoryStream.ToArray();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return new byte[0];
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// List写入excel
|
||||
/// </summary>
|
||||
/// <typeparam name="T"></typeparam>
|
||||
/// <param name="data"></param>
|
||||
/// <param name="strFile">路径</param>
|
||||
/// <param name="sheetName"></param>
|
||||
/// <returns></returns>
|
||||
public static bool ListWriteExcel<T>(T[] data, string strFile, string sheetName = "Sheet0")
|
||||
{
|
||||
bool result = false;
|
||||
IWorkbook workbook = null;
|
||||
FileStream fs = null;
|
||||
IRow row = null;
|
||||
ISheet sheet = null;
|
||||
ICell cell = null;
|
||||
try
|
||||
{
|
||||
var propertyInfos = typeof(T).GetProperties(BindingFlags.Public | BindingFlags.Instance)
|
||||
.OrderBy(p => p.GetCustomAttribute<ExeclPropertyAttribute>().Order).ToArray();
|
||||
workbook = new XSSFWorkbook();
|
||||
sheet = workbook.CreateSheet(sheetName);//创建一个名称为Sheet0的表
|
||||
int rowCount = data.Count();//行数
|
||||
int columnCount = propertyInfos.Length;//列数
|
||||
//设置列头
|
||||
row = sheet.CreateRow(0);//excel第一行设为列头
|
||||
for (int c = 0; c < columnCount; c++)
|
||||
{
|
||||
cell = row.CreateCell(c);
|
||||
cell.SetCellValue(propertyInfos[c].GetCustomAttribute<ExeclPropertyAttribute>().DisplayName);
|
||||
}
|
||||
//设置每行每列的单元格,
|
||||
for (int i = 0; i < rowCount; i++)
|
||||
{
|
||||
row = sheet.CreateRow(i + 1);
|
||||
for (int j = 0; j < columnCount; j++)
|
||||
{
|
||||
cell = row.CreateCell(j);//excel第二行开始写入数据
|
||||
cell.SetCellValue(propertyInfos[j].GetValue(data[i])?.ToString());
|
||||
}
|
||||
}
|
||||
using (fs = File.OpenWrite(strFile))
|
||||
{
|
||||
workbook.Write(fs);//向打开的这个xls文件中写入数据
|
||||
result = true;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
if (fs != null)
|
||||
{
|
||||
fs.Close();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// dt写入excel
|
||||
/// </summary>
|
||||
/// <param name="dt">datatable</param>
|
||||
/// <param name="strFile">路径</param>
|
||||
/// <returns></returns>
|
||||
public static bool DataTableWriteExcel(DataTable dt, string strFile, string sheetName = "Sheet0")
|
||||
{
|
||||
bool result = false;
|
||||
IWorkbook workbook = null;
|
||||
FileStream fs = null;
|
||||
IRow row = null;
|
||||
ISheet sheet = null;
|
||||
ICell cell = null;
|
||||
try
|
||||
{
|
||||
if (dt != null && dt.Rows.Count > 0)
|
||||
{
|
||||
workbook = new XSSFWorkbook();
|
||||
sheet = workbook.CreateSheet(sheetName);//创建一个名称为Sheet0的表
|
||||
int rowCount = dt.Rows.Count;//行数
|
||||
int columnCount = dt.Columns.Count;//列数
|
||||
|
||||
//设置列头
|
||||
row = sheet.CreateRow(0);//excel第一行设为列头
|
||||
for (int c = 0; c < columnCount; c++)
|
||||
{
|
||||
cell = row.CreateCell(c);
|
||||
cell.SetCellValue(dt.Columns[c].ColumnName);
|
||||
}
|
||||
|
||||
//设置每行每列的单元格,
|
||||
for (int i = 0; i < rowCount; i++)
|
||||
{
|
||||
row = sheet.CreateRow(i + 1);
|
||||
for (int j = 0; j < columnCount; j++)
|
||||
{
|
||||
cell = row.CreateCell(j);//excel第二行开始写入数据
|
||||
cell.SetCellValue(dt.Rows[i][j].ToString());
|
||||
}
|
||||
}
|
||||
using (fs = File.OpenWrite(strFile))
|
||||
{
|
||||
workbook.Write(fs);//向打开的这个xls文件中写入数据
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
if (fs != null)
|
||||
{
|
||||
fs.Close();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 设置单元格下拉框(除去标题行)
|
||||
/// </summary>
|
||||
/// <param name="workbook"></param>
|
||||
/// <param name="sheet"></param>
|
||||
/// <param name="ddlList"></param>
|
||||
/// <param name="firstcol"></param>
|
||||
/// <param name="lastcol"></param>
|
||||
public static void SetCellDropdownList(IWorkbook workbook, ISheet sheet, List<string> ddlList, string sheetname, int sheetIndex, int firstcol, int lastcol)
|
||||
{
|
||||
|
||||
# region 低版本Excel【HSSFWorkbook】设置下拉框
|
||||
//ISheet sheet2 = workbook.CreateSheet(sheetname);
|
||||
|
||||
////隐藏
|
||||
//workbook.SetSheetHidden(sheetIndex, 1);
|
||||
//int rowIndex = 0;
|
||||
//foreach (var item in ddlList)
|
||||
//{
|
||||
// IRow vrow = sheet2.CreateRow(rowIndex);
|
||||
// vrow.CreateCell(0).SetCellValue(item);
|
||||
|
||||
// rowIndex++;
|
||||
//}
|
||||
|
||||
////创建的下拉项的区域:
|
||||
//var rangeName = sheetname + "Range";
|
||||
//IName range = workbook.CreateName();
|
||||
//range.RefersToFormula = sheetname + "!$A$1:$A$" + rowIndex;
|
||||
//range.NameName = rangeName;
|
||||
//CellRangeAddressList regions = new CellRangeAddressList(1, 65535, firstcol, lastcol);
|
||||
|
||||
//DVConstraint constraint = DVConstraint.CreateFormulaListConstraint(rangeName);
|
||||
//HSSFDataValidation dataValidate = new HSSFDataValidation(regions, constraint);
|
||||
//dataValidate.CreateErrorBox("输入不合法", "请输入或选择下拉列表中的值。");
|
||||
//dataValidate.ShowPromptBox = true;
|
||||
//sheet.AddValidationData(dataValidate);
|
||||
#endregion
|
||||
|
||||
//高版本excel【XSSFWorkbook】 设置下拉框
|
||||
XSSFSheet sheetDDL = (XSSFSheet)workbook.CreateSheet(sheetname);
|
||||
workbook.SetSheetHidden(sheetIndex, 1); //隐藏下拉框数据sheet
|
||||
String[] datas = ddlList.ToArray(); //下拉框数据源
|
||||
XSSFDataValidationHelper dvHelper = new XSSFDataValidationHelper(sheetDDL);
|
||||
XSSFDataValidationConstraint dvConstraint = (XSSFDataValidationConstraint)dvHelper.CreateExplicitListConstraint(datas);
|
||||
CellRangeAddressList addressList = new CellRangeAddressList(1, 65535, firstcol, lastcol); //下拉设置列
|
||||
XSSFDataValidation validation = (XSSFDataValidation)dvHelper.CreateValidation(dvConstraint, addressList);
|
||||
|
||||
validation.SuppressDropDownArrow = true;
|
||||
validation.ShowErrorBox = true;
|
||||
validation.ShowPromptBox = true;
|
||||
sheet.AddValidationData(validation);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
28
src/AntSK.Domain/Common/Excel/ExeclPropertyAttribute.cs
Normal file
28
src/AntSK.Domain/Common/Excel/ExeclPropertyAttribute.cs
Normal file
@@ -0,0 +1,28 @@
|
||||
using NPOI.SS.UserModel;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain
|
||||
{
|
||||
public class ExeclPropertyAttribute : Attribute
|
||||
{
|
||||
public ExeclPropertyAttribute()
|
||||
{
|
||||
|
||||
}
|
||||
public ExeclPropertyAttribute(string displayName, int order, CellType cellType = CellType.String)
|
||||
{
|
||||
DisplayName = displayName;
|
||||
Order = order;
|
||||
CellType = cellType;
|
||||
}
|
||||
|
||||
public string DisplayName { get; set; }
|
||||
|
||||
public int Order { get; set; }
|
||||
|
||||
public CellType CellType { get; set; }
|
||||
}
|
||||
}
|
||||
@@ -1,4 +1,6 @@
|
||||
using System;
|
||||
|
||||
using Microsoft.Extensions.Logging;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Linq;
|
||||
@@ -7,7 +9,7 @@ using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Common.LLamaFactory
|
||||
{
|
||||
public class ProcessWrapper
|
||||
public class ProcessWrapper(ILogger<ProcessWrapper> _logger)
|
||||
{
|
||||
private Process process;
|
||||
|
||||
@@ -41,7 +43,7 @@ namespace AntSK.Domain.Common.LLamaFactory
|
||||
isProcessComplete = true;
|
||||
}
|
||||
}
|
||||
Console.WriteLine(result);
|
||||
_logger.LogInformation(result);
|
||||
}
|
||||
start.WaitForExit();
|
||||
}
|
||||
|
||||
@@ -14,10 +14,10 @@ namespace AntSK.Domain.Domain.Interface
|
||||
{
|
||||
public interface IChatService
|
||||
{
|
||||
IAsyncEnumerable<StreamingKernelContent> SendChatByAppAsync(Apps app, string questions, ChatHistory history);
|
||||
IAsyncEnumerable<string> SendChatByAppAsync(Apps app, ChatHistory history);
|
||||
|
||||
IAsyncEnumerable<StreamingKernelContent> SendKmsByAppAsync(Apps app, string questions, ChatHistory history, string filePath, List<RelevantSource> relevantSources = null);
|
||||
Task<string> SendImgByAppAsync(Apps app, string questions);
|
||||
Task<ChatHistory> GetChatHistory(List<MessageInfo> MessageList);
|
||||
Task<ChatHistory> GetChatHistory(List<Chats> MessageList, ChatHistory history);
|
||||
}
|
||||
}
|
||||
@@ -7,13 +7,13 @@ namespace AntSK.Domain.Domain.Interface
|
||||
{
|
||||
public interface IKMService
|
||||
{
|
||||
MemoryServerless GetMemory(Apps app);
|
||||
MemoryServerless GetMemoryByApp(Apps app);
|
||||
|
||||
MemoryServerless GetMemoryByKMS(string kmsID, SearchClientConfig searchClientConfig = null);
|
||||
MemoryServerless GetMemoryByKMS(string kmsID);
|
||||
|
||||
Task<List<KMFile>> GetDocumentByFileID(string kmsId, string fileId);
|
||||
|
||||
Task<List<RelevantSource>> GetRelevantSourceList(string kmsIdListStr, string msg);
|
||||
Task<List<RelevantSource>> GetRelevantSourceList(Apps app, string msg);
|
||||
|
||||
List<UploadFileItem> FileList { get; }
|
||||
|
||||
|
||||
@@ -6,6 +6,8 @@ namespace AntSK.Domain.Domain.Interface
|
||||
public interface IKernelService
|
||||
{
|
||||
Kernel GetKernelByApp(Apps app);
|
||||
|
||||
Kernel GetKernelByAIModelID(string modelid);
|
||||
void ImportFunctionsByApp(Apps app, Kernel _kernel);
|
||||
Task<string> HistorySummarize(Kernel _kernel, string questions, string history);
|
||||
}
|
||||
|
||||
@@ -12,7 +12,9 @@ namespace AntSK.Domain.Domain.Interface
|
||||
{
|
||||
public event LogMessageHandler LogMessageReceived;
|
||||
Task PipInstall();
|
||||
Task StartLLamaFactory(string modelName, string templateName);
|
||||
|
||||
Task PipInstallName(string name);
|
||||
Task StartLLamaFactory(string modelName);
|
||||
|
||||
void KillProcess();
|
||||
|
||||
|
||||
15
src/AntSK.Domain/Domain/Interface/IOllamaService.cs
Normal file
15
src/AntSK.Domain/Domain/Interface/IOllamaService.cs
Normal file
@@ -0,0 +1,15 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using static AntSK.Domain.Domain.Service.OllamaService;
|
||||
|
||||
namespace AntSK.Domain.Domain.Interface
|
||||
{
|
||||
public interface IOllamaService
|
||||
{
|
||||
public event LogMessageHandler LogMessageReceived;
|
||||
Task StartOllama(string modelName);
|
||||
}
|
||||
}
|
||||
@@ -9,7 +9,29 @@ namespace AntSK.Domain.Domain.Model.Constant
|
||||
public class KmsConstantcs
|
||||
{
|
||||
public const string KmsIdTag = "kmsid";
|
||||
public const string FileIdTag = "fileid";
|
||||
public const string AppIdTag = "appid";
|
||||
public const string KmsIndex = "kms";
|
||||
public const string FileIndex = "kms";
|
||||
public const string KmsSearchNull="知识库未搜索到相关内容";
|
||||
|
||||
public const string KmsPrompt = @"使用<data></data>标记的内容作为你的知识:
|
||||
<data>
|
||||
{{$doc}}
|
||||
</data>
|
||||
--------------------------
|
||||
回答要求:
|
||||
- 如果你不清楚答案,你需要澄清
|
||||
- 避免提及你是从<data></data>获取的知识
|
||||
- 保持答案与<data></data>众描述一致
|
||||
- 使用Markdown语法优化回答格式。
|
||||
- 如果Markdown有图片则正常显示
|
||||
--------------------------
|
||||
|
||||
历史聊天记录:{{ConversationSummaryPlugin.SummarizeConversation $history}}
|
||||
--------------------------
|
||||
用户问题: {{$input}}";
|
||||
|
||||
public const string KMExcelSplit = "*&antsk_excel&*";
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,6 +8,8 @@ namespace AntSK.Domain.Domain.Model.Dto
|
||||
public string Text { get; set; }
|
||||
public float Relevance { get; set; }
|
||||
|
||||
public double RerankScore { get; set; }
|
||||
|
||||
public override string ToString()
|
||||
{
|
||||
return $"[file:{SourceName};Relevance:{(Relevance * 100):F2}%]:{Text}";
|
||||
|
||||
@@ -13,9 +13,6 @@ namespace AntSK.Domain.Domain.Model.Enum
|
||||
[Display(Name = "Azure Open AI")]
|
||||
AzureOpenAI = 2,
|
||||
|
||||
[Display(Name = "LLama本地模型")]
|
||||
LLamaSharp = 3,
|
||||
|
||||
[Display(Name = "星火大模型")]
|
||||
SparkDesk = 4,
|
||||
|
||||
@@ -26,8 +23,13 @@ namespace AntSK.Domain.Domain.Model.Enum
|
||||
LLamaFactory = 6,
|
||||
[Display(Name = "Bge Embedding")]
|
||||
BgeEmbedding = 7,
|
||||
[Display(Name = "StableDiffusion")]
|
||||
StableDiffusion = 8,
|
||||
[Display(Name = "Bge Rerank")]
|
||||
BgeRerank = 8,
|
||||
|
||||
[Display(Name = "Ollama")]
|
||||
Ollama = 10,
|
||||
[Display(Name = "OllamaEmbedding")]
|
||||
OllamaEmbedding = 11,
|
||||
[Display(Name = "模拟输出")]
|
||||
Mock = 100,
|
||||
|
||||
@@ -40,6 +42,6 @@ namespace AntSK.Domain.Domain.Model.Enum
|
||||
{
|
||||
Chat = 1,
|
||||
Embedding = 2,
|
||||
Image=3,
|
||||
Rerank=4
|
||||
}
|
||||
}
|
||||
|
||||
17
src/AntSK.Domain/Domain/Model/Excel/KMSExcelModel.cs
Normal file
17
src/AntSK.Domain/Domain/Model/Excel/KMSExcelModel.cs
Normal file
@@ -0,0 +1,17 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Domain.Model.Excel
|
||||
{
|
||||
public class KMSExcelModel
|
||||
{
|
||||
[ExeclProperty("问题",0)]
|
||||
public string Question { get; set; }
|
||||
|
||||
[ExeclProperty("答案", 1)]
|
||||
public string Answer { get; set; }
|
||||
}
|
||||
}
|
||||
@@ -17,11 +17,14 @@ namespace AntSK.Domain.Domain.Model
|
||||
public string FilePath { get; set; } = "";
|
||||
|
||||
public string FileName { get; set; } = "";
|
||||
|
||||
public bool IsQA { get; set; } = false;
|
||||
}
|
||||
|
||||
|
||||
public class ImportKMSTaskReq : ImportKMSTaskDTO
|
||||
{
|
||||
public bool IsQA { get; set; }=false;
|
||||
public KmsDetails KmsDetail { get; set; } = new KmsDetails();
|
||||
}
|
||||
|
||||
@@ -29,6 +32,13 @@ namespace AntSK.Domain.Domain.Model
|
||||
{
|
||||
File = 1,
|
||||
Url = 2,
|
||||
Text = 3
|
||||
Text = 3,
|
||||
Excel=4
|
||||
}
|
||||
|
||||
public class QAModel
|
||||
{
|
||||
public string ChatModelId { get; set; }
|
||||
public string Context { get; set; }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,20 +0,0 @@
|
||||
namespace AntSK.Domain.Domain.Model
|
||||
{
|
||||
public class MessageInfo
|
||||
{
|
||||
public string ID { get; set; } = "";
|
||||
public string Context { get; set; } = "";
|
||||
public string HtmlAnswers { get; set; } = "";
|
||||
|
||||
/// <summary>
|
||||
/// 发送是true 接收是false
|
||||
/// </summary>
|
||||
public bool IsSend { get; set; } = false;
|
||||
|
||||
public DateTime CreateTime { get; set; }
|
||||
|
||||
public string? FilePath { get; set; }
|
||||
|
||||
public string? FileName { get; set; }
|
||||
}
|
||||
}
|
||||
@@ -2,26 +2,29 @@
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Model;
|
||||
using Microsoft.Extensions.DependencyInjection;
|
||||
using Microsoft.Extensions.Logging;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other
|
||||
{
|
||||
public class BackGroundTaskHandler : IBackgroundTaskHandler<ImportKMSTaskReq>
|
||||
{
|
||||
private readonly IServiceScopeFactory _scopeFactory;
|
||||
private readonly ILogger<BackGroundTaskHandler> _logger;
|
||||
|
||||
public BackGroundTaskHandler(IServiceScopeFactory scopeFactory)
|
||||
public BackGroundTaskHandler(IServiceScopeFactory scopeFactory, ILogger<BackGroundTaskHandler> logger)
|
||||
{
|
||||
_scopeFactory = scopeFactory;
|
||||
_logger = logger;
|
||||
}
|
||||
public async Task ExecuteAsync(ImportKMSTaskReq item)
|
||||
{
|
||||
using (var scope = _scopeFactory.CreateScope())
|
||||
{
|
||||
Console.WriteLine("ExecuteAsync.开始执行后台任务");
|
||||
_logger.LogInformation("ExecuteAsync.开始执行后台任务");
|
||||
var importKMSService = scope.ServiceProvider.GetRequiredService<IImportKMSService>();
|
||||
//不能使用异步
|
||||
importKMSService.ImportKMSTask(item);
|
||||
Console.WriteLine("ExecuteAsync.后台任务执行完成");
|
||||
_logger.LogInformation("ExecuteAsync.后台任务执行完成");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
78
src/AntSK.Domain/Domain/Other/Bge/BegRerankConfig.cs
Normal file
78
src/AntSK.Domain/Domain/Other/Bge/BegRerankConfig.cs
Normal file
@@ -0,0 +1,78 @@
|
||||
using Newtonsoft.Json;
|
||||
using Python.Runtime;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using static Python.Runtime.Py;
|
||||
using AntSK.Domain.Utils;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other.Bge
|
||||
{
|
||||
public static class BegRerankConfig
|
||||
{
|
||||
public static dynamic model { get; set; }
|
||||
|
||||
static object lockobj = new object();
|
||||
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 模型写死
|
||||
/// </summary>
|
||||
public static dynamic LoadModel(string pythondllPath, string modelName)
|
||||
{
|
||||
lock (lockobj)
|
||||
{
|
||||
if (model == null)
|
||||
{
|
||||
PyRunTime.InitRunTime(pythondllPath);
|
||||
try
|
||||
{
|
||||
using (GIL())// 初始化Python环境的Global Interpreter Lock)
|
||||
{
|
||||
dynamic modelscope = Py.Import("modelscope");
|
||||
dynamic flagEmbedding = Py.Import("FlagEmbedding");
|
||||
|
||||
dynamic model_dir = modelscope.snapshot_download(modelName, revision: "master");
|
||||
dynamic flagReranker = flagEmbedding.FlagReranker(model_dir, use_fp16: false);
|
||||
model = flagReranker;
|
||||
return model;
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return model;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public static double Rerank(List<string> list)
|
||||
{
|
||||
using (GIL())
|
||||
{
|
||||
try
|
||||
{
|
||||
PyList pyList = new PyList();
|
||||
foreach (string item in list)
|
||||
{
|
||||
pyList.Append(item.ToPython()); // 将C# string转换为Python对象并添加到PyList中
|
||||
}
|
||||
PyObject result = model.compute_score(pyList, normalize: true);
|
||||
return result.ConvertToString().Trim('[').Trim(']').ConvertToDouble();
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,4 +1,6 @@
|
||||
using Python.Runtime;
|
||||
using Microsoft.KernelMemory.AI.OpenAI;
|
||||
using Python.Runtime;
|
||||
using Serilog;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
@@ -6,9 +8,9 @@ using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using static Python.Runtime.Py;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other
|
||||
namespace AntSK.Domain.Domain.Other.Bge
|
||||
{
|
||||
public static class EmbeddingConfig
|
||||
public static class BgeEmbeddingConfig
|
||||
{
|
||||
public static dynamic model { get; set; }
|
||||
|
||||
@@ -25,19 +27,15 @@ namespace AntSK.Domain.Domain.Other
|
||||
{
|
||||
if (model == null)
|
||||
{
|
||||
//Runtime.PythonDLL = @"D:\Programs\Python\Python311\python311.dll";
|
||||
Runtime.PythonDLL = pythondllPath;
|
||||
PythonEngine.Initialize();
|
||||
PythonEngine.BeginAllowThreads();
|
||||
|
||||
PyRunTime.InitRunTime(pythondllPath);
|
||||
try
|
||||
{
|
||||
using (Py.GIL())// 初始化Python环境的Global Interpreter Lock)
|
||||
using (GIL())// 初始化Python环境的Global Interpreter Lock)
|
||||
{
|
||||
dynamic modelscope = Py.Import("modelscope");
|
||||
dynamic modelscope = Import("modelscope");
|
||||
//dynamic model_dir = modelscope.snapshot_download("AI-ModelScope/bge-large-zh-v1.5", revision: "master");
|
||||
dynamic model_dir = modelscope.snapshot_download(modelName, revision: "master");
|
||||
dynamic HuggingFaceBgeEmbeddingstemp = Py.Import("langchain.embeddings");
|
||||
dynamic HuggingFaceBgeEmbeddingstemp = Import("langchain_community.embeddings.huggingface");
|
||||
dynamic HuggingFaceBgeEmbeddings = HuggingFaceBgeEmbeddingstemp.HuggingFaceBgeEmbeddings;
|
||||
string model_name = model_dir;
|
||||
dynamic model_kwargs = new PyDict();
|
||||
@@ -50,7 +48,7 @@ namespace AntSK.Domain.Domain.Other
|
||||
return hugginmodel;
|
||||
}
|
||||
}
|
||||
catch(Exception ex)
|
||||
catch (Exception ex)
|
||||
{
|
||||
throw ex;
|
||||
}
|
||||
@@ -62,7 +60,7 @@ namespace AntSK.Domain.Domain.Other
|
||||
|
||||
public static Task<float[]> GetEmbedding(string queryStr)
|
||||
{
|
||||
using (Py.GIL())
|
||||
using (GIL())
|
||||
{
|
||||
PyObject queryResult = model.embed_query(queryStr);
|
||||
var floatList = queryResult.As<float[]>();
|
||||
@@ -72,17 +70,23 @@ namespace AntSK.Domain.Domain.Other
|
||||
|
||||
public static int TokenCount(string queryStr)
|
||||
{
|
||||
using (Py.GIL())
|
||||
{
|
||||
PyObject queryResult = model.client.tokenize(queryStr);
|
||||
int len = (int)(queryResult.Length());
|
||||
return len;
|
||||
}
|
||||
//using (Py.GIL())
|
||||
//{
|
||||
// PyObject queryResult = model.client.tokenize(queryStr);
|
||||
// // 使用Python的内置len()函数获取长度
|
||||
// PyObject lenFunc = Py.Import("builtins").GetAttr("len");
|
||||
// PyObject length = lenFunc.Invoke(queryResult["input_ids"]);
|
||||
// int len = length.As<int>(); // 将PyObject转换为C#中的整数
|
||||
// return len;
|
||||
|
||||
//}
|
||||
var tokenCount1 = DefaultGPTTokenizer.StaticCountTokens(queryStr);
|
||||
return tokenCount1;
|
||||
}
|
||||
|
||||
public static void Dispose()
|
||||
{
|
||||
Console.WriteLine("python dispose");
|
||||
Log.Information("python dispose");
|
||||
}
|
||||
}
|
||||
}
|
||||
28
src/AntSK.Domain/Domain/Other/Bge/PyRunTime.cs
Normal file
28
src/AntSK.Domain/Domain/Other/Bge/PyRunTime.cs
Normal file
@@ -0,0 +1,28 @@
|
||||
using Python.Runtime;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other.Bge
|
||||
{
|
||||
public static class PyRunTime
|
||||
{
|
||||
static object lockobj = new object();
|
||||
|
||||
static bool isInit = false;
|
||||
|
||||
public static void InitRunTime(string pythonPath)
|
||||
{
|
||||
lock (lockobj)
|
||||
{
|
||||
if (!isInit)
|
||||
{
|
||||
if (string.IsNullOrEmpty(Runtime.PythonDLL))
|
||||
{
|
||||
Runtime.PythonDLL = pythonPath;
|
||||
}
|
||||
PythonEngine.Initialize();
|
||||
PythonEngine.BeginAllowThreads();
|
||||
isInit = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
157
src/AntSK.Domain/Domain/Other/KMExcelHandler.cs
Normal file
157
src/AntSK.Domain/Domain/Other/KMExcelHandler.cs
Normal file
@@ -0,0 +1,157 @@
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using AntSK.Domain.Utils;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Microsoft.KernelMemory.AI.OpenAI;
|
||||
using Microsoft.KernelMemory.Configuration;
|
||||
using Microsoft.KernelMemory.DataFormats.Text;
|
||||
using Microsoft.KernelMemory.Diagnostics;
|
||||
using Microsoft.KernelMemory.Extensions;
|
||||
using Microsoft.KernelMemory.Pipeline;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other
|
||||
{
|
||||
public class KMExcelHandler: IPipelineStepHandler
|
||||
{
|
||||
private readonly TextPartitioningOptions _options;
|
||||
private readonly IPipelineOrchestrator _orchestrator;
|
||||
private readonly ILogger<KMExcelHandler> _log;
|
||||
private readonly TextChunker.TokenCounter _tokenCounter;
|
||||
|
||||
public KMExcelHandler(
|
||||
string stepName,
|
||||
IPipelineOrchestrator orchestrator,
|
||||
TextPartitioningOptions? options = null,
|
||||
ILogger<KMExcelHandler>? log = null)
|
||||
{
|
||||
this.StepName = stepName;
|
||||
this._orchestrator = orchestrator;
|
||||
this._options = options ?? new TextPartitioningOptions();
|
||||
this._options.Validate();
|
||||
|
||||
this._log = log ?? DefaultLogger<KMExcelHandler>.Instance;
|
||||
this._tokenCounter = DefaultGPTTokenizer.StaticCountTokens;
|
||||
}
|
||||
|
||||
/// <inheritdoc />
|
||||
public string StepName { get; }
|
||||
|
||||
/// <inheritdoc />
|
||||
public async Task<(bool success, DataPipeline updatedPipeline)> InvokeAsync(
|
||||
DataPipeline pipeline, CancellationToken cancellationToken = default)
|
||||
{
|
||||
this._log.LogDebug("Partitioning text, pipeline '{0}/{1}'", pipeline.Index, pipeline.DocumentId);
|
||||
|
||||
if (pipeline.Files.Count == 0)
|
||||
{
|
||||
this._log.LogWarning("Pipeline '{0}/{1}': there are no files to process, moving to next pipeline step.", pipeline.Index, pipeline.DocumentId);
|
||||
return (true, pipeline);
|
||||
}
|
||||
|
||||
foreach (DataPipeline.FileDetails uploadedFile in pipeline.Files)
|
||||
{
|
||||
// Track new files being generated (cannot edit originalFile.GeneratedFiles while looping it)
|
||||
Dictionary<string, DataPipeline.GeneratedFileDetails> newFiles = new();
|
||||
|
||||
foreach (KeyValuePair<string, DataPipeline.GeneratedFileDetails> generatedFile in uploadedFile.GeneratedFiles)
|
||||
{
|
||||
var file = generatedFile.Value;
|
||||
if (file.AlreadyProcessedBy(this))
|
||||
{
|
||||
this._log.LogTrace("File {0} already processed by this handler", file.Name);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Partition only the original text
|
||||
if (file.ArtifactType != DataPipeline.ArtifactTypes.ExtractedText)
|
||||
{
|
||||
this._log.LogTrace("Skipping file {0} (not original text)", file.Name);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Use a different partitioning strategy depending on the file type
|
||||
List<string> partitions;
|
||||
List<string> sentences;
|
||||
BinaryData partitionContent = await this._orchestrator.ReadFileAsync(pipeline, file.Name, cancellationToken).ConfigureAwait(false);
|
||||
|
||||
// Skip empty partitions. Also: partitionContent.ToString() throws an exception if there are no bytes.
|
||||
if (partitionContent.ToArray().Length == 0) { continue; }
|
||||
|
||||
switch (file.MimeType)
|
||||
{
|
||||
case MimeTypes.PlainText:
|
||||
{
|
||||
this._log.LogDebug("Partitioning text file {0}", file.Name);
|
||||
string content = partitionContent.ToString();
|
||||
var excelList = content.Split(KmsConstantcs.KMExcelSplit, StringSplitOptions.RemoveEmptyEntries).ToList();
|
||||
sentences = excelList;
|
||||
partitions = excelList;
|
||||
break;
|
||||
}
|
||||
|
||||
case MimeTypes.MarkDown:
|
||||
{
|
||||
this._log.LogDebug("Partitioning text file {0}", file.Name);
|
||||
string content = partitionContent.ToString();
|
||||
var excelList = content.Split(KmsConstantcs.KMExcelSplit, StringSplitOptions.RemoveEmptyEntries).ToList();
|
||||
sentences = excelList;
|
||||
partitions = excelList;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
this._log.LogWarning("File {0} cannot be partitioned, type '{1}' not supported", file.Name, file.MimeType);
|
||||
// Don't partition other files
|
||||
continue;
|
||||
}
|
||||
|
||||
if (partitions.Count == 0) { continue; }
|
||||
|
||||
this._log.LogDebug("Saving {0} file partitions", partitions.Count);
|
||||
for (int partitionNumber = 0; partitionNumber < partitions.Count; partitionNumber++)
|
||||
{
|
||||
// TODO: turn partitions in objects with more details, e.g. page number
|
||||
string text = partitions[partitionNumber];
|
||||
int sectionNumber = 0; // TODO: use this to store the page number (if any)
|
||||
BinaryData textData = new(text);
|
||||
|
||||
int tokenCount = this._tokenCounter(text);
|
||||
this._log.LogDebug("Partition size: {0} tokens", tokenCount);
|
||||
|
||||
var destFile = uploadedFile.GetPartitionFileName(partitionNumber);
|
||||
await this._orchestrator.WriteFileAsync(pipeline, destFile, textData, cancellationToken).ConfigureAwait(false);
|
||||
|
||||
var destFileDetails = new DataPipeline.GeneratedFileDetails
|
||||
{
|
||||
Id = Guid.NewGuid().ToString("N"),
|
||||
ParentId = uploadedFile.Id,
|
||||
Name = destFile,
|
||||
Size = text.Length,
|
||||
MimeType = MimeTypes.PlainText,
|
||||
ArtifactType = DataPipeline.ArtifactTypes.TextPartition,
|
||||
PartitionNumber = partitionNumber,
|
||||
SectionNumber = sectionNumber,
|
||||
Tags = pipeline.Tags,
|
||||
ContentSHA256 = textData.AntSKCalculateSHA256(),
|
||||
};
|
||||
newFiles.Add(destFile, destFileDetails);
|
||||
destFileDetails.MarkProcessedBy(this);
|
||||
}
|
||||
|
||||
file.MarkProcessedBy(this);
|
||||
}
|
||||
|
||||
// Add new files to pipeline status
|
||||
foreach (var file in newFiles)
|
||||
{
|
||||
uploadedFile.GeneratedFiles.Add(file.Key, file.Value);
|
||||
}
|
||||
}
|
||||
|
||||
return (true, pipeline);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,44 +0,0 @@
|
||||
using LLama;
|
||||
using LLama.Common;
|
||||
using LLamaSharp.KernelMemory;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other
|
||||
{
|
||||
public static class LLamaConfig
|
||||
{
|
||||
static object lockobj = new object();
|
||||
/// <summary>
|
||||
/// 避免模型重复加载,本地缓存
|
||||
/// </summary>
|
||||
static Dictionary<string, (LLamaWeights, ModelParams)> dicLLamaWeights = new Dictionary<string, (LLamaWeights, ModelParams)>();
|
||||
public static (LLamaWeights, ModelParams) GetLLamaConfig(string modelPath, LLamaSharpConfig config = null)
|
||||
{
|
||||
lock (lockobj)
|
||||
{
|
||||
if (dicLLamaWeights.ContainsKey(modelPath))
|
||||
{
|
||||
return dicLLamaWeights.GetValueOrDefault(modelPath);
|
||||
}
|
||||
else
|
||||
{
|
||||
InferenceParams infParams = new() { AntiPrompts = ["\n\n"] };
|
||||
LLamaSharpConfig lsConfig = new(modelPath) { DefaultInferenceParams = infParams };
|
||||
if (config != null)
|
||||
{
|
||||
lsConfig = config;
|
||||
}
|
||||
var parameters = new ModelParams(lsConfig.ModelPath)
|
||||
{
|
||||
ContextSize = lsConfig?.ContextSize ?? 2048,
|
||||
Seed = lsConfig?.Seed ?? 0,
|
||||
GpuLayerCount = lsConfig?.GpuLayerCount ?? 20,
|
||||
EmbeddingMode = true
|
||||
};
|
||||
var weights = LLamaWeights.LoadFromFile(parameters);
|
||||
dicLLamaWeights.Add(modelPath, (weights, parameters));
|
||||
return (weights, parameters);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
173
src/AntSK.Domain/Domain/Other/QAHandler.cs
Normal file
173
src/AntSK.Domain/Domain/Other/QAHandler.cs
Normal file
@@ -0,0 +1,173 @@
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Model;
|
||||
using AntSK.Domain.Utils;
|
||||
using Microsoft.Extensions.Configuration;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Microsoft.KernelMemory.AI.OpenAI;
|
||||
using Microsoft.KernelMemory.Configuration;
|
||||
using Microsoft.KernelMemory.DataFormats.Text;
|
||||
using Microsoft.KernelMemory.Diagnostics;
|
||||
using Microsoft.KernelMemory.Extensions;
|
||||
using Microsoft.KernelMemory.Pipeline;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Newtonsoft.Json;
|
||||
using RestSharp;
|
||||
using System.Security.Policy;
|
||||
using System.Text;
|
||||
using System.Text.RegularExpressions;
|
||||
|
||||
namespace AntSK.Domain.Domain.Other
|
||||
{
|
||||
public class QAHandler : IPipelineStepHandler
|
||||
{
|
||||
private readonly TextPartitioningOptions _options;
|
||||
private readonly IPipelineOrchestrator _orchestrator;
|
||||
private readonly ILogger<QAHandler> _log;
|
||||
private readonly TextChunker.TokenCounter _tokenCounter;
|
||||
private readonly IKernelService _kernelService;
|
||||
public QAHandler(
|
||||
string stepName,
|
||||
IPipelineOrchestrator orchestrator,
|
||||
IKernelService kernelService,
|
||||
TextPartitioningOptions? options = null,
|
||||
ILogger<QAHandler>? log = null
|
||||
)
|
||||
{
|
||||
this.StepName = stepName;
|
||||
this._orchestrator = orchestrator;
|
||||
this._options = options ?? new TextPartitioningOptions();
|
||||
this._options.Validate();
|
||||
|
||||
this._log = log ?? DefaultLogger<QAHandler>.Instance;
|
||||
this._tokenCounter = DefaultGPTTokenizer.StaticCountTokens;
|
||||
this._kernelService = kernelService;
|
||||
}
|
||||
|
||||
/// <inheritdoc />
|
||||
public string StepName { get; }
|
||||
|
||||
/// <inheritdoc />
|
||||
public async Task<(bool success, DataPipeline updatedPipeline)> InvokeAsync(
|
||||
DataPipeline pipeline, CancellationToken cancellationToken = default)
|
||||
{
|
||||
this._log.LogDebug("Partitioning text, pipeline '{0}/{1}'", pipeline.Index, pipeline.DocumentId);
|
||||
|
||||
if (pipeline.Files.Count == 0)
|
||||
{
|
||||
this._log.LogWarning("Pipeline '{0}/{1}': there are no files to process, moving to next pipeline step.", pipeline.Index, pipeline.DocumentId);
|
||||
return (true, pipeline);
|
||||
}
|
||||
|
||||
foreach (DataPipeline.FileDetails uploadedFile in pipeline.Files)
|
||||
{
|
||||
// Track new files being generated (cannot edit originalFile.GeneratedFiles while looping it)
|
||||
Dictionary<string, DataPipeline.GeneratedFileDetails> newFiles = new();
|
||||
|
||||
foreach (KeyValuePair<string, DataPipeline.GeneratedFileDetails> generatedFile in uploadedFile.GeneratedFiles)
|
||||
{
|
||||
var file = generatedFile.Value;
|
||||
if (file.AlreadyProcessedBy(this))
|
||||
{
|
||||
this._log.LogTrace("File {0} already processed by this handler", file.Name);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Partition only the original text
|
||||
if (file.ArtifactType != DataPipeline.ArtifactTypes.ExtractedText)
|
||||
{
|
||||
this._log.LogTrace("Skipping file {0} (not original text)", file.Name);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Use a different partitioning strategy depending on the file type
|
||||
List<string> partitions;
|
||||
List<string> sentences;
|
||||
BinaryData partitionContent = await this._orchestrator.ReadFileAsync(pipeline, file.Name, cancellationToken).ConfigureAwait(false);
|
||||
|
||||
// Skip empty partitions. Also: partitionContent.ToString() throws an exception if there are no bytes.
|
||||
if (partitionContent.ToArray().Length == 0) { continue; }
|
||||
|
||||
switch (file.MimeType)
|
||||
{
|
||||
case MimeTypes.PlainText:
|
||||
case MimeTypes.MarkDown:
|
||||
{
|
||||
this._log.LogDebug("Partitioning text file {0}", file.Name);
|
||||
string content = partitionContent.ToString();
|
||||
|
||||
var kernel = _kernelService.GetKernelByAIModelID(StepName);
|
||||
var lines = TextChunker.SplitPlainTextLines(content, 299);
|
||||
var paragraphs = TextChunker.SplitPlainTextParagraphs(lines, 3000);
|
||||
KernelFunction jsonFun = kernel.Plugins.GetFunction("KMSPlugin", "QA");
|
||||
|
||||
List<string> qaList = new List<string>();
|
||||
foreach (var para in paragraphs)
|
||||
{
|
||||
var qaresult = await kernel.InvokeAsync(function: jsonFun, new KernelArguments() { ["input"] = para });
|
||||
var qaListStr = qaresult.GetValue<string>().ConvertToString();
|
||||
|
||||
string pattern = @"Q\d+:.*?A\d+:.*?(?=(Q\d+:|$))";
|
||||
RegexOptions options = RegexOptions.Singleline;
|
||||
|
||||
foreach (Match match in Regex.Matches(qaListStr, pattern, options))
|
||||
{
|
||||
qaList.Add(match.Value.Trim()); // Trim用于删除可能的首尾空格
|
||||
}
|
||||
}
|
||||
sentences = qaList;
|
||||
partitions = qaList;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
this._log.LogWarning("File {0} cannot be partitioned, type '{1}' not supported", file.Name, file.MimeType);
|
||||
// Don't partition other files
|
||||
continue;
|
||||
}
|
||||
|
||||
if (partitions.Count == 0) { continue; }
|
||||
|
||||
this._log.LogDebug("Saving {0} file partitions", partitions.Count);
|
||||
for (int partitionNumber = 0; partitionNumber < partitions.Count; partitionNumber++)
|
||||
{
|
||||
// TODO: turn partitions in objects with more details, e.g. page number
|
||||
string text = partitions[partitionNumber];
|
||||
int sectionNumber = 0; // TODO: use this to store the page number (if any)
|
||||
BinaryData textData = new(text);
|
||||
|
||||
int tokenCount = this._tokenCounter(text);
|
||||
this._log.LogDebug("Partition size: {0} tokens", tokenCount);
|
||||
|
||||
var destFile = uploadedFile.GetPartitionFileName(partitionNumber);
|
||||
await this._orchestrator.WriteFileAsync(pipeline, destFile, textData, cancellationToken).ConfigureAwait(false);
|
||||
|
||||
var destFileDetails = new DataPipeline.GeneratedFileDetails
|
||||
{
|
||||
Id = Guid.NewGuid().ToString("N"),
|
||||
ParentId = uploadedFile.Id,
|
||||
Name = destFile,
|
||||
Size = text.Length,
|
||||
MimeType = MimeTypes.PlainText,
|
||||
ArtifactType = DataPipeline.ArtifactTypes.TextPartition,
|
||||
PartitionNumber = partitionNumber,
|
||||
SectionNumber = sectionNumber,
|
||||
Tags = pipeline.Tags,
|
||||
ContentSHA256 = textData.AntSKCalculateSHA256(),
|
||||
};
|
||||
newFiles.Add(destFile, destFileDetails);
|
||||
destFileDetails.MarkProcessedBy(this);
|
||||
}
|
||||
|
||||
file.MarkProcessedBy(this);
|
||||
}
|
||||
|
||||
// Add new files to pipeline status
|
||||
foreach (var file in newFiles)
|
||||
{
|
||||
uploadedFile.GeneratedFiles.Add(file.Key, file.Value);
|
||||
}
|
||||
}
|
||||
|
||||
return (true, pipeline);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,23 +1,23 @@
|
||||
using AntSK.Domain.Common.DependencyInjection;
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Repositories;
|
||||
using Microsoft.SemanticKernel.Connectors.OpenAI;
|
||||
using Microsoft.SemanticKernel;
|
||||
using System.Text;
|
||||
using AntSK.Domain.Utils;
|
||||
using AntSK.Domain.Domain.Model.Dto;
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using DocumentFormat.OpenXml.Drawing;
|
||||
using System.Reflection.Metadata;
|
||||
using Microsoft.KernelMemory;
|
||||
using System.Collections.Generic;
|
||||
using Markdig;
|
||||
using ChatHistory = Microsoft.SemanticKernel.ChatCompletion.ChatHistory;
|
||||
using Microsoft.SemanticKernel.Plugins.Core;
|
||||
using Azure.Core;
|
||||
using AntSK.Domain.Domain.Model;
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using AntSK.Domain.Domain.Model.Dto;
|
||||
using AntSK.Domain.Domain.Other.Bge;
|
||||
using AntSK.Domain.Repositories;
|
||||
using AntSK.Domain.Utils;
|
||||
using AntSK.LLM.StableDiffusion;
|
||||
using Markdig;
|
||||
using Microsoft.KernelMemory;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel.Connectors.OpenAI;
|
||||
using System.Diagnostics;
|
||||
using System.Drawing;
|
||||
using System.Runtime.InteropServices;
|
||||
using System.Text;
|
||||
using System.Text.RegularExpressions;
|
||||
using ChatHistory = Microsoft.SemanticKernel.ChatCompletion.ChatHistory;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -36,87 +36,183 @@ namespace AntSK.Domain.Domain.Service
|
||||
/// <param name="questions"></param>
|
||||
/// <param name="history"></param>
|
||||
/// <returns></returns>
|
||||
public async IAsyncEnumerable<StreamingKernelContent> SendChatByAppAsync(Apps app, string questions, ChatHistory history)
|
||||
public async IAsyncEnumerable<string> SendChatByAppAsync(Apps app, ChatHistory history)
|
||||
{
|
||||
|
||||
if (string.IsNullOrEmpty(app.Prompt) || !app.Prompt.Contains("{{$input}}"))
|
||||
{
|
||||
//如果模板为空,给默认提示词
|
||||
app.Prompt = app.Prompt.ConvertToString() + "{{$input}}";
|
||||
}
|
||||
KernelArguments args =new KernelArguments();
|
||||
if (history.Count > 10)
|
||||
{
|
||||
app.Prompt = @"${{ConversationSummaryPlugin.SummarizeConversation $history}}" + app.Prompt;
|
||||
args = new() {
|
||||
{ "history", string.Join("\n", history.Select(x => x.Role + ": " + x.Content)) },
|
||||
{ "input", questions }
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
args=new()
|
||||
{
|
||||
{ "input", $"{string.Join("\n", history.Select(x => x.Role + ": " + x.Content))}{Environment.NewLine} user:{questions}" }
|
||||
};
|
||||
}
|
||||
|
||||
var _kernel = _kernelService.GetKernelByApp(app);
|
||||
var chat = _kernel.GetRequiredService<IChatCompletionService>();
|
||||
var temperature = app.Temperature / 100;//存的是0~100需要缩小
|
||||
OpenAIPromptExecutionSettings settings = new() { Temperature = temperature };
|
||||
List<string> completionList = new List<string>();
|
||||
if (!string.IsNullOrEmpty(app.ApiFunctionList) || !string.IsNullOrEmpty(app.NativeFunctionList))//这里还需要加上本地插件的
|
||||
{
|
||||
_kernelService.ImportFunctionsByApp(app, _kernel);
|
||||
settings.ToolCallBehavior = ToolCallBehavior.AutoInvokeKernelFunctions;
|
||||
settings.ToolCallBehavior = ToolCallBehavior.EnableKernelFunctions;
|
||||
while (true)
|
||||
{
|
||||
ChatMessageContent result = await chat.GetChatMessageContentAsync(history, settings, _kernel);
|
||||
if (result.Content is not null)
|
||||
{
|
||||
string chunkCompletion = result.Content.ConvertToString();
|
||||
completionList.Add(chunkCompletion);
|
||||
foreach (var content in completionList)
|
||||
{
|
||||
yield return content.ConvertToString();
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
history.Add(result);
|
||||
|
||||
IEnumerable<FunctionCallContent> functionCalls = FunctionCallContent.GetFunctionCalls(result);
|
||||
if (!functionCalls.Any())
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
foreach (var functionCall in functionCalls)
|
||||
{
|
||||
FunctionResultContent resultContent = await functionCall.InvokeAsync(_kernel);
|
||||
|
||||
history.Add(resultContent.ToChatMessage());
|
||||
}
|
||||
}
|
||||
}
|
||||
var func = _kernel.CreateFunctionFromPrompt(app.Prompt, settings);
|
||||
var chatResult = _kernel.InvokeStreamingAsync(function: func,
|
||||
arguments: args);
|
||||
await foreach (var content in chatResult)
|
||||
else
|
||||
{
|
||||
yield return content;
|
||||
var chatResult = chat.GetStreamingChatMessageContentsAsync(history, settings, _kernel);
|
||||
await foreach (var content in chatResult)
|
||||
{
|
||||
yield return content.ConvertToString();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public async IAsyncEnumerable<StreamingKernelContent> SendKmsByAppAsync(Apps app, string questions, ChatHistory history, string filePath, List<RelevantSource> relevantSources = null)
|
||||
{
|
||||
var relevantSourceList = await _kMService.GetRelevantSourceList(app.KmsIdList, questions);
|
||||
relevantSources?.Clear();
|
||||
var relevantSourceList = await _kMService.GetRelevantSourceList(app, questions);
|
||||
var _kernel = _kernelService.GetKernelByApp(app);
|
||||
if (!string.IsNullOrWhiteSpace(filePath))
|
||||
{
|
||||
var memory = _kMService.GetMemory(app);
|
||||
var fileId = Guid.NewGuid().ToString();
|
||||
var result = await memory.ImportDocumentAsync(new Microsoft.KernelMemory.Document(fileId).AddFile(filePath)
|
||||
.AddTag(KmsConstantcs.KmsIdTag, app.Id)
|
||||
, index: KmsConstantcs.KmsIndex);
|
||||
var memory = _kMService.GetMemoryByApp(app);
|
||||
|
||||
var filters = new MemoryFilter().ByTag(KmsConstantcs.KmsIdTag, app.Id);
|
||||
// 匹配GUID的正则表达式
|
||||
string pattern = @"\b[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}\b";
|
||||
|
||||
var searchResult = await memory.SearchAsync(questions, index: KmsConstantcs.KmsIndex, filters: [filters]);
|
||||
relevantSourceList.AddRange(searchResult.Results.SelectMany(item => item.Partitions.Select(part => new RelevantSource()
|
||||
// 使用正则表达式找到匹配
|
||||
Match match = Regex.Match(filePath, pattern);
|
||||
if (match.Success)
|
||||
{
|
||||
SourceName = item.SourceName,
|
||||
Text = Markdown.ToHtml(part.Text),
|
||||
Relevance = part.Relevance
|
||||
})));
|
||||
var fileId = match.Value;
|
||||
|
||||
var status=await memory.IsDocumentReadyAsync(fileId, index: KmsConstantcs.KmsIndex);
|
||||
if (!status)
|
||||
{
|
||||
var result = await memory.ImportDocumentAsync(new Document(fileId).AddFile(filePath)
|
||||
.AddTag(KmsConstantcs.AppIdTag, app.Id)
|
||||
.AddTag(KmsConstantcs.FileIdTag, fileId)
|
||||
, index: KmsConstantcs.FileIndex);
|
||||
}
|
||||
|
||||
var filters = new List<MemoryFilter>() {
|
||||
new MemoryFilter().ByTag(KmsConstantcs.AppIdTag, app.Id),
|
||||
new MemoryFilter().ByTag(KmsConstantcs.FileIdTag, fileId)
|
||||
};
|
||||
|
||||
var searchResult = await memory.SearchAsync(questions, index: KmsConstantcs.FileIndex, filters: filters);
|
||||
relevantSourceList.AddRange(searchResult.Results.SelectMany(item => item.Partitions.Select(part => new RelevantSource()
|
||||
{
|
||||
SourceName = item.SourceName,
|
||||
Text = Markdown.ToHtml(part.Text),
|
||||
Relevance = part.Relevance
|
||||
})));
|
||||
app.Prompt = KmsConstantcs.KmsPrompt;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
var dataMsg = new StringBuilder();
|
||||
if (relevantSourceList.Any())
|
||||
{
|
||||
relevantSources?.AddRange(relevantSourceList);
|
||||
if (!string.IsNullOrEmpty(app.RerankModelID))
|
||||
{
|
||||
var rerankModel=_aIModels_Repositories.GetById(app.RerankModelID);
|
||||
BegRerankConfig.LoadModel(rerankModel.EndPoint, rerankModel.ModelName);
|
||||
//进行rerank
|
||||
foreach (var item in relevantSourceList)
|
||||
{
|
||||
List<string> rerank = new List<string>();
|
||||
rerank.Add(questions);
|
||||
rerank.Add(item.Text);
|
||||
item.RerankScore = BegRerankConfig.Rerank(rerank);
|
||||
|
||||
}
|
||||
relevantSourceList = relevantSourceList.OrderByDescending(p => p.RerankScore).Take(app.MaxMatchesCount).ToList();
|
||||
}
|
||||
|
||||
bool isSearch = false;
|
||||
foreach (var item in relevantSourceList)
|
||||
{
|
||||
dataMsg.AppendLine(item.ToString());
|
||||
if (!string.IsNullOrEmpty(app.RerankModelID))
|
||||
{
|
||||
//匹配重排后相似度
|
||||
if (item.RerankScore >= app.Relevance / 100)
|
||||
{
|
||||
dataMsg.AppendLine(item.ToString());
|
||||
isSearch = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
//匹配相似度
|
||||
if (item.Relevance >= app.Relevance / 100)
|
||||
{
|
||||
dataMsg.AppendLine(item.ToString());
|
||||
isSearch = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
KernelFunction jsonFun = _kernel.Plugins.GetFunction("KMSPlugin", "Ask1");
|
||||
var chatResult = _kernel.InvokeStreamingAsync(function: jsonFun,
|
||||
arguments: new KernelArguments() { ["doc"] = dataMsg, ["history"] = string.Join("\n", history.Select(x => x.Role + ": " + x.Content)), ["questions"] = questions });
|
||||
|
||||
await foreach (var content in chatResult)
|
||||
//处理markdown显示
|
||||
relevantSources?.AddRange(relevantSourceList);
|
||||
Dictionary<string, string> fileDic = new Dictionary<string, string>();
|
||||
foreach (var item in relevantSourceList)
|
||||
{
|
||||
yield return content;
|
||||
if (fileDic.ContainsKey(item.SourceName))
|
||||
{
|
||||
item.SourceName = fileDic[item.SourceName];
|
||||
}
|
||||
else
|
||||
{
|
||||
var fileDetail = _kmsDetails_Repositories.GetFirst(p => p.FileGuidName == item.SourceName);
|
||||
if (fileDetail.IsNotNull())
|
||||
{
|
||||
string fileName = fileDetail.FileName;
|
||||
fileDic.Add(item.SourceName, fileName);
|
||||
item.SourceName = fileName;
|
||||
}
|
||||
}
|
||||
item.Text = Markdown.ToHtml(item.Text);
|
||||
}
|
||||
|
||||
if (isSearch)
|
||||
{
|
||||
//KernelFunction jsonFun = _kernel.Plugins.GetFunction("KMSPlugin", "Ask1");
|
||||
var temperature = app.Temperature / 100;//存的是0~100需要缩小
|
||||
OpenAIPromptExecutionSettings settings = new() { Temperature = temperature };
|
||||
var func = _kernel.CreateFunctionFromPrompt(app.Prompt , settings);
|
||||
|
||||
var chatResult = _kernel.InvokeStreamingAsync(function: func,
|
||||
arguments: new KernelArguments() { ["doc"] = dataMsg.ToString(), ["history"] = string.Join("\n", history.Select(x => x.Role + ": " + x.Content)), ["input"] = questions });
|
||||
|
||||
await foreach (var content in chatResult)
|
||||
{
|
||||
yield return content;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
yield return new StreamingTextContent(KmsConstantcs.KmsSearchNull);
|
||||
}
|
||||
}
|
||||
else
|
||||
@@ -135,10 +231,63 @@ namespace AntSK.Domain.Domain.Service
|
||||
var _kernel = _kernelService.GetKernelByApp(app);
|
||||
var temperature = app.Temperature / 100; //存的是0~100需要缩小
|
||||
OpenAIPromptExecutionSettings settings = new() { Temperature = temperature };
|
||||
var func = _kernel.CreateFunctionFromPrompt("你是一个StableDiffusion提示词助手,需要将用户问题转化为StableDiffusion的英文提示词并返回,请注意只返回提示词不要有其他多余内容,用户的问题是:{{$input}}", settings);
|
||||
var func = _kernel.CreateFunctionFromPrompt("Translate this into English:{{$input}}", settings);
|
||||
var chatResult = await _kernel.InvokeAsync(function: func, arguments: args);
|
||||
if (chatResult.IsNotNull())
|
||||
{
|
||||
//Can Load stable-diffusion library in diffenert environment
|
||||
|
||||
//SDHelper.LoadLibrary()
|
||||
string versionString = string.Empty;
|
||||
string extensionString = string.Empty;
|
||||
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
|
||||
{
|
||||
extensionString = ".dll";
|
||||
}
|
||||
else if (RuntimeInformation.IsOSPlatform(OSPlatform.Linux))
|
||||
{
|
||||
extensionString = ".so";
|
||||
}
|
||||
else
|
||||
{
|
||||
throw new InvalidOperationException("OS Platform no support");
|
||||
}
|
||||
|
||||
ProcessStartInfo startInfo = new ProcessStartInfo("nvcc", "--version");
|
||||
startInfo.RedirectStandardOutput = true;
|
||||
startInfo.UseShellExecute = false;
|
||||
startInfo.CreateNoWindow = true;
|
||||
using (Process process = Process.Start(startInfo))
|
||||
{
|
||||
if (process != null)
|
||||
{
|
||||
string result = process.StandardOutput.ReadToEnd();
|
||||
Regex regex = new Regex(@"release (\d+).[\d]");
|
||||
Match match = regex.Match(result);
|
||||
if (match.Success)
|
||||
{
|
||||
switch (match.Groups[1].Value.ToString())
|
||||
{
|
||||
case "11":
|
||||
versionString = "Cuda11";
|
||||
break;
|
||||
case "12":
|
||||
versionString = "Cuda12";
|
||||
break;
|
||||
default:
|
||||
versionString = "CPU";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
throw new Exception("nvcc get an error");
|
||||
}
|
||||
}
|
||||
|
||||
string libraryPath = System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "StableDiffusion", "Backend", versionString, "stable-diffusion" + extensionString);
|
||||
NativeLibrary.TryLoad(libraryPath, out _);
|
||||
string prompt = chatResult.GetValue<string>();
|
||||
if (!SDHelper.IsInitialized)
|
||||
{
|
||||
@@ -148,7 +297,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
RngType = Structs.RngType.CUDA_RNG,
|
||||
//VaePath = vaePath,
|
||||
//KeepVaeOnCpu = keepVaeOnCpu,
|
||||
//VaeTiling = vaeTiling,
|
||||
//set false can get a better image, otherwise can use lower vram
|
||||
VaeTiling = false,
|
||||
//LoraModelDir = loraModelDir,
|
||||
};
|
||||
bool result = SDHelper.Initialize(modelParams);
|
||||
@@ -157,10 +307,11 @@ namespace AntSK.Domain.Domain.Service
|
||||
Structs.TextToImageParams textToImageParams = new Structs.TextToImageParams
|
||||
{
|
||||
Prompt = prompt,
|
||||
NegativePrompt = "2d, 3d, cartoon, paintings",
|
||||
NegativePrompt = "bad quality, wrong image, worst quality",
|
||||
SampleMethod = (Structs.SampleMethod)Enum.Parse(typeof(Structs.SampleMethod), "EULER_A"),
|
||||
Width = 256,
|
||||
Height = 256,
|
||||
//the base image size in SD1.5 is 512x512
|
||||
Width = 512,
|
||||
Height = 512,
|
||||
NormalizeInput = true,
|
||||
ClipSkip = -1,
|
||||
CfgScale = 7,
|
||||
@@ -177,25 +328,20 @@ namespace AntSK.Domain.Domain.Service
|
||||
}
|
||||
}
|
||||
|
||||
public async Task<ChatHistory> GetChatHistory(List<MessageInfo> MessageList)
|
||||
public async Task<ChatHistory> GetChatHistory(List<Chats> MessageList, ChatHistory history)
|
||||
{
|
||||
ChatHistory history = new ChatHistory();
|
||||
if (MessageList.Count > 1)
|
||||
foreach (var item in MessageList)
|
||||
{
|
||||
|
||||
foreach (var item in MessageList)
|
||||
if (item.IsSend)
|
||||
{
|
||||
if (item.IsSend)
|
||||
{
|
||||
history.AddUserMessage(item.Context);
|
||||
}
|
||||
else
|
||||
{
|
||||
history.AddAssistantMessage(item.Context);
|
||||
}
|
||||
history.AddUserMessage(item.Context);
|
||||
}
|
||||
else
|
||||
{
|
||||
history.AddAssistantMessage(item.Context);
|
||||
}
|
||||
}
|
||||
return history;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,6 +8,7 @@ using System.Text.RegularExpressions;
|
||||
using Microsoft.SemanticKernel;
|
||||
using HtmlAgilityPack;
|
||||
using System.Collections.Generic;
|
||||
using Serilog;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -115,7 +116,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
Console.WriteLine(ex.Message + " ---- " + ex.StackTrace);
|
||||
Log.Error(ex.Message + " ---- " + ex.StackTrace);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,8 +2,13 @@
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Model;
|
||||
using AntSK.Domain.Domain.Model.Constant;
|
||||
using AntSK.Domain.Domain.Model.Excel;
|
||||
using AntSK.Domain.Domain.Other;
|
||||
using AntSK.Domain.Repositories;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Microsoft.KernelMemory;
|
||||
using Microsoft.KernelMemory.Handlers;
|
||||
using System.Text;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -11,7 +16,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
public class ImportKMSService(
|
||||
IKMService _kMService,
|
||||
IKmsDetails_Repositories _kmsDetails_Repositories,
|
||||
IKmss_Repositories _kmss_Repositories
|
||||
IKmss_Repositories _kmss_Repositories,
|
||||
ILogger<ImportKMSService> _logger
|
||||
) : IImportKMSService
|
||||
{
|
||||
|
||||
@@ -20,18 +26,40 @@ namespace AntSK.Domain.Domain.Service
|
||||
try
|
||||
{
|
||||
var km = _kmss_Repositories.GetFirst(p => p.Id == req.KmsId);
|
||||
|
||||
var _memory = _kMService.GetMemoryByKMS(km.Id);
|
||||
string fileid = req.KmsDetail.Id;
|
||||
List<string> step = new List<string>();
|
||||
if (req.IsQA)
|
||||
{
|
||||
_memory.Orchestrator.AddHandler<TextExtractionHandler>("extract_text");
|
||||
_memory.Orchestrator.AddHandler<QAHandler>(km.ChatModelID);
|
||||
_memory.Orchestrator.AddHandler<GenerateEmbeddingsHandler>("generate_embeddings");
|
||||
_memory.Orchestrator.AddHandler<SaveRecordsHandler>("save_memory_records");
|
||||
step.Add("extract_text");
|
||||
step.Add(km.ChatModelID);
|
||||
step.Add("generate_embeddings");
|
||||
step.Add("save_memory_records");
|
||||
}
|
||||
|
||||
switch (req.ImportType)
|
||||
{
|
||||
case ImportType.File:
|
||||
//导入文件
|
||||
{
|
||||
var importResult = _memory.ImportDocumentAsync(new Document(fileid)
|
||||
.AddFile(req.FilePath)
|
||||
.AddTag(KmsConstantcs.KmsIdTag, req.KmsId)
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
//导入文件
|
||||
if (req.IsQA)
|
||||
{
|
||||
var importResult = _memory.ImportDocumentAsync(new Document(fileid)
|
||||
.AddFile(req.FilePath)
|
||||
.AddTag(KmsConstantcs.KmsIdTag, req.KmsId)
|
||||
,index: KmsConstantcs.KmsIndex ,steps: step.ToArray()).Result;
|
||||
}
|
||||
else
|
||||
{
|
||||
var importResult = _memory.ImportDocumentAsync(new Document(fileid)
|
||||
.AddFile(req.FilePath)
|
||||
.AddTag(KmsConstantcs.KmsIdTag, req.KmsId)
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
}
|
||||
//查询文档数量
|
||||
var docTextList = _kMService.GetDocumentByFileID(km.Id, fileid).Result;
|
||||
string fileGuidName = Path.GetFileName(req.FilePath);
|
||||
@@ -44,8 +72,16 @@ namespace AntSK.Domain.Domain.Service
|
||||
case ImportType.Url:
|
||||
{
|
||||
//导入url
|
||||
var importResult = _memory.ImportWebPageAsync(req.Url, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
if (req.IsQA)
|
||||
{
|
||||
var importResult = _memory.ImportWebPageAsync(req.Url, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex, steps: step.ToArray()).Result;
|
||||
}
|
||||
else
|
||||
{
|
||||
var importResult = _memory.ImportWebPageAsync(req.Url, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
}
|
||||
//查询文档数量
|
||||
var docTextList = _kMService.GetDocumentByFileID(km.Id, fileid).Result;
|
||||
req.KmsDetail.Url = req.Url;
|
||||
@@ -55,8 +91,16 @@ namespace AntSK.Domain.Domain.Service
|
||||
case ImportType.Text:
|
||||
//导入文本
|
||||
{
|
||||
var importResult = _memory.ImportTextAsync(req.Text, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
if (req.IsQA)
|
||||
{
|
||||
var importResult = _memory.ImportTextAsync(req.Text, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex, steps: step.ToArray()).Result;
|
||||
}
|
||||
else
|
||||
{
|
||||
var importResult = _memory.ImportTextAsync(req.Text, fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex).Result;
|
||||
}
|
||||
//查询文档数量
|
||||
var docTextList = _kMService.GetDocumentByFileID(km.Id, fileid).Result;
|
||||
req.KmsDetail.Url = req.Url;
|
||||
@@ -64,17 +108,47 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
}
|
||||
break;
|
||||
case ImportType.Excel:
|
||||
using (var fs = File.OpenRead(req.FilePath))
|
||||
{
|
||||
var excelList= ExeclHelper.ExcelToList<KMSExcelModel>(fs);
|
||||
_memory.Orchestrator.AddHandler<TextExtractionHandler>("extract_text");
|
||||
_memory.Orchestrator.AddHandler<KMExcelHandler>("antsk_excel_split");
|
||||
_memory.Orchestrator.AddHandler<GenerateEmbeddingsHandler>("generate_embeddings");
|
||||
_memory.Orchestrator.AddHandler<SaveRecordsHandler>("save_memory_records");
|
||||
|
||||
StringBuilder text = new StringBuilder();
|
||||
foreach (var item in excelList)
|
||||
{
|
||||
text.AppendLine(@$"Question:{item.Question}{Environment.NewLine}Answer:{item.Answer}{KmsConstantcs.KMExcelSplit}");
|
||||
}
|
||||
var importResult = _memory.ImportTextAsync(text.ToString(), fileid, new TagCollection() { { KmsConstantcs.KmsIdTag, req.KmsId } }
|
||||
, index: KmsConstantcs.KmsIndex,
|
||||
steps: new[]
|
||||
{
|
||||
"extract_text",
|
||||
"antsk_excel_split",
|
||||
"generate_embeddings",
|
||||
"save_memory_records"
|
||||
}
|
||||
).Result;
|
||||
req.KmsDetail.FileName = req.FileName;
|
||||
string fileGuidName = Path.GetFileName(req.FilePath);
|
||||
req.KmsDetail.FileGuidName = fileGuidName;
|
||||
req.KmsDetail.DataCount = excelList.Count();
|
||||
}
|
||||
break;
|
||||
}
|
||||
req.KmsDetail.Status = Model.Enum.ImportKmsStatus.Success;
|
||||
_kmsDetails_Repositories.Update(req.KmsDetail);
|
||||
//_kmsDetails_Repositories.GetList(p => p.KmsId == req.KmsId);
|
||||
Console.WriteLine("后台导入任务成功:" + req.KmsDetail.DataCount);
|
||||
_logger.LogInformation("后台导入任务成功:" + req.KmsDetail.DataCount);
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
req.KmsDetail.Status = Model.Enum.ImportKmsStatus.Fail;
|
||||
_kmsDetails_Repositories.Update(req.KmsDetail);
|
||||
Console.WriteLine("后台导入任务异常:" + ex.Message);
|
||||
_logger.LogError("后台导入任务异常:" + ex.Message);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,14 +8,14 @@ using AntSK.Domain.Domain.Other;
|
||||
using AntSK.Domain.Options;
|
||||
using AntSK.Domain.Repositories;
|
||||
using AntSK.Domain.Utils;
|
||||
using AntSK.OCR;
|
||||
using DocumentFormat.OpenXml.Drawing.Diagrams;
|
||||
using LLama;
|
||||
using LLamaSharp.KernelMemory;
|
||||
using Markdig;
|
||||
using Microsoft.AspNetCore.Components;
|
||||
using Microsoft.Extensions.Configuration;
|
||||
using Microsoft.KernelMemory;
|
||||
using Microsoft.KernelMemory.Configuration;
|
||||
using Microsoft.KernelMemory.DataFormats;
|
||||
using Microsoft.KernelMemory.FileSystem.DevTools;
|
||||
using Microsoft.KernelMemory.MemoryStorage;
|
||||
using Microsoft.KernelMemory.MemoryStorage.DevTools;
|
||||
@@ -27,7 +27,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
public class KMService(
|
||||
IKmss_Repositories _kmss_Repositories,
|
||||
IAIModels_Repositories _aIModels_Repositories,
|
||||
IMessageService? _message
|
||||
IMessageService? _message,
|
||||
IKernelService _kernelService
|
||||
) : IKMService
|
||||
{
|
||||
private MemoryServerless _memory;
|
||||
@@ -36,20 +37,36 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
public List<UploadFileItem> FileList => _fileList;
|
||||
|
||||
public MemoryServerless GetMemory(Apps app)
|
||||
public MemoryServerless GetMemoryByApp(Apps app)
|
||||
{
|
||||
var chatModel = _aIModels_Repositories.GetFirst(p => p.Id == app.ChatModelID);
|
||||
var embedModel = _aIModels_Repositories.GetFirst(p => p.Id == app.EmbeddingModelID);
|
||||
var chatHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(chatModel.EndPoint);
|
||||
var embeddingHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(embedModel.EndPoint);
|
||||
|
||||
var searchClientConfig = new SearchClientConfig
|
||||
SearchClientConfig searchClientConfig;
|
||||
if (string.IsNullOrEmpty(app.RerankModelID))
|
||||
{
|
||||
MaxAskPromptSize = 2048,
|
||||
MaxMatchesCount = 3,
|
||||
AnswerTokens = 1000,
|
||||
EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
};
|
||||
//不重排直接取查询数
|
||||
searchClientConfig = new SearchClientConfig
|
||||
{
|
||||
MaxAskPromptSize = app.MaxAskPromptSize,
|
||||
MaxMatchesCount = app.MaxMatchesCount,
|
||||
AnswerTokens = app.AnswerTokens,
|
||||
EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
//重排取rerank数
|
||||
searchClientConfig = new SearchClientConfig
|
||||
{
|
||||
MaxAskPromptSize = app.MaxAskPromptSize,
|
||||
MaxMatchesCount = app.RerankCount,
|
||||
AnswerTokens = app.AnswerTokens,
|
||||
EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
var memoryBuild = new KernelMemoryBuilder()
|
||||
.WithSearchClientConfig(searchClientConfig)
|
||||
@@ -71,7 +88,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
return _memory;
|
||||
}
|
||||
|
||||
public MemoryServerless GetMemoryByKMS(string kmsID, SearchClientConfig searchClientConfig = null)
|
||||
public MemoryServerless GetMemoryByKMS(string kmsID)
|
||||
{
|
||||
//if (_memory.IsNull())
|
||||
{
|
||||
@@ -85,33 +102,35 @@ namespace AntSK.Domain.Domain.Service
|
||||
var embeddingHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(embedModel.EndPoint);
|
||||
|
||||
//搜索配置
|
||||
if (searchClientConfig.IsNull())
|
||||
{
|
||||
searchClientConfig = new SearchClientConfig
|
||||
{
|
||||
MaxAskPromptSize = 2048,
|
||||
MaxMatchesCount = 3,
|
||||
AnswerTokens = 1000,
|
||||
EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
};
|
||||
}
|
||||
//if (searchClientConfig.IsNull())
|
||||
//{
|
||||
// searchClientConfig = new SearchClientConfig
|
||||
// {
|
||||
// MaxAskPromptSize = 2048,
|
||||
// MaxMatchesCount = 3,
|
||||
// AnswerTokens = 1000,
|
||||
// EmptyAnswer = KmsConstantcs.KmsSearchNull
|
||||
// };
|
||||
//}
|
||||
|
||||
var memoryBuild = new KernelMemoryBuilder()
|
||||
.WithSearchClientConfig(searchClientConfig)
|
||||
//.WithSearchClientConfig(searchClientConfig)
|
||||
.WithCustomTextPartitioningOptions(new TextPartitioningOptions
|
||||
{
|
||||
MaxTokensPerLine = kms.MaxTokensPerLine,
|
||||
MaxTokensPerParagraph = kms.MaxTokensPerParagraph,
|
||||
OverlappingTokens = kms.OverlappingTokens
|
||||
});
|
||||
//加载OCR
|
||||
WithOcr(memoryBuild, kms);
|
||||
//加载会话模型
|
||||
WithTextGenerationByAIType(memoryBuild, chatModel, chatHttpClient);
|
||||
//加载向量模型
|
||||
WithTextEmbeddingGenerationByAIType(memoryBuild, embedModel, embeddingHttpClient);
|
||||
//加载向量库
|
||||
WithMemoryDbByVectorDB(memoryBuild);
|
||||
|
||||
_memory = memoryBuild.Build<MemoryServerless>();
|
||||
|
||||
_memory = memoryBuild.AddSingleton<IKernelService>(_kernelService).Build<MemoryServerless>();
|
||||
return _memory;
|
||||
}
|
||||
//else {
|
||||
@@ -119,6 +138,14 @@ namespace AntSK.Domain.Domain.Service
|
||||
//}
|
||||
}
|
||||
|
||||
private static void WithOcr(IKernelMemoryBuilder memoryBuild, Kmss kms)
|
||||
{
|
||||
if (kms.IsOCR == 1)
|
||||
{
|
||||
memoryBuild.WithCustomImageOcr(new AntSKOcrEngine());
|
||||
}
|
||||
}
|
||||
|
||||
private void WithTextEmbeddingGenerationByAIType(IKernelMemoryBuilder memory, AIModels embedModel,
|
||||
HttpClient embeddingHttpClient)
|
||||
{
|
||||
@@ -142,12 +169,6 @@ namespace AntSK.Domain.Domain.Service
|
||||
APIType = AzureOpenAIConfig.APITypes.EmbeddingGeneration,
|
||||
});
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.LLamaSharp:
|
||||
var (weights, parameters) = LLamaConfig.GetLLamaConfig(embedModel.ModelName);
|
||||
var embedder = new LLamaEmbedder(weights, parameters);
|
||||
memory.WithLLamaSharpTextEmbeddingGeneration(new LLamaSharpTextEmbeddingGenerator(embedder));
|
||||
break;
|
||||
case Model.Enum.AIType.BgeEmbedding:
|
||||
string pyDll = embedModel.EndPoint;
|
||||
string bgeEmbeddingModelName = embedModel.ModelName;
|
||||
@@ -156,6 +177,13 @@ namespace AntSK.Domain.Domain.Service
|
||||
case Model.Enum.AIType.DashScope:
|
||||
memory.WithDashScopeDefaults(embedModel.ModelKey);
|
||||
break;
|
||||
case Model.Enum.AIType.OllamaEmbedding:
|
||||
memory.WithOpenAITextEmbeddingGeneration(new OpenAIConfig()
|
||||
{
|
||||
APIKey = "NotNull",
|
||||
EmbeddingModel = embedModel.ModelName
|
||||
}, null, false, embeddingHttpClient);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -182,18 +210,18 @@ namespace AntSK.Domain.Domain.Service
|
||||
APIType = AzureOpenAIConfig.APITypes.TextCompletion,
|
||||
});
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.LLamaSharp:
|
||||
var (weights, parameters) = LLamaConfig.GetLLamaConfig(chatModel.ModelName);
|
||||
var context = weights.CreateContext(parameters);
|
||||
var executor = new StatelessExecutor(weights, parameters);
|
||||
memory.WithLLamaSharpTextGeneration(new LlamaSharpTextGenerator(weights, context, executor));
|
||||
break;
|
||||
case Model.Enum.AIType.LLamaFactory:
|
||||
|
||||
memory.WithOpenAITextGeneration(new OpenAIConfig()
|
||||
{
|
||||
APIKey = "123",
|
||||
APIKey = "NotNull",
|
||||
TextModel = chatModel.ModelName
|
||||
}, null, chatHttpClient);
|
||||
break;
|
||||
case Model.Enum.AIType.Ollama:
|
||||
memory.WithOpenAITextGeneration(new OpenAIConfig()
|
||||
{
|
||||
APIKey = "NotNull",
|
||||
TextModel = chatModel.ModelName
|
||||
}, null, chatHttpClient);
|
||||
break;
|
||||
@@ -262,12 +290,12 @@ namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
foreach (var memoryDb in memoryDbs)
|
||||
{
|
||||
var items = await memoryDb.GetListAsync(memoryIndex.Name, new List<MemoryFilter>() { new MemoryFilter().ByDocument(fileId) }, 100, true).ToListAsync();
|
||||
var items = await memoryDb.GetListAsync(memoryIndex.Name, new List<MemoryFilter>() { new MemoryFilter().ByDocument(fileId) }, 1000, true).ToListAsync();
|
||||
docTextList.AddRange(items.Select(item => new KMFile()
|
||||
{
|
||||
DocumentId = item.GetDocumentId(),
|
||||
Text = item.GetPartitionText(),
|
||||
Url = item.GetWebPageUrl(),
|
||||
Url = item.GetWebPageUrl(KmsConstantcs.KmsIndex),
|
||||
LastUpdate = item.GetLastUpdate().LocalDateTime.ToString("yyyy-MM-dd HH:mm:ss"),
|
||||
File = item.GetFileName()
|
||||
}));
|
||||
@@ -277,15 +305,15 @@ namespace AntSK.Domain.Domain.Service
|
||||
return docTextList;
|
||||
}
|
||||
|
||||
public async Task<List<RelevantSource>> GetRelevantSourceList(string kmsIdListStr, string msg)
|
||||
public async Task<List<RelevantSource>> GetRelevantSourceList(Apps app ,string msg)
|
||||
{
|
||||
var result = new List<RelevantSource>();
|
||||
if (string.IsNullOrWhiteSpace(kmsIdListStr))
|
||||
if (string.IsNullOrWhiteSpace(app.KmsIdList))
|
||||
return result;
|
||||
var kmsIdList = kmsIdListStr.Split(",");
|
||||
var kmsIdList = app.KmsIdList.Split(",");
|
||||
if (!kmsIdList.Any()) return result;
|
||||
|
||||
var memory = GetMemoryByKMS(kmsIdList.FirstOrDefault()!);
|
||||
var memory = GetMemoryByApp(app);
|
||||
|
||||
var filters = kmsIdList.Select(kmsId => new MemoryFilter().ByTag(KmsConstantcs.KmsIdTag, kmsId)).ToList();
|
||||
|
||||
@@ -297,7 +325,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
result.AddRange(item.Partitions.Select(part => new RelevantSource()
|
||||
{
|
||||
SourceName = item.SourceName,
|
||||
Text = Markdown.ToHtml(part.Text),
|
||||
Text = part.Text,
|
||||
Relevance = part.Relevance
|
||||
}));
|
||||
}
|
||||
@@ -319,7 +347,10 @@ namespace AntSK.Domain.Domain.Service
|
||||
"application/pdf",
|
||||
"application/json",
|
||||
"text/x-markdown",
|
||||
"text/markdown"
|
||||
"text/markdown",
|
||||
"image/jpeg",
|
||||
"image/png",
|
||||
"image/tiff"
|
||||
};
|
||||
|
||||
string[] exceptExts = [".md", ".pdf"];
|
||||
|
||||
@@ -4,20 +4,16 @@ using AntSK.Domain.Domain.Interface;
|
||||
using AntSK.Domain.Domain.Other;
|
||||
using AntSK.Domain.Repositories;
|
||||
using AntSK.Domain.Utils;
|
||||
using LLama;
|
||||
using LLamaSharp.SemanticKernel.TextCompletion;
|
||||
using Microsoft.Extensions.DependencyInjection;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Microsoft.SemanticKernel.Plugins.Core;
|
||||
using Microsoft.SemanticKernel.TextGeneration;
|
||||
using RestSharp;
|
||||
using System;
|
||||
using ServiceLifetime = AntSK.Domain.Common.DependencyInjection.ServiceLifetime;
|
||||
using AntSK.LLM.Mock;
|
||||
using AntSK.Domain.Domain.Model.Enum;
|
||||
using AntSK.LLM.LLamaFactory;
|
||||
using System.Reflection;
|
||||
using DocumentFormat.OpenXml.Drawing;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.Extensions.Logging;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
@@ -29,17 +25,20 @@ namespace AntSK.Domain.Domain.Service
|
||||
private readonly FunctionService _functionService;
|
||||
private readonly IServiceProvider _serviceProvider;
|
||||
private Kernel _kernel;
|
||||
private readonly ILogger<KernelService> _logger;
|
||||
|
||||
public KernelService(
|
||||
IApis_Repositories apis_Repositories,
|
||||
IAIModels_Repositories aIModels_Repositories,
|
||||
FunctionService functionService,
|
||||
IServiceProvider serviceProvider)
|
||||
IServiceProvider serviceProvider,
|
||||
ILogger<KernelService> logger)
|
||||
{
|
||||
_apis_Repositories = apis_Repositories;
|
||||
_aIModels_Repositories = aIModels_Repositories;
|
||||
_functionService = functionService;
|
||||
_serviceProvider = serviceProvider;
|
||||
_logger = logger;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@@ -57,7 +56,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
var chatHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(chatModel.EndPoint);
|
||||
|
||||
var builder = Kernel.CreateBuilder();
|
||||
WithTextGenerationByAIType(builder, app, chatModel, chatHttpClient);
|
||||
WithTextGenerationByAIType(builder, chatModel, chatHttpClient);
|
||||
|
||||
_kernel = builder.Build();
|
||||
RegisterPluginsWithKernel(_kernel);
|
||||
@@ -69,7 +68,18 @@ namespace AntSK.Domain.Domain.Service
|
||||
//}
|
||||
}
|
||||
|
||||
private void WithTextGenerationByAIType(IKernelBuilder builder, Apps app, AIModels chatModel, HttpClient chatHttpClient)
|
||||
public Kernel GetKernelByAIModelID(string modelid)
|
||||
{
|
||||
var chatModel = _aIModels_Repositories.GetById(modelid);
|
||||
var chatHttpClient = OpenAIHttpClientHandlerUtil.GetHttpClient(chatModel.EndPoint);
|
||||
var builder = Kernel.CreateBuilder();
|
||||
WithTextGenerationByAIType(builder, chatModel, chatHttpClient);
|
||||
_kernel = builder.Build();
|
||||
RegisterPluginsWithKernel(_kernel);
|
||||
return _kernel;
|
||||
}
|
||||
|
||||
private void WithTextGenerationByAIType(IKernelBuilder builder,AIModels chatModel, HttpClient chatHttpClient)
|
||||
{
|
||||
switch (chatModel.AIType)
|
||||
{
|
||||
@@ -88,15 +98,32 @@ namespace AntSK.Domain.Domain.Service
|
||||
);
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.LLamaSharp:
|
||||
var (weights, parameters) = LLamaConfig.GetLLamaConfig(chatModel.ModelName);
|
||||
var ex = new StatelessExecutor(weights, parameters);
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("local-llama", new LLamaSharpTextCompletion(ex));
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.SparkDesk:
|
||||
var options = new SparkDeskOptions { AppId = chatModel.EndPoint, ApiSecret = chatModel.ModelKey, ApiKey = chatModel.ModelName, ModelVersion = Sdcb.SparkDesk.ModelVersion.V3_5 };
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("spark-desk", new SparkDeskTextCompletion(options, app.Id));
|
||||
|
||||
var settings = chatModel.ModelKey.Split("|");
|
||||
|
||||
Sdcb.SparkDesk.ModelVersion modelVersion = Sdcb.SparkDesk.ModelVersion.V3_5;
|
||||
|
||||
switch (chatModel.ModelName)
|
||||
{
|
||||
case "V3_5":
|
||||
modelVersion = Sdcb.SparkDesk.ModelVersion.V3_5;
|
||||
break;
|
||||
case "V3":
|
||||
modelVersion = Sdcb.SparkDesk.ModelVersion.V3;
|
||||
break;
|
||||
case "V2":
|
||||
modelVersion = Sdcb.SparkDesk.ModelVersion.V2;
|
||||
break;
|
||||
case "V1_5":
|
||||
modelVersion = Sdcb.SparkDesk.ModelVersion.V1_5;
|
||||
break;
|
||||
}
|
||||
|
||||
SparkDeskOptions options = new SparkDeskOptions { AppId = settings[0], ApiSecret = settings[1], ApiKey = settings[2], ModelVersion = modelVersion };
|
||||
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("spark-desk", new SparkDeskTextCompletion(options, chatModel.Id));
|
||||
builder.Services.AddKeyedSingleton<IChatCompletionService>("spark-desk-chat", new SparkDeskChatCompletion(options, chatModel.Id));
|
||||
break;
|
||||
|
||||
case Model.Enum.AIType.DashScope:
|
||||
@@ -105,11 +132,19 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
case Model.Enum.AIType.Mock:
|
||||
builder.Services.AddKeyedSingleton<ITextGenerationService>("mock", new MockTextCompletion());
|
||||
builder.Services.AddKeyedSingleton<IChatCompletionService>("mock-chat", new MockChatCompletion());
|
||||
break;
|
||||
case Model.Enum.AIType.LLamaFactory:
|
||||
builder.AddOpenAIChatCompletion(
|
||||
modelId: chatModel.ModelName,
|
||||
apiKey: "123",
|
||||
apiKey: "NotNull",
|
||||
httpClient: chatHttpClient
|
||||
);
|
||||
break;
|
||||
case AIType.Ollama:
|
||||
builder.AddOpenAIChatCompletion(
|
||||
modelId: chatModel.ModelName,
|
||||
apiKey: "NotNull",
|
||||
httpClient: chatHttpClient
|
||||
);
|
||||
break;
|
||||
@@ -124,7 +159,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
public void ImportFunctionsByApp(Apps app, Kernel _kernel)
|
||||
{
|
||||
//插件不能重复注册,否则会异常
|
||||
if (_kernel.Plugins.Any(p => p.Name == "AntSkFunctions"))
|
||||
if (_kernel.Plugins.Any(p => p.Name == "AntSKFunctions"))
|
||||
{
|
||||
return;
|
||||
}
|
||||
@@ -135,7 +170,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
//本地函数插件
|
||||
ImportNativeFunction(app, functions);
|
||||
|
||||
_kernel.ImportPluginFromFunctions("AntSkFunctions", functions);
|
||||
_kernel.ImportPluginFromFunctions("AntSKFunctions", functions);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@@ -160,7 +195,6 @@ namespace AntSK.Domain.Domain.Service
|
||||
|
||||
var getParametes = new List<KernelParameterMetadata>() {
|
||||
new KernelParameterMetadata("jsonbody"){
|
||||
Name="json参数字符串",
|
||||
ParameterType=typeof(string),
|
||||
Description=$"背景文档:{Environment.NewLine}{api.InputPrompt} {Environment.NewLine}提取出对应的json格式字符串,参考如下格式:{Environment.NewLine}{api.Query}"
|
||||
}
|
||||
@@ -199,7 +233,6 @@ namespace AntSK.Domain.Domain.Service
|
||||
//处理json body
|
||||
var postParametes = new List<KernelParameterMetadata>() {
|
||||
new KernelParameterMetadata("jsonbody"){
|
||||
Name="json参数字符串",
|
||||
ParameterType=typeof(string),
|
||||
Description=$"背景文档:{Environment.NewLine}{api.InputPrompt} {Environment.NewLine}提取出对应的json格式字符串,参考如下格式:{Environment.NewLine}{api.JsonBody}"
|
||||
}
|
||||
@@ -208,7 +241,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
try
|
||||
{
|
||||
Console.WriteLine(jsonBody);
|
||||
_logger.LogInformation(jsonBody);
|
||||
RestClient client = new RestClient();
|
||||
RestRequest request = new RestRequest(api.Url, Method.Post);
|
||||
foreach (var header in api.Header.ConvertToString().Split("\n"))
|
||||
@@ -287,8 +320,8 @@ namespace AntSK.Domain.Domain.Service
|
||||
KernelFunction sunFun = _kernel.Plugins.GetFunction("ConversationSummaryPlugin", "SummarizeConversation");
|
||||
var summary = await _kernel.InvokeAsync(sunFun, new() { ["input"] = $"内容是:{history.ToString()} {Environment.NewLine} 请注意用中文总结" });
|
||||
string his = summary.GetValue<string>();
|
||||
var msg = $"history:{Environment.NewLine}{history.ToString()}{Environment.NewLine} user:{questions}{Environment.NewLine}"; ;
|
||||
var msg = $"history:{Environment.NewLine}{his}{Environment.NewLine} user:{questions}{Environment.NewLine}";
|
||||
return msg;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,10 +4,13 @@ using AntSK.Domain.Domain.Model.Dto;
|
||||
using AntSK.Domain.Options;
|
||||
using AntSK.LLamaFactory.Model;
|
||||
using Microsoft.AspNetCore.Mvc.ModelBinding;
|
||||
using Microsoft.Extensions.Logging;
|
||||
using Newtonsoft.Json;
|
||||
using Serilog;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Diagnostics.Tracing;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Text.Json;
|
||||
@@ -16,7 +19,7 @@ using System.Threading.Tasks;
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
[ServiceDescription(typeof(ILLamaFactoryService), ServiceLifetime.Singleton)]
|
||||
public class LLamaFactoryService : ILLamaFactoryService
|
||||
public class LLamaFactoryService(ILogger<LLamaFactoryService> _logger) : ILLamaFactoryService
|
||||
{
|
||||
private Process process;
|
||||
|
||||
@@ -25,7 +28,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
private readonly object _syncLock = new object();
|
||||
private List<LLamaModel> modelList = new List<LLamaModel>();
|
||||
|
||||
public LLamaFactoryService() { }
|
||||
|
||||
public delegate Task LogMessageHandler(string message);
|
||||
public event LogMessageHandler LogMessageReceived;
|
||||
protected virtual async Task OnLogMessageReceived(string message)
|
||||
@@ -55,22 +58,61 @@ namespace AntSK.Domain.Domain.Service
|
||||
};
|
||||
process.OutputDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Console.WriteLine($"{eventArgs.Data}");
|
||||
_logger.LogInformation($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.ErrorDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Console.WriteLine($"{eventArgs.Data}");
|
||||
_logger.LogInformation($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.Start();
|
||||
process.BeginOutputReadLine();
|
||||
process.BeginErrorReadLine();
|
||||
process.WaitForExit();
|
||||
OnLogMessageReceived("--------------------完成--------------------");
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
await cmdTask;
|
||||
}
|
||||
public async Task PipInstallName(string name)
|
||||
{
|
||||
|
||||
public async Task StartLLamaFactory(string modelName, string templateName)
|
||||
var cmdTask = Task.Factory.StartNew(() =>
|
||||
{
|
||||
|
||||
var isProcessComplete = false;
|
||||
|
||||
process = new Process
|
||||
{
|
||||
StartInfo = new ProcessStartInfo
|
||||
{
|
||||
FileName = "pip",
|
||||
Arguments = $"install {name} -i https://pypi.tuna.tsinghua.edu.cn/simple",
|
||||
UseShellExecute = false,
|
||||
RedirectStandardOutput = true,
|
||||
RedirectStandardError = true,
|
||||
WorkingDirectory = AppDomain.CurrentDomain.BaseDirectory,
|
||||
}
|
||||
};
|
||||
process.OutputDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Log.Information($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.ErrorDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Log.Information($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.Start();
|
||||
process.BeginOutputReadLine();
|
||||
process.BeginErrorReadLine();
|
||||
process.WaitForExit();
|
||||
OnLogMessageReceived("--------------------完成--------------------");
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
await cmdTask;
|
||||
}
|
||||
public async Task StartLLamaFactory(string modelName)
|
||||
{
|
||||
var cmdTask = Task.Factory.StartNew(() =>
|
||||
{
|
||||
@@ -82,31 +124,34 @@ namespace AntSK.Domain.Domain.Service
|
||||
StartInfo = new ProcessStartInfo
|
||||
{
|
||||
FileName = "python",
|
||||
Arguments = "api_demo.py --model_name_or_path " + modelName + " --template " + templateName + " ",
|
||||
Arguments = "api_antsk.py --model_name_or_path " + modelName + " --template default ",
|
||||
UseShellExecute = false,
|
||||
RedirectStandardOutput = true,
|
||||
RedirectStandardError=true,
|
||||
WorkingDirectory = Path.Combine(Path.GetDirectoryName(System.Reflection.Assembly.GetEntryAssembly().Location), "llamafactory"),
|
||||
}
|
||||
};
|
||||
process.StartInfo.Environment["CUDA_VISIBLE_DEVICES"] = "0";
|
||||
process.StartInfo.Environment["CUDA_VISIBLE_DEVICES"] = Environment.GetEnvironmentVariable("CUDA_VISIBLE_DEVICES") ?? "0";
|
||||
process.StartInfo.Environment["API_PORT"] = "8000";
|
||||
process.StartInfo.EnvironmentVariables["USE_MODELSCOPE_HUB"] = "1";
|
||||
process.StartInfo.EnvironmentVariables["USE_MODELSCOPE_HUB"] = Environment.GetEnvironmentVariable("USE_MODELSCOPE_HUB") ?? "1";
|
||||
process.OutputDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Console.WriteLine($"{eventArgs.Data}");
|
||||
_logger.LogInformation($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.ErrorDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Console.WriteLine($"{eventArgs.Data}");
|
||||
_logger.LogInformation($"{eventArgs.Data}");
|
||||
OnLogMessageReceived(eventArgs.Data);
|
||||
};
|
||||
process.Start();
|
||||
process.BeginOutputReadLine();
|
||||
process.BeginErrorReadLine();
|
||||
process.WaitForExit();
|
||||
|
||||
OnLogMessageReceived("--------------------完成--------------------");
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
await cmdTask;
|
||||
}
|
||||
|
||||
private void Process_OutputDataReceived(object sender, DataReceivedEventArgs e)
|
||||
@@ -131,7 +176,7 @@ namespace AntSK.Domain.Domain.Service
|
||||
if (process1.ProcessName.ToLower() == "python")
|
||||
{
|
||||
process1.Kill();
|
||||
System.Console.WriteLine("kill python");
|
||||
_logger.LogInformation("kill python");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
74
src/AntSK.Domain/Domain/Service/OllamaService.cs
Normal file
74
src/AntSK.Domain/Domain/Service/OllamaService.cs
Normal file
@@ -0,0 +1,74 @@
|
||||
using AntSK.Domain.Common.DependencyInjection;
|
||||
using AntSK.Domain.Domain.Interface;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using Serilog;
|
||||
using AntSK.Domain.Utils;
|
||||
|
||||
namespace AntSK.Domain.Domain.Service
|
||||
{
|
||||
[ServiceDescription(typeof(IOllamaService), ServiceLifetime.Singleton)]
|
||||
public class OllamaService : IOllamaService
|
||||
{
|
||||
private Process process;
|
||||
public delegate Task LogMessageHandler(string message);
|
||||
public event LogMessageHandler LogMessageReceived;
|
||||
protected virtual async Task OnLogMessageReceived(string message)
|
||||
{
|
||||
LogMessageReceived?.Invoke(message);
|
||||
}
|
||||
|
||||
public async Task StartOllama(string modelName)
|
||||
{
|
||||
Console.OutputEncoding = Encoding.UTF8;
|
||||
var cmdTask = Task.Factory.StartNew(() =>
|
||||
{
|
||||
|
||||
var isProcessComplete = false;
|
||||
|
||||
process = new Process
|
||||
{
|
||||
StartInfo = new ProcessStartInfo
|
||||
{
|
||||
FileName = "ollama",
|
||||
Arguments = "run " + modelName,
|
||||
UseShellExecute = false,
|
||||
RedirectStandardOutput = true,
|
||||
RedirectStandardError = true,
|
||||
}
|
||||
};
|
||||
process.OutputDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Log.Information($"{eventArgs.Data.ConvertToString()}");
|
||||
if (!eventArgs.Data.ConvertToString().Contains("The handle is invalid"))
|
||||
{
|
||||
OnLogMessageReceived(eventArgs.Data.ConvertToString());
|
||||
}
|
||||
};
|
||||
process.ErrorDataReceived += (sender, eventArgs) =>
|
||||
{
|
||||
Log.Error($"{eventArgs.Data.ConvertToString()}");
|
||||
if (!eventArgs.Data.ConvertToString().Contains("The handle is invalid"))
|
||||
{
|
||||
OnLogMessageReceived(eventArgs.Data.ConvertToString());
|
||||
}
|
||||
};
|
||||
process.StartInfo.StandardOutputEncoding = Encoding.UTF8;
|
||||
process.StartInfo.StandardErrorEncoding = Encoding.UTF8;
|
||||
|
||||
process.Start();
|
||||
process.BeginOutputReadLine();
|
||||
process.BeginErrorReadLine();
|
||||
process.WaitForExit();
|
||||
|
||||
OnLogMessageReceived("--------------------完成--------------------");
|
||||
}, TaskCreationOptions.LongRunning);
|
||||
await cmdTask;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
13
src/AntSK.Domain/Options/FileDirOption.cs
Normal file
13
src/AntSK.Domain/Options/FileDirOption.cs
Normal file
@@ -0,0 +1,13 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.Domain.Options
|
||||
{
|
||||
public class FileDirOption
|
||||
{
|
||||
public static string DirectoryPath { get; set; } = Directory.GetCurrentDirectory();
|
||||
}
|
||||
}
|
||||
@@ -1,8 +0,0 @@
|
||||
namespace AntSK.Domain.Options
|
||||
{
|
||||
public class LLamaSharpOption
|
||||
{
|
||||
public static string RunType { get; set; }
|
||||
public static string FileDirectory { get; set; } = Directory.GetCurrentDirectory();
|
||||
}
|
||||
}
|
||||
@@ -25,7 +25,7 @@ namespace AntSK.Domain.Repositories
|
||||
/// 图标
|
||||
/// </summary>
|
||||
[Required]
|
||||
public string Icon { get; set; }
|
||||
public string Icon { get; set; } = "windows";
|
||||
|
||||
/// <summary>
|
||||
/// 类型
|
||||
@@ -44,6 +44,9 @@ namespace AntSK.Domain.Repositories
|
||||
/// </summary>
|
||||
public string? EmbeddingModelID { get; set; }
|
||||
|
||||
public string? RerankModelID { get; set; }
|
||||
|
||||
|
||||
public string? ImageModelID { get; set; }
|
||||
/// <summary>
|
||||
/// 温度
|
||||
@@ -54,6 +57,7 @@ namespace AntSK.Domain.Repositories
|
||||
/// <summary>
|
||||
/// 提示词
|
||||
/// </summary>
|
||||
[SugarColumn(ColumnDataType = "varchar(2000)")]
|
||||
public string? Prompt { get; set; }
|
||||
|
||||
/// <summary>
|
||||
@@ -71,11 +75,38 @@ namespace AntSK.Domain.Repositories
|
||||
/// <summary>
|
||||
/// 知识库ID列表
|
||||
/// </summary>
|
||||
[SugarColumn(ColumnDataType = "varchar(1000)")]
|
||||
public string? KmsIdList { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// API调用秘钥
|
||||
/// </summary>
|
||||
public string? SecretKey { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 相似度
|
||||
/// </summary>
|
||||
[SugarColumn(DefaultValue = "70")]
|
||||
public double Relevance { get; set; } = 70f;
|
||||
|
||||
/// <summary>
|
||||
/// 提问最大token数
|
||||
/// </summary>
|
||||
[SugarColumn(DefaultValue = "2048")]
|
||||
public int MaxAskPromptSize { get; set; } = 2048;
|
||||
/// <summary>
|
||||
/// 向量匹配数
|
||||
/// </summary>
|
||||
[SugarColumn(DefaultValue = "3")]
|
||||
public int MaxMatchesCount { get; set; } = 3;
|
||||
|
||||
|
||||
[SugarColumn(DefaultValue = "20")]
|
||||
public int RerankCount { get; set; } = 20;
|
||||
/// <summary>
|
||||
/// 回答最大token数
|
||||
/// </summary>
|
||||
[SugarColumn(DefaultValue = "2048")]
|
||||
public int AnswerTokens { get; set; } = 2048;
|
||||
}
|
||||
}
|
||||
41
src/AntSK.Domain/Repositories/AI/Chat/Chats.cs
Normal file
41
src/AntSK.Domain/Repositories/AI/Chat/Chats.cs
Normal file
@@ -0,0 +1,41 @@
|
||||
using AntSK.Domain.Domain.Model.Enum;
|
||||
using SqlSugar;
|
||||
using System.ComponentModel.DataAnnotations;
|
||||
|
||||
namespace AntSK.Domain.Repositories
|
||||
{
|
||||
[SugarTable("Chats")]
|
||||
public partial class Chats
|
||||
{
|
||||
[SugarColumn(IsPrimaryKey = true)]
|
||||
public string Id { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 用户名
|
||||
/// </summary>
|
||||
public string UserName { get; set; }
|
||||
/// <summary>
|
||||
/// 应用ID
|
||||
/// </summary>
|
||||
public string AppId { get; set; }
|
||||
/// <summary>
|
||||
/// 消息内容
|
||||
/// </summary>
|
||||
[SugarColumn(ColumnDataType = "varchar(4000)")]
|
||||
public string Context { get; set; } = "";
|
||||
|
||||
/// <summary>
|
||||
/// 发送是true 接收是false
|
||||
/// </summary>
|
||||
public bool IsSend { get; set; } = false;
|
||||
/// <summary>
|
||||
/// 创建事件
|
||||
/// </summary>
|
||||
public DateTime CreateTime { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// 文件名
|
||||
/// </summary>
|
||||
public string? FileName { get; set; }
|
||||
}
|
||||
}
|
||||
11
src/AntSK.Domain/Repositories/AI/Chat/Chats_Repositories.cs
Normal file
11
src/AntSK.Domain/Repositories/AI/Chat/Chats_Repositories.cs
Normal file
@@ -0,0 +1,11 @@
|
||||
|
||||
using AntSK.Domain.Common.DependencyInjection;
|
||||
using AntSK.Domain.Repositories.Base;
|
||||
|
||||
namespace AntSK.Domain.Repositories
|
||||
{
|
||||
[ServiceDescription(typeof(IChats_Repositories), ServiceLifetime.Scoped)]
|
||||
public class Chats_Repositories : Repository<Chats>, IChats_Repositories
|
||||
{
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,8 @@
|
||||
using AntSK.Domain.Repositories.Base;
|
||||
|
||||
namespace AntSK.Domain.Repositories
|
||||
{
|
||||
public interface IChats_Repositories : IRepository<Chats>
|
||||
{
|
||||
}
|
||||
}
|
||||
@@ -12,7 +12,7 @@ namespace AntSK.Domain.Repositories
|
||||
/// 图标
|
||||
/// </summary>
|
||||
[Required]
|
||||
public string Icon { get; set; }
|
||||
public string Icon { get; set; } = "question-circle";
|
||||
/// <summary>
|
||||
/// 名称
|
||||
/// </summary>
|
||||
@@ -55,6 +55,7 @@ namespace AntSK.Domain.Repositories
|
||||
[SugarColumn(DefaultValue = "49")]
|
||||
public int OverlappingTokens { get; set; } = 49;
|
||||
|
||||
|
||||
[SugarColumn(DefaultValue = "0")]
|
||||
public int IsOCR { get; set; } = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
using System.Web;
|
||||
using Newtonsoft.Json;
|
||||
using Serilog;
|
||||
using System.Security.Cryptography;
|
||||
using System.Text.RegularExpressions;
|
||||
using System.Web;
|
||||
|
||||
namespace AntSK.Domain.Utils
|
||||
{
|
||||
@@ -261,5 +265,55 @@ namespace AntSK.Domain.Utils
|
||||
{
|
||||
return s.Equals(value, StringComparison.OrdinalIgnoreCase);
|
||||
}
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// \uxxxx转中文,保留换行符号
|
||||
/// </summary>
|
||||
/// <param name="unicodeString"></param>
|
||||
/// <returns></returns>
|
||||
public static string Unescape(this string value)
|
||||
{
|
||||
if (value.IsNull())
|
||||
{
|
||||
return "";
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
Formatting formatting = Formatting.None;
|
||||
|
||||
object jsonObj = JsonConvert.DeserializeObject(value);
|
||||
string unescapeValue = JsonConvert.SerializeObject(jsonObj, formatting);
|
||||
return unescapeValue;
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
Log.Error(ex.ToString());
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// 是否为流式请求
|
||||
/// </summary>
|
||||
/// <param name="value"></param>
|
||||
/// <returns></returns>
|
||||
public static bool IsStream(this string value)
|
||||
{
|
||||
// 正则表达式忽略空格的情况
|
||||
string pattern = @"\s*""stream""\s*:\s*true\s*";
|
||||
|
||||
// 使用正则表达式匹配
|
||||
bool contains = Regex.IsMatch(value, pattern);
|
||||
return contains;
|
||||
}
|
||||
|
||||
public static string AntSKCalculateSHA256(this BinaryData binaryData)
|
||||
{
|
||||
byte[] byteArray = SHA256.HashData(binaryData.ToMemory().Span);
|
||||
return Convert.ToHexString(byteArray).ToLowerInvariant();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
using System.Text.RegularExpressions;
|
||||
using Serilog;
|
||||
using System.Text;
|
||||
using System.Text.RegularExpressions;
|
||||
|
||||
namespace AntSK.Domain.Utils
|
||||
{
|
||||
@@ -15,12 +17,19 @@ namespace AntSK.Domain.Utils
|
||||
UriBuilder uriBuilder;
|
||||
Regex regex = new Regex(@"(https?)://([^/:]+)(:\d+)?/(.*)");
|
||||
Match match = regex.Match(_endPoint);
|
||||
if (Environment.GetEnvironmentVariable("ASPNETCORE_ENVIRONMENT") == "Development" && request.Content != null)
|
||||
string guid = Guid.NewGuid().ToString();
|
||||
var mediaType = request.Content.Headers.ContentType.MediaType;
|
||||
string requestBody = (await request.Content.ReadAsStringAsync()).Unescape();
|
||||
var uncaseBody = new StringContent(requestBody, Encoding.UTF8, mediaType);
|
||||
request.Content = uncaseBody;
|
||||
|
||||
if (Environment.GetEnvironmentVariable("ASPNETCORE_ENVIRONMENT").ConvertToString() != "Production")
|
||||
{
|
||||
string requestBody = await request.Content.ReadAsStringAsync();
|
||||
//生产环境根据环境变量可去关闭日志
|
||||
//便于调试查看请求prompt
|
||||
Console.WriteLine(requestBody);
|
||||
Log.Information("{Message}", $"【模型服务接口调用-{guid},host:{_endPoint}】:{Environment.NewLine}{requestBody}");
|
||||
}
|
||||
|
||||
if (match.Success)
|
||||
{
|
||||
string xieyi = match.Groups[1].Value;
|
||||
@@ -70,7 +79,11 @@ namespace AntSK.Domain.Utils
|
||||
|
||||
// 接着,调用基类的 SendAsync 方法将你的修改后的请求发出去
|
||||
HttpResponseMessage response = await base.SendAsync(request, cancellationToken);
|
||||
|
||||
if (Environment.GetEnvironmentVariable("ASPNETCORE_ENVIRONMENT").ConvertToString() != "Production")
|
||||
{
|
||||
string responseContent = requestBody.IsStream() ? response.Content.ReadAsStringAsync().Result : response.Content.ReadAsStringAsync().Result.Unescape();
|
||||
Log.Information("{Message}", $"【模型服务接口返回-{guid},host:{_endPoint}】:{Environment.NewLine}{responseContent}");
|
||||
}
|
||||
return response;
|
||||
}
|
||||
}
|
||||
@@ -82,7 +95,7 @@ namespace AntSK.Domain.Utils
|
||||
{
|
||||
var handler = new OpenAIHttpClientHandler(endPoint.ConvertToString());
|
||||
var httpClient = new HttpClient(handler);
|
||||
httpClient.Timeout = TimeSpan.FromMinutes(5);
|
||||
httpClient.Timeout = TimeSpan.FromMinutes(10);
|
||||
return httpClient;
|
||||
}
|
||||
}
|
||||
|
||||
55
src/AntSK.LLM/AntSK.LLM.csproj
Normal file
55
src/AntSK.LLM/AntSK.LLM.csproj
Normal file
@@ -0,0 +1,55 @@
|
||||
<Project Sdk="Microsoft.NET.Sdk">
|
||||
|
||||
<PropertyGroup>
|
||||
<TargetFramework>net8.0</TargetFramework>
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Nullable>enable</Nullable>
|
||||
</PropertyGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<PackageReference Include="Microsoft.SemanticKernel" Version="$(SKVersion)" />
|
||||
<PackageReference Include="Newtonsoft.Json" Version="$(NewtonsoftVersion)" />
|
||||
<PackageReference Include="RestSharp" Version="$(RestSharpVersion)" />
|
||||
<PackageReference Include="Cnblogs.KernelMemory.AI.DashScope" Version="0.3.0" />
|
||||
<PackageReference Include="Cnblogs.SemanticKernel.Connectors.DashScope" Version="0.3.2" />
|
||||
<PackageReference Include="Sdcb.SparkDesk" Version="3.0.0" />
|
||||
<PackageReference Include="System.Drawing.Common" Version="8.0.0" />
|
||||
</ItemGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<None Update="OllamaEmbeddingModelList.txt">
|
||||
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="OllamaModelList.txt">
|
||||
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusion\Backend\CPU\stable-diffusion.dll">
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusion\Backend\CPU\stable-diffusion.so">
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusion\Backend\Cuda11\stable-diffusion.dll">
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusion\Backend\Cuda11\stable-diffusion.so">
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusion\Backend\Cuda12\stable-diffusion.dll">
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusion\Backend\Cuda12\stable-diffusion.so">
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusion\Backend\ROCm\stable-diffusion.dll">
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusion\Backend\ROCm\stable-diffusion.so">
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</None>
|
||||
<None Update="StableDiffusionModelList.txt">
|
||||
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
|
||||
</None>
|
||||
</ItemGroup>
|
||||
|
||||
</Project>
|
||||
55
src/AntSK.LLM/Mock/MockChatCompletion.cs
Normal file
55
src/AntSK.LLM/Mock/MockChatCompletion.cs
Normal file
@@ -0,0 +1,55 @@
|
||||
using AntSK.LLM.SparkDesk;
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Sdcb.SparkDesk;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Runtime.CompilerServices;
|
||||
using System.Text;
|
||||
using System.Text.Encodings.Web;
|
||||
using System.Text.Json.Serialization;
|
||||
using System.Text.Json;
|
||||
using System.Text.Unicode;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.LLM.Mock
|
||||
{
|
||||
public class MockChatCompletion : IChatCompletionService
|
||||
{
|
||||
private readonly Dictionary<string, object?> _attributes = new();
|
||||
private readonly SparkDeskClient _client;
|
||||
private string _chatId;
|
||||
private readonly SparkDeskOptions _options;
|
||||
|
||||
private static readonly JsonSerializerOptions _jsonSerializerOptions = new()
|
||||
{
|
||||
NumberHandling = JsonNumberHandling.AllowReadingFromString,
|
||||
Encoder = JavaScriptEncoder.Create(UnicodeRanges.All)
|
||||
};
|
||||
|
||||
public IReadOnlyDictionary<string, object?> Attributes => _attributes;
|
||||
|
||||
public MockChatCompletion()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
public async Task<IReadOnlyList<ChatMessageContent>> GetChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
|
||||
{
|
||||
StringBuilder sb = new();
|
||||
string result = $"这是一条Mock数据,便于聊天测试,你的消息是:{chatHistory.LastOrDefault().ToString()}";
|
||||
return [new(AuthorRole.Assistant, result.ToString())];
|
||||
}
|
||||
|
||||
public async IAsyncEnumerable<StreamingChatMessageContent> GetStreamingChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
|
||||
{
|
||||
StringBuilder sb = new();
|
||||
string result = $"这是一条Mock数据,便于聊天测试,你的消息是:{chatHistory.LastOrDefault().ToString()}";
|
||||
foreach (var c in result)
|
||||
{
|
||||
yield return new StreamingChatMessageContent(AuthorRole.Assistant, c.ToString());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
105
src/AntSK.LLM/OllamaModelList.txt
Normal file
105
src/AntSK.LLM/OllamaModelList.txt
Normal file
@@ -0,0 +1,105 @@
|
||||
gemma2
|
||||
gemma2:27b
|
||||
gemma:2b
|
||||
gemma:7b
|
||||
llama3
|
||||
llama3:70b
|
||||
yi:6b
|
||||
yi:9B
|
||||
yi:34B
|
||||
qwen2:0.5b
|
||||
qwen2:1.5b
|
||||
qwen2:7b
|
||||
qwen2:72b
|
||||
qwen:0.5b
|
||||
qwen:1.8b
|
||||
qwen:4b
|
||||
qwen:7b
|
||||
qwen:14b
|
||||
qwen:32b
|
||||
qwen:72b
|
||||
qwen:110b
|
||||
deepseek-coder:1.3b
|
||||
deepseek-coder:6.7b
|
||||
deepseek-coder:33b
|
||||
deepseek-coder-v2:16b
|
||||
deepseek-coder-v2:236b
|
||||
phi:2.7b
|
||||
phi3:mini
|
||||
phi3:medium
|
||||
phi3:medium-128k
|
||||
aya:8b
|
||||
aya:35b
|
||||
mistral:7b
|
||||
mixtral:8x22b
|
||||
mixtral:8x7b
|
||||
codegemma:2b
|
||||
codegemma:7b
|
||||
command-r:35b
|
||||
llava
|
||||
gemma:2b
|
||||
gemma:7b
|
||||
llama2:7b
|
||||
llama2:13b
|
||||
llama2:70b
|
||||
llama2-chinese:7b
|
||||
llama2-chinese:13b
|
||||
llama3.1:8b
|
||||
llama3.1:70b
|
||||
llama3.1:405b
|
||||
codellama:7b
|
||||
codellama:13b
|
||||
codellama:34b
|
||||
codellama:70b
|
||||
dolphin-mistral:7b
|
||||
dolphin-mixtral:8x22b
|
||||
dolphin-mixtral:8x7b
|
||||
llama2-uncensored:7b
|
||||
llama2-uncensored:70b
|
||||
tinyllama:1.1b
|
||||
openchat:7b
|
||||
orca-mini:3b
|
||||
orca-mini:7b
|
||||
orca-mini:13b
|
||||
orca-mini:70b
|
||||
mistral-openorca:7b
|
||||
dolphin-llama3:8b
|
||||
dolphin-llama3:70b
|
||||
starcoder:1b
|
||||
starcoder:3b
|
||||
starcoder:7b
|
||||
starcoder:15b
|
||||
starcoder2:3b
|
||||
starcoder2:7b
|
||||
starcoder2:15b
|
||||
zephyr:7b
|
||||
zephyr:141b
|
||||
nous-hermes2:10.7b
|
||||
nous-hermes2:34b
|
||||
vicuna:7b
|
||||
vicuna:13b
|
||||
vicuna:33b
|
||||
wizard-vicuna-uncensored:7b
|
||||
wizard-vicuna-uncensored:13b
|
||||
wizard-vicuna-uncensored:30b
|
||||
wizardlm2:7b
|
||||
codestral:22b
|
||||
tinydolphin:1.1b
|
||||
openhermes:v2.5
|
||||
neural-chat:7b
|
||||
codeqwen:7b
|
||||
phind-codellama:34b
|
||||
nous-hermes:7b
|
||||
nous-hermes:13b
|
||||
nous-hermes:13b
|
||||
starling-lm:7b
|
||||
llama3-gradient:8b
|
||||
llama3-gradient:70b
|
||||
yarn-llama2:7b
|
||||
yarn-llama2:13b
|
||||
llava-llama3:8b
|
||||
llama-pro:instruct
|
||||
everythinglm:13b
|
||||
llava-phi3:3.8b
|
||||
mistrallite:7b
|
||||
notus:7b
|
||||
231
src/AntSK.LLM/SparkDesk/SparkDeskChatCompletion.cs
Normal file
231
src/AntSK.LLM/SparkDesk/SparkDeskChatCompletion.cs
Normal file
@@ -0,0 +1,231 @@
|
||||
using Microsoft.SemanticKernel.ChatCompletion;
|
||||
using Microsoft.SemanticKernel.Connectors.OpenAI;
|
||||
using Microsoft.SemanticKernel;
|
||||
using Sdcb.SparkDesk;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Runtime.CompilerServices;
|
||||
using System.Text;
|
||||
using System.Text.Encodings.Web;
|
||||
using System.Text.Json.Serialization;
|
||||
using System.Text.Json;
|
||||
using System.Text.Unicode;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
namespace AntSK.LLM.SparkDesk
|
||||
{
|
||||
public class SparkDeskChatCompletion : IChatCompletionService
|
||||
{
|
||||
private readonly Dictionary<string, object?> _attributes = new();
|
||||
private readonly SparkDeskClient _client;
|
||||
private string _chatId;
|
||||
private readonly SparkDeskOptions _options;
|
||||
|
||||
private static readonly JsonSerializerOptions _jsonSerializerOptions = new()
|
||||
{
|
||||
NumberHandling = JsonNumberHandling.AllowReadingFromString,
|
||||
Encoder = JavaScriptEncoder.Create(UnicodeRanges.All)
|
||||
};
|
||||
|
||||
public IReadOnlyDictionary<string, object?> Attributes => _attributes;
|
||||
|
||||
public SparkDeskChatCompletion(SparkDeskOptions options, string chatId)
|
||||
{
|
||||
_options = options;
|
||||
_chatId = chatId;
|
||||
_client = new(options.AppId, options.ApiKey, options.ApiSecret);
|
||||
}
|
||||
|
||||
public async Task<IReadOnlyList<ChatMessageContent>> GetChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, CancellationToken cancellationToken = default)
|
||||
{
|
||||
StringBuilder sb = new();
|
||||
var parameters = new ChatRequestParameters
|
||||
{
|
||||
ChatId = _chatId,
|
||||
};
|
||||
|
||||
OpenAIPromptExecutionSettings chatExecutionSettings = OpenAIPromptExecutionSettings.FromExecutionSettings(executionSettings);
|
||||
|
||||
parameters.Temperature = (float)chatExecutionSettings.Temperature;
|
||||
parameters.MaxTokens = chatExecutionSettings.MaxTokens ?? parameters.MaxTokens;
|
||||
|
||||
IList<KernelFunctionMetadata> functions = kernel?.Plugins.GetFunctionsMetadata().Where(x => x.PluginName == "AntSKFunctions").ToList() ?? [];
|
||||
var functionDefs = functions.Select(func => new FunctionDef(func.Name, func.Description, func.Parameters.Select(p => new FunctionParametersDef(p.Name, p.ParameterType?.IsClass == true ? "object" : "string", p.Description, p.IsRequired)).ToList())).ToList();
|
||||
|
||||
List<ChatMessage> messages = GetSparkMessage(chatHistory);
|
||||
|
||||
var result = await _client.ChatAsync(_options.ModelVersion, messages.ToArray(), parameters, functionDefs.Count > 0 ? [.. functionDefs] : null, cancellationToken: cancellationToken);
|
||||
|
||||
if (result.FunctionCall != null)
|
||||
{
|
||||
var func = functions.Where(x => x.Name == result.FunctionCall.Name).FirstOrDefault();
|
||||
|
||||
if (func == null)
|
||||
{
|
||||
return new List<ChatMessageContent> { new(AuthorRole.Assistant, $"插件{result.FunctionCall.Name}未注册") }.AsReadOnly();
|
||||
}
|
||||
|
||||
if (kernel.Plugins.TryGetFunction(func.PluginName, func.Name, out var function))
|
||||
{
|
||||
var arguments = new KernelArguments();
|
||||
|
||||
var JsonElement = JsonDocument.Parse(result.FunctionCall.Arguments).RootElement;
|
||||
foreach (var parameter in func.Parameters)
|
||||
{
|
||||
var error = "";
|
||||
try
|
||||
{
|
||||
if (JsonElement.TryGetProperty(parameter.Name, out var property))
|
||||
{
|
||||
arguments.Add(parameter.Name, property.Deserialize(parameter.ParameterType!, _jsonSerializerOptions));
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
error = $"参数{parameter.Name}解析错误:{ex.Message}";
|
||||
}
|
||||
|
||||
if (!string.IsNullOrEmpty(error))
|
||||
{
|
||||
return new List<ChatMessageContent> { new(AuthorRole.Assistant, error) }.AsReadOnly();
|
||||
|
||||
}
|
||||
}
|
||||
var functionResult = await function.InvokeAsync(kernel, arguments, cancellationToken);
|
||||
messages = [ ChatMessage.FromUser(messages.LastOrDefault().Content),
|
||||
ChatMessage.FromSystem($@"
|
||||
执行函数调用成功
|
||||
函数描述:{func.Description}
|
||||
函数执行结果:{functionResult}
|
||||
"),
|
||||
ChatMessage.FromUser("请根据函数调用结果回答我的问题,不要超出函数调用结果的返回,以及不要有多余描述:")];
|
||||
|
||||
|
||||
var callResult = await _client.ChatAsync(_options.ModelVersion, messages.ToArray(), parameters, null);
|
||||
ChatMessageContent chatMessageContent = new(AuthorRole.Assistant, callResult.Text.ToString(), modelId: "SparkDesk");
|
||||
|
||||
return new List<ChatMessageContent> { chatMessageContent }.AsReadOnly();
|
||||
|
||||
}
|
||||
return new List<ChatMessageContent> { new(AuthorRole.Assistant, "未找到插件") }.AsReadOnly();
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
ChatMessageContent chatMessageContent = new(AuthorRole.Assistant, result.Text.ToString(), modelId: "SparkDesk");
|
||||
|
||||
return new List<ChatMessageContent> { chatMessageContent }.AsReadOnly();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
public async IAsyncEnumerable<StreamingChatMessageContent> GetStreamingChatMessageContentsAsync(ChatHistory chatHistory, PromptExecutionSettings? executionSettings = null, Kernel? kernel = null, [EnumeratorCancellation] CancellationToken cancellationToken = default)
|
||||
{
|
||||
var parameters = new ChatRequestParameters
|
||||
{
|
||||
ChatId = _chatId,
|
||||
};
|
||||
OpenAIPromptExecutionSettings chatExecutionSettings = OpenAIPromptExecutionSettings.FromExecutionSettings(executionSettings);
|
||||
|
||||
parameters.Temperature = (float)chatExecutionSettings.Temperature;
|
||||
parameters.MaxTokens = chatExecutionSettings.MaxTokens ?? parameters.MaxTokens;
|
||||
|
||||
IList<KernelFunctionMetadata> functions = kernel?.Plugins.GetFunctionsMetadata().Where(x => x.PluginName == "AntSKFunctions").ToList() ?? [];
|
||||
var functionDefs = functions.Select(func => new FunctionDef(func.Name, func.Description, func.Parameters.Select(p => new FunctionParametersDef(p.Name, p.ParameterType?.IsClass == true ? "object" : "string", p.Description, p.IsRequired)).ToList())).ToList();
|
||||
List<ChatMessage> messages = GetSparkMessage(chatHistory);
|
||||
await foreach (StreamedChatResponse msg in _client.ChatAsStreamAsync(_options.ModelVersion, messages.ToArray(), parameters, functionDefs.Count > 0 ? [.. functionDefs] : null, cancellationToken: cancellationToken))
|
||||
{
|
||||
|
||||
yield return new StreamingChatMessageContent(AuthorRole.Assistant, msg);
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
private static List<ChatMessage> GetSparkMessage(ChatHistory chatHistory)
|
||||
{
|
||||
List<ChatMessage> messages = new List<ChatMessage>();
|
||||
foreach (var msg in chatHistory.ToList())
|
||||
{
|
||||
string role = "";
|
||||
if (msg.Role == AuthorRole.User)
|
||||
{
|
||||
role = "user";
|
||||
}
|
||||
else if (msg.Role == AuthorRole.System)
|
||||
{
|
||||
role = "system";
|
||||
}
|
||||
else
|
||||
{
|
||||
role = "assistant";
|
||||
}
|
||||
messages.Add(new ChatMessage(role, msg.ToString()));
|
||||
}
|
||||
|
||||
return messages;
|
||||
}
|
||||
|
||||
|
||||
private static string? ProcessFunctionResult(object functionResult, ToolCallBehavior? toolCallBehavior)
|
||||
{
|
||||
if (functionResult is string stringResult)
|
||||
{
|
||||
return stringResult;
|
||||
}
|
||||
|
||||
if (functionResult is ChatMessageContent chatMessageContent)
|
||||
{
|
||||
return chatMessageContent.ToString();
|
||||
}
|
||||
|
||||
return JsonSerializer.Serialize(functionResult, _jsonSerializerOptions);
|
||||
}
|
||||
|
||||
public static Dictionary<string, object> ParseJsonElement(JsonElement element, string propertyName)
|
||||
{
|
||||
Dictionary<string, object> dict = new();
|
||||
|
||||
switch (element.ValueKind)
|
||||
{
|
||||
case JsonValueKind.Object:
|
||||
foreach (JsonProperty property in element.EnumerateObject())
|
||||
{
|
||||
dict.Add(property.Name, ParseJsonElement(property.Value, property.Name));
|
||||
}
|
||||
break;
|
||||
|
||||
case JsonValueKind.Array:
|
||||
List<object> list = new List<object>();
|
||||
foreach (JsonElement arrayElement in element.EnumerateArray())
|
||||
{
|
||||
list.Add(ParseJsonElement(arrayElement, ""));
|
||||
}
|
||||
dict.Add(propertyName, list);
|
||||
break;
|
||||
|
||||
case JsonValueKind.String:
|
||||
dict.Add(propertyName, element.GetString());
|
||||
break;
|
||||
|
||||
case JsonValueKind.Number:
|
||||
dict.Add(propertyName, element.GetInt32());
|
||||
break;
|
||||
|
||||
case JsonValueKind.True:
|
||||
case JsonValueKind.False:
|
||||
dict.Add(propertyName, element.GetBoolean());
|
||||
break;
|
||||
|
||||
default:
|
||||
dict.Add(propertyName, "Unsupported value type");
|
||||
break;
|
||||
}
|
||||
|
||||
return dict;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -67,7 +67,7 @@ namespace AntSK.LLM.SparkDesk
|
||||
parameters.Temperature = (float)chatExecutionSettings.Temperature;
|
||||
parameters.MaxTokens = chatExecutionSettings.MaxTokens ?? parameters.MaxTokens;
|
||||
|
||||
IList<KernelFunctionMetadata> functions = kernel?.Plugins.GetFunctionsMetadata().Where(x => x.PluginName == "AntSkFunctions").ToList() ?? [];
|
||||
IList<KernelFunctionMetadata> functions = kernel?.Plugins.GetFunctionsMetadata().Where(x => x.PluginName == "AntSKFunctions").ToList() ?? [];
|
||||
var functionDefs = functions.Select(func => new FunctionDef(func.Name, func.Description, func.Parameters.Select(p => new FunctionParametersDef(p.Name, p.ParameterType?.IsClass == true ? "object" : "string", p.Description, p.IsRequired)).ToList())).ToList();
|
||||
|
||||
//var messages = GetHistories(prompt);
|
||||
BIN
src/AntSK.LLM/StableDiffusion/Backend/CPU/stable-diffusion.dll
Normal file
BIN
src/AntSK.LLM/StableDiffusion/Backend/CPU/stable-diffusion.dll
Normal file
Binary file not shown.
BIN
src/AntSK.LLM/StableDiffusion/Backend/CPU/stable-diffusion.so
Normal file
BIN
src/AntSK.LLM/StableDiffusion/Backend/CPU/stable-diffusion.so
Normal file
Binary file not shown.
Binary file not shown.
BIN
src/AntSK.LLM/StableDiffusion/Backend/Cuda11/stable-diffusion.so
Normal file
BIN
src/AntSK.LLM/StableDiffusion/Backend/Cuda11/stable-diffusion.so
Normal file
Binary file not shown.
Binary file not shown.
BIN
src/AntSK.LLM/StableDiffusion/Backend/Cuda12/stable-diffusion.so
Normal file
BIN
src/AntSK.LLM/StableDiffusion/Backend/Cuda12/stable-diffusion.so
Normal file
Binary file not shown.
BIN
src/AntSK.LLM/StableDiffusion/Backend/ROCm/stable-diffusion.dll
Normal file
BIN
src/AntSK.LLM/StableDiffusion/Backend/ROCm/stable-diffusion.dll
Normal file
Binary file not shown.
BIN
src/AntSK.LLM/StableDiffusion/Backend/ROCm/stable-diffusion.so
Normal file
BIN
src/AntSK.LLM/StableDiffusion/Backend/ROCm/stable-diffusion.so
Normal file
Binary file not shown.
@@ -1,5 +1,4 @@
|
||||
using System;
|
||||
using System.Drawing;
|
||||
using System.Drawing;
|
||||
using System.Drawing.Imaging;
|
||||
using System.Runtime.InteropServices;
|
||||
|
||||
@@ -23,15 +22,16 @@ namespace AntSK.LLM.StableDiffusion
|
||||
static readonly Native.SdLogCallback sd_Log_Cb;
|
||||
static readonly Native.SdProgressCallback sd_Progress_Cb;
|
||||
|
||||
static SDHelper()
|
||||
{
|
||||
sd_Log_Cb = new Native.SdLogCallback(OnNativeLog);
|
||||
Native.sd_set_log_callback(sd_Log_Cb, IntPtr.Zero);
|
||||
//Hide the code below so that the process can be seen in console.
|
||||
//static SDHelper()
|
||||
//{
|
||||
// sd_Log_Cb = new Native.SdLogCallback(OnNativeLog);
|
||||
// Native.sd_set_log_callback(sd_Log_Cb, IntPtr.Zero);
|
||||
|
||||
sd_Progress_Cb = new Native.SdProgressCallback(OnProgressRunning);
|
||||
Native.sd_set_progress_callback(sd_Progress_Cb, IntPtr.Zero);
|
||||
// sd_Progress_Cb = new Native.SdProgressCallback(OnProgressRunning);
|
||||
// Native.sd_set_progress_callback(sd_Progress_Cb, IntPtr.Zero);
|
||||
|
||||
}
|
||||
//}
|
||||
|
||||
public static bool Initialize(ModelParams modelParams)
|
||||
{
|
||||
@@ -83,6 +83,16 @@ namespace AntSK.LLM.StableDiffusion
|
||||
{
|
||||
if (!IsInitialized) throw new ArgumentNullException("Model not loaded!");
|
||||
|
||||
IntPtr cnPtr = IntPtr.Zero;
|
||||
if (textToImageParams.ControlCond != null)
|
||||
{
|
||||
if (textToImageParams.ControlCond.Width > 1)
|
||||
{
|
||||
SDImage cnImg = GetSDImageFromBitmap(textToImageParams.ControlCond);
|
||||
cnPtr = GetPtrFromImage(cnImg);
|
||||
}
|
||||
}
|
||||
|
||||
SDImagePtr sd_Image_ptr = Native.txt2img(sd_ctx,
|
||||
textToImageParams.Prompt,
|
||||
textToImageParams.NegativePrompt,
|
||||
@@ -94,7 +104,7 @@ namespace AntSK.LLM.StableDiffusion
|
||||
textToImageParams.SampleSteps,
|
||||
textToImageParams.Seed,
|
||||
textToImageParams.BatchCount,
|
||||
SDImagePtr.Zero,
|
||||
cnPtr,
|
||||
textToImageParams.ControlStrength,
|
||||
textToImageParams.StyleStrength,
|
||||
textToImageParams.NormalizeInput,
|
||||
@@ -200,6 +210,13 @@ namespace AntSK.LLM.StableDiffusion
|
||||
return sd_Image;
|
||||
}
|
||||
|
||||
private static IntPtr GetPtrFromImage(SDImage sdImg)
|
||||
{
|
||||
IntPtr imgPtr = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(SDImage)));
|
||||
Marshal.StructureToPtr(sdImg, imgPtr, false);
|
||||
return imgPtr;
|
||||
}
|
||||
|
||||
private static void OnNativeLog(SdLogLevel level, string text, IntPtr data)
|
||||
{
|
||||
Log?.Invoke(null, new StableDiffusionEventArgs.StableDiffusionLogEventArgs { Level = level, Text = text });
|
||||
6
src/AntSK.LLM/StableDiffusionModelList.txt
Normal file
6
src/AntSK.LLM/StableDiffusionModelList.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
AsAHuman/chilloutmix
|
||||
GraMpa7/dreamsharper
|
||||
Airic/Anything-V4.5
|
||||
liqira/anythingv3
|
||||
wind1/MoYou
|
||||
Reuploadingfromcivitai/DosMix
|
||||
19
src/AntSK.LLamaFactory/llamafactory/api_antsk.py
Normal file
19
src/AntSK.LLamaFactory/llamafactory/api_antsk.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import os
|
||||
|
||||
import uvicorn
|
||||
|
||||
from llamafactory.api.app import create_app
|
||||
from llamafactory.chat import ChatModel
|
||||
|
||||
|
||||
def main():
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||
uvicorn.run(app, host=api_host, port=api_port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,16 +0,0 @@
|
||||
import os
|
||||
|
||||
import uvicorn
|
||||
|
||||
from llmtuner import ChatModel, create_app
|
||||
|
||||
|
||||
def main():
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
|
||||
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,6 @@
|
||||
# Level: api, webui > chat, eval, train > data, model > hparams > extras
|
||||
|
||||
from .cli import VERSION
|
||||
|
||||
|
||||
__version__ = VERSION
|
||||
108
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/app.py
Normal file
108
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/app.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import os
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Optional
|
||||
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from ..chat import ChatModel
|
||||
from ..extras.misc import torch_gc
|
||||
from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available
|
||||
from .chat import (
|
||||
create_chat_completion_response,
|
||||
create_score_evaluation_response,
|
||||
create_stream_chat_completion_response,
|
||||
)
|
||||
from .protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ModelCard,
|
||||
ModelList,
|
||||
ScoreEvaluationRequest,
|
||||
ScoreEvaluationResponse,
|
||||
)
|
||||
|
||||
|
||||
if is_fastapi_available():
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
|
||||
|
||||
|
||||
if is_starlette_available():
|
||||
from sse_starlette import EventSourceResponse
|
||||
|
||||
|
||||
if is_uvicorn_available():
|
||||
import uvicorn
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: "FastAPI"): # collects GPU memory
|
||||
yield
|
||||
torch_gc()
|
||||
|
||||
|
||||
def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
api_key = os.environ.get("API_KEY")
|
||||
security = HTTPBearer(auto_error=False)
|
||||
|
||||
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
|
||||
if api_key and (auth is None or auth.credentials != api_key):
|
||||
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")
|
||||
|
||||
@app.get(
|
||||
"/v1/models",
|
||||
response_model=ModelList,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def list_models():
|
||||
model_card = ModelCard(id="gpt-3.5-turbo")
|
||||
return ModelList(data=[model_card])
|
||||
|
||||
@app.post(
|
||||
"/v1/chat/completions",
|
||||
response_model=ChatCompletionResponse,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
if not chat_model.engine.can_generate:
|
||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||
|
||||
if request.stream:
|
||||
generate = create_stream_chat_completion_response(request, chat_model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
else:
|
||||
return await create_chat_completion_response(request, chat_model)
|
||||
|
||||
@app.post(
|
||||
"/v1/score/evaluation",
|
||||
response_model=ScoreEvaluationResponse,
|
||||
status_code=status.HTTP_200_OK,
|
||||
dependencies=[Depends(verify_api_key)],
|
||||
)
|
||||
async def create_score_evaluation(request: ScoreEvaluationRequest):
|
||||
if chat_model.engine.can_generate:
|
||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||
|
||||
return await create_score_evaluation_response(request, chat_model)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def run_api() -> None:
|
||||
chat_model = ChatModel()
|
||||
app = create_app(chat_model)
|
||||
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||
uvicorn.run(app, host=api_host, port=api_port)
|
||||
219
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/chat.py
Normal file
219
src/AntSK.LLamaFactory/llamafactory/llamafactory/api/chat.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple
|
||||
|
||||
from ..data import Role as DataRole
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available
|
||||
from .common import dictify, jsonify
|
||||
from .protocol import (
|
||||
ChatCompletionMessage,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatCompletionResponseUsage,
|
||||
ChatCompletionStreamResponse,
|
||||
ChatCompletionStreamResponseChoice,
|
||||
Finish,
|
||||
Function,
|
||||
FunctionCall,
|
||||
Role,
|
||||
ScoreEvaluationResponse,
|
||||
)
|
||||
|
||||
|
||||
if is_fastapi_available():
|
||||
from fastapi import HTTPException, status
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if is_requests_available():
|
||||
import requests
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ..chat import ChatModel
|
||||
from .protocol import ChatCompletionRequest, ScoreEvaluationRequest
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
ROLE_MAPPING = {
|
||||
Role.USER: DataRole.USER.value,
|
||||
Role.ASSISTANT: DataRole.ASSISTANT.value,
|
||||
Role.SYSTEM: DataRole.SYSTEM.value,
|
||||
Role.FUNCTION: DataRole.FUNCTION.value,
|
||||
Role.TOOL: DataRole.OBSERVATION.value,
|
||||
}
|
||||
|
||||
|
||||
def _process_request(
|
||||
request: "ChatCompletionRequest",
|
||||
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional["NDArray"]]:
|
||||
logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False)))
|
||||
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
|
||||
|
||||
if request.messages[0].role == Role.SYSTEM:
|
||||
system = request.messages.pop(0).content
|
||||
else:
|
||||
system = None
|
||||
|
||||
if len(request.messages) % 2 == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
|
||||
|
||||
input_messages = []
|
||||
image = None
|
||||
for i, message in enumerate(request.messages):
|
||||
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||
|
||||
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
|
||||
name = message.tool_calls[0].function.name
|
||||
arguments = message.tool_calls[0].function.arguments
|
||||
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)
|
||||
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content})
|
||||
elif isinstance(message.content, list):
|
||||
for input_item in message.content:
|
||||
if input_item.type == "text":
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text})
|
||||
else:
|
||||
image_url = input_item.image_url.url
|
||||
if image_url.startswith("data:image"): # base64 image
|
||||
image_data = base64.b64decode(image_url.split(",", maxsplit=1)[1])
|
||||
image_path = io.BytesIO(image_data)
|
||||
elif os.path.isfile(image_url): # local file
|
||||
image_path = open(image_url, "rb")
|
||||
else: # web uri
|
||||
image_path = requests.get(image_url, stream=True).raw
|
||||
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
else:
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content})
|
||||
|
||||
tool_list = request.tools
|
||||
if isinstance(tool_list, list) and len(tool_list):
|
||||
try:
|
||||
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
|
||||
except Exception:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
|
||||
else:
|
||||
tools = None
|
||||
|
||||
return input_messages, system, tools, image
|
||||
|
||||
|
||||
def _create_stream_chat_completion_chunk(
|
||||
completion_id: str,
|
||||
model: str,
|
||||
delta: "ChatCompletionMessage",
|
||||
index: Optional[int] = 0,
|
||||
finish_reason: Optional["Finish"] = None,
|
||||
) -> str:
|
||||
choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason)
|
||||
chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data])
|
||||
return jsonify(chunk)
|
||||
|
||||
|
||||
async def create_chat_completion_response(
|
||||
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||
) -> "ChatCompletionResponse":
|
||||
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
input_messages, system, tools, image = _process_request(request)
|
||||
responses = await chat_model.achat(
|
||||
input_messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
do_sample=request.do_sample,
|
||||
temperature=request.temperature,
|
||||
top_p=request.top_p,
|
||||
max_new_tokens=request.max_tokens,
|
||||
num_return_sequences=request.n,
|
||||
stop=request.stop,
|
||||
)
|
||||
|
||||
prompt_length, response_length = 0, 0
|
||||
choices = []
|
||||
for i, response in enumerate(responses):
|
||||
if tools:
|
||||
result = chat_model.engine.template.format_tools.extract(response.response_text)
|
||||
else:
|
||||
result = response.response_text
|
||||
|
||||
if isinstance(result, tuple):
|
||||
name, arguments = result
|
||||
function = Function(name=name, arguments=arguments)
|
||||
tool_call = FunctionCall(id="call_{}".format(uuid.uuid4().hex), function=function)
|
||||
response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=[tool_call])
|
||||
finish_reason = Finish.TOOL
|
||||
else:
|
||||
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
|
||||
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
|
||||
|
||||
choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason))
|
||||
prompt_length = response.prompt_length
|
||||
response_length += response.response_length
|
||||
|
||||
usage = ChatCompletionResponseUsage(
|
||||
prompt_tokens=prompt_length,
|
||||
completion_tokens=response_length,
|
||||
total_tokens=prompt_length + response_length,
|
||||
)
|
||||
|
||||
return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage)
|
||||
|
||||
|
||||
async def create_stream_chat_completion_response(
|
||||
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||
) -> AsyncGenerator[str, None]:
|
||||
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
input_messages, system, tools, image = _process_request(request)
|
||||
if tools:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
|
||||
|
||||
if request.n > 1:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.")
|
||||
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="")
|
||||
)
|
||||
async for new_token in chat_model.astream_chat(
|
||||
input_messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
do_sample=request.do_sample,
|
||||
temperature=request.temperature,
|
||||
top_p=request.top_p,
|
||||
max_new_tokens=request.max_tokens,
|
||||
stop=request.stop,
|
||||
):
|
||||
if len(new_token) != 0:
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token)
|
||||
)
|
||||
|
||||
yield _create_stream_chat_completion_chunk(
|
||||
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
|
||||
)
|
||||
yield "[DONE]"
|
||||
|
||||
|
||||
async def create_score_evaluation_response(
|
||||
request: "ScoreEvaluationRequest", chat_model: "ChatModel"
|
||||
) -> "ScoreEvaluationResponse":
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
||||
|
||||
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
|
||||
return ScoreEvaluationResponse(model=request.model, scores=scores)
|
||||
@@ -0,0 +1,20 @@
|
||||
import json
|
||||
from typing import TYPE_CHECKING, Any, Dict
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
def dictify(data: "BaseModel") -> Dict[str, Any]:
|
||||
try: # pydantic v2
|
||||
return data.model_dump(exclude_unset=True)
|
||||
except AttributeError: # pydantic v1
|
||||
return data.dict(exclude_unset=True)
|
||||
|
||||
|
||||
def jsonify(data: "BaseModel") -> str:
|
||||
try: # pydantic v2
|
||||
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
|
||||
except AttributeError: # pydantic v1
|
||||
return data.json(exclude_unset=True, ensure_ascii=False)
|
||||
@@ -1,6 +1,6 @@
|
||||
import time
|
||||
from enum import Enum, unique
|
||||
from typing import List, Optional
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Literal
|
||||
@@ -39,15 +39,37 @@ class Function(BaseModel):
|
||||
arguments: str
|
||||
|
||||
|
||||
class FunctionDefinition(BaseModel):
|
||||
name: str
|
||||
description: str
|
||||
parameters: Dict[str, Any]
|
||||
|
||||
|
||||
class FunctionAvailable(BaseModel):
|
||||
type: Literal["function", "code_interpreter"] = "function"
|
||||
function: Optional[FunctionDefinition] = None
|
||||
|
||||
|
||||
class FunctionCall(BaseModel):
|
||||
id: Literal["call_default"] = "call_default"
|
||||
id: str
|
||||
type: Literal["function"] = "function"
|
||||
function: Function
|
||||
|
||||
|
||||
class ImageURL(BaseModel):
|
||||
url: str
|
||||
|
||||
|
||||
class MultimodalInputItem(BaseModel):
|
||||
type: Literal["text", "image_url"]
|
||||
text: Optional[str] = None
|
||||
image_url: Optional[ImageURL] = None
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: Role
|
||||
content: str
|
||||
content: Optional[Union[str, List[MultimodalInputItem]]] = None
|
||||
tool_calls: Optional[List[FunctionCall]] = None
|
||||
|
||||
|
||||
class ChatCompletionMessage(BaseModel):
|
||||
@@ -59,12 +81,13 @@ class ChatCompletionMessage(BaseModel):
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
tools: list = []
|
||||
tools: Optional[List[FunctionAvailable]] = None
|
||||
do_sample: bool = True
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
n: int = 1
|
||||
max_tokens: Optional[int] = None
|
||||
stop: Optional[Union[str, List[str]]] = None
|
||||
stream: bool = False
|
||||
|
||||
|
||||
@@ -74,7 +97,7 @@ class ChatCompletionResponseChoice(BaseModel):
|
||||
finish_reason: Finish
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
class ChatCompletionStreamResponseChoice(BaseModel):
|
||||
index: int
|
||||
delta: ChatCompletionMessage
|
||||
finish_reason: Optional[Finish] = None
|
||||
@@ -87,7 +110,7 @@ class ChatCompletionResponseUsage(BaseModel):
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
id: Literal["chatcmpl-default"] = "chatcmpl-default"
|
||||
id: str
|
||||
object: Literal["chat.completion"] = "chat.completion"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
model: str
|
||||
@@ -96,11 +119,11 @@ class ChatCompletionResponse(BaseModel):
|
||||
|
||||
|
||||
class ChatCompletionStreamResponse(BaseModel):
|
||||
id: Literal["chatcmpl-default"] = "chatcmpl-default"
|
||||
id: str
|
||||
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
model: str
|
||||
choices: List[ChatCompletionResponseStreamChoice]
|
||||
choices: List[ChatCompletionStreamResponseChoice]
|
||||
|
||||
|
||||
class ScoreEvaluationRequest(BaseModel):
|
||||
@@ -110,7 +133,7 @@ class ScoreEvaluationRequest(BaseModel):
|
||||
|
||||
|
||||
class ScoreEvaluationResponse(BaseModel):
|
||||
id: Literal["scoreeval-default"] = "scoreeval-default"
|
||||
id: str
|
||||
object: Literal["score.evaluation"] = "score.evaluation"
|
||||
model: str
|
||||
scores: List[float]
|
||||
@@ -4,15 +4,13 @@ from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Opti
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from vllm import AsyncLLMEngine
|
||||
|
||||
from ..data import Template
|
||||
from ..extras.packages import is_vllm_available
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import AsyncLLMEngine
|
||||
|
||||
|
||||
@dataclass
|
||||
class Response:
|
||||
@@ -49,6 +47,7 @@ class BaseEngine(ABC):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]: ...
|
||||
|
||||
@@ -58,6 +57,7 @@ class BaseEngine(ABC):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]: ...
|
||||
|
||||
@@ -2,12 +2,15 @@ import asyncio
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
||||
|
||||
from ..extras.misc import torch_gc
|
||||
from ..hparams import get_infer_args
|
||||
from .hf_engine import HuggingfaceEngine
|
||||
from .vllm_engine import VllmEngine
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
@@ -36,9 +39,10 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, **input_kwargs), self._loop)
|
||||
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, image, **input_kwargs), self._loop)
|
||||
return task.result()
|
||||
|
||||
async def achat(
|
||||
@@ -46,18 +50,20 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
return await self.engine.chat(messages, system, tools, **input_kwargs)
|
||||
return await self.engine.chat(messages, system, tools, image, **input_kwargs)
|
||||
|
||||
def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> Generator[str, None, None]:
|
||||
generator = self.astream_chat(messages, system, tools, **input_kwargs)
|
||||
generator = self.astream_chat(messages, system, tools, image, **input_kwargs)
|
||||
while True:
|
||||
try:
|
||||
task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop)
|
||||
@@ -70,9 +76,10 @@ class ChatModel:
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
async for new_token in self.engine.stream_chat(messages, system, tools, **input_kwargs):
|
||||
async for new_token in self.engine.stream_chat(messages, system, tools, image, **input_kwargs):
|
||||
yield new_token
|
||||
|
||||
def get_scores(
|
||||
@@ -89,3 +96,45 @@ class ChatModel:
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
return await self.engine.get_scores(batch_input, **input_kwargs)
|
||||
|
||||
|
||||
def run_chat() -> None:
|
||||
try:
|
||||
import platform
|
||||
|
||||
if platform.system() != "Windows":
|
||||
import readline # noqa: F401
|
||||
except ImportError:
|
||||
print("Install `readline` for a better experience.")
|
||||
|
||||
chat_model = ChatModel()
|
||||
messages = []
|
||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||
|
||||
while True:
|
||||
try:
|
||||
query = input("\nUser: ")
|
||||
except UnicodeDecodeError:
|
||||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
||||
continue
|
||||
except Exception:
|
||||
raise
|
||||
|
||||
if query.strip() == "exit":
|
||||
break
|
||||
|
||||
if query.strip() == "clear":
|
||||
messages = []
|
||||
torch_gc()
|
||||
print("History has been removed.")
|
||||
continue
|
||||
|
||||
messages.append({"role": "user", "content": query})
|
||||
print("Assistant: ", end="", flush=True)
|
||||
|
||||
response = ""
|
||||
for new_text in chat_model.stream_chat(messages):
|
||||
print(new_text, end="", flush=True)
|
||||
response += new_text
|
||||
print()
|
||||
messages.append({"role": "assistant", "content": response})
|
||||
@@ -2,25 +2,31 @@ import asyncio
|
||||
import concurrent.futures
|
||||
import os
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import GenerationConfig, TextIteratorStreamer
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import get_logits_processor
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from numpy.typing import NDArray
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
from trl import PreTrainedModelWrapper
|
||||
|
||||
from ..data import Template
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class HuggingfaceEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -30,55 +36,96 @@ class HuggingfaceEngine(BaseEngine):
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(
|
||||
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.model = load_model(
|
||||
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
) # must after fixing tokenizer to resize vocab
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
@staticmethod
|
||||
def _process_args(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Tuple[Dict[str, Any], int]:
|
||||
if (
|
||||
processor is not None
|
||||
and image is not None
|
||||
and not hasattr(processor, "image_seq_length")
|
||||
and template.image_token not in messages[0]["content"]
|
||||
): # llava-like models
|
||||
messages[0]["content"] = template.image_token + messages[0]["content"]
|
||||
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
system = system or generating_args["default_system"]
|
||||
pixel_values = None
|
||||
prompt_ids, _ = template.encode_oneturn(
|
||||
tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
if processor is not None and image is not None: # add image features
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
batch_feature = image_processor(image, return_tensors="pt")
|
||||
pixel_values = batch_feature.to(model.device)["pixel_values"] # shape (B, C, H, W)
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
prompt_length = len(prompt_ids)
|
||||
inputs = torch.tensor([prompt_ids], device=model.device)
|
||||
attention_mask = torch.ones_like(inputs, dtype=torch.bool)
|
||||
|
||||
do_sample = input_kwargs.pop("do_sample", None)
|
||||
temperature = input_kwargs.pop("temperature", None)
|
||||
top_p = input_kwargs.pop("top_p", None)
|
||||
top_k = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||
do_sample: Optional[bool] = input_kwargs.pop("do_sample", None)
|
||||
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
||||
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
||||
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
||||
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
||||
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
|
||||
if stop is not None:
|
||||
logger.warning("Stop parameter is not supported in Huggingface engine yet.")
|
||||
|
||||
generating_args = generating_args.copy()
|
||||
generating_args.update(
|
||||
dict(
|
||||
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
|
||||
temperature=temperature or generating_args["temperature"],
|
||||
top_p=top_p or generating_args["top_p"],
|
||||
top_k=top_k or generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences or 1,
|
||||
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
||||
temperature=temperature if temperature is not None else generating_args["temperature"],
|
||||
top_p=top_p if top_p is not None else generating_args["top_p"],
|
||||
top_k=top_k if top_k is not None else generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences,
|
||||
repetition_penalty=repetition_penalty
|
||||
if repetition_penalty is not None
|
||||
else generating_args["repetition_penalty"],
|
||||
length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"],
|
||||
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
)
|
||||
)
|
||||
|
||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
|
||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1: # do_sample needs temperature > 0
|
||||
generating_args["do_sample"] = True
|
||||
generating_args["temperature"] = generating_args["temperature"] or 1.0
|
||||
|
||||
if not generating_args["temperature"]:
|
||||
generating_args["do_sample"] = False
|
||||
|
||||
if not generating_args["do_sample"]:
|
||||
generating_args.pop("temperature", None)
|
||||
generating_args.pop("top_p", None)
|
||||
|
||||
if max_length:
|
||||
generating_args.pop("max_new_tokens", None)
|
||||
@@ -90,10 +137,14 @@ class HuggingfaceEngine(BaseEngine):
|
||||
|
||||
gen_kwargs = dict(
|
||||
inputs=inputs,
|
||||
attention_mask=attention_mask,
|
||||
generation_config=GenerationConfig(**generating_args),
|
||||
logits_processor=get_logits_processor(),
|
||||
)
|
||||
|
||||
if pixel_values is not None:
|
||||
gen_kwargs["pixel_values"] = pixel_values
|
||||
|
||||
return gen_kwargs, prompt_length
|
||||
|
||||
@staticmethod
|
||||
@@ -101,15 +152,17 @@ class HuggingfaceEngine(BaseEngine):
|
||||
def _chat(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> List["Response"]:
|
||||
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
|
||||
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
|
||||
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
||||
)
|
||||
generate_output = model.generate(**gen_kwargs)
|
||||
response_ids = generate_output[:, prompt_length:]
|
||||
@@ -134,15 +187,17 @@ class HuggingfaceEngine(BaseEngine):
|
||||
def _stream_chat(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Callable[[], str]:
|
||||
gen_kwargs, _ = HuggingfaceEngine._process_args(
|
||||
model, tokenizer, template, generating_args, messages, system, tools, input_kwargs
|
||||
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
||||
)
|
||||
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
gen_kwargs["streamer"] = streamer
|
||||
@@ -198,6 +253,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
if not self.can_generate:
|
||||
@@ -207,11 +263,13 @@ class HuggingfaceEngine(BaseEngine):
|
||||
input_args = (
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
self.processor,
|
||||
self.template,
|
||||
self.generating_args,
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self._semaphore:
|
||||
@@ -223,6 +281,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
if not self.can_generate:
|
||||
@@ -232,11 +291,13 @@ class HuggingfaceEngine(BaseEngine):
|
||||
input_args = (
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
self.processor,
|
||||
self.template,
|
||||
self.generating_args,
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self._semaphore:
|
||||
@@ -0,0 +1,214 @@
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence, Union
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import get_device_count
|
||||
from ..extras.packages import is_vllm_available
|
||||
from ..model import load_config, load_tokenizer
|
||||
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.sequence import MultiModalData
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class VllmEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
config = load_config(model_args) # may download model from ms hub
|
||||
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
engine_args = {
|
||||
"model": model_args.model_name_or_path,
|
||||
"trust_remote_code": True,
|
||||
"download_dir": model_args.cache_dir,
|
||||
"dtype": model_args.vllm_dtype,
|
||||
"max_model_len": model_args.vllm_maxlen,
|
||||
"tensor_parallel_size": get_device_count() or 1,
|
||||
"gpu_memory_utilization": model_args.vllm_gpu_util,
|
||||
"disable_log_stats": True,
|
||||
"disable_log_requests": True,
|
||||
"enforce_eager": model_args.vllm_enforce_eager,
|
||||
"enable_lora": model_args.adapter_name_or_path is not None,
|
||||
"max_lora_rank": model_args.vllm_max_lora_rank,
|
||||
}
|
||||
|
||||
if model_args.visual_inputs:
|
||||
image_size = config.vision_config.image_size
|
||||
patch_size = config.vision_config.patch_size
|
||||
self.image_feature_size = (image_size // patch_size) ** 2
|
||||
engine_args["image_input_type"] = "pixel_values"
|
||||
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids(self.template.image_token)
|
||||
engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size)
|
||||
engine_args["image_feature_size"] = self.image_feature_size
|
||||
if getattr(config, "is_yi_vl_derived_model", None):
|
||||
import vllm.model_executor.models.llava
|
||||
|
||||
logger.info("Detected Yi-VL model, applying projector patch.")
|
||||
vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
|
||||
|
||||
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
|
||||
else:
|
||||
self.lora_request = None
|
||||
|
||||
async def _generate(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncIterator["RequestOutput"]:
|
||||
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
|
||||
if (
|
||||
self.processor is not None
|
||||
and image is not None
|
||||
and not hasattr(self.processor, "image_seq_length")
|
||||
and self.template.image_token not in messages[0]["content"]
|
||||
): # llava-like models (TODO: paligemma models)
|
||||
messages[0]["content"] = self.template.image_token * self.image_feature_size + messages[0]["content"]
|
||||
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
system = system or self.generating_args["default_system"]
|
||||
prompt_ids, _ = self.template.encode_oneturn(
|
||||
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
|
||||
if self.processor is not None and image is not None: # add image features
|
||||
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
|
||||
pixel_values = image_processor(image, return_tensors="pt")["pixel_values"]
|
||||
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
|
||||
else:
|
||||
multi_modal_data = None
|
||||
|
||||
prompt_length = len(prompt_ids)
|
||||
|
||||
use_beam_search: bool = self.generating_args["num_beams"] > 1
|
||||
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
||||
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
||||
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
||||
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
||||
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
|
||||
if "max_new_tokens" in self.generating_args:
|
||||
max_tokens = self.generating_args["max_new_tokens"]
|
||||
elif "max_length" in self.generating_args:
|
||||
if self.generating_args["max_length"] > prompt_length:
|
||||
max_tokens = self.generating_args["max_length"] - prompt_length
|
||||
else:
|
||||
max_tokens = 1
|
||||
|
||||
if max_length:
|
||||
max_tokens = max_length - prompt_length if max_length > prompt_length else 1
|
||||
|
||||
if max_new_tokens:
|
||||
max_tokens = max_new_tokens
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=num_return_sequences,
|
||||
repetition_penalty=(
|
||||
repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"]
|
||||
)
|
||||
or 1.0, # repetition_penalty must > 0
|
||||
temperature=temperature if temperature is not None else self.generating_args["temperature"],
|
||||
top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0
|
||||
top_k=top_k if top_k is not None else self.generating_args["top_k"],
|
||||
use_beam_search=use_beam_search,
|
||||
length_penalty=length_penalty if length_penalty is not None else self.generating_args["length_penalty"],
|
||||
stop=stop,
|
||||
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
||||
max_tokens=max_tokens,
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
|
||||
result_generator = self.model.generate(
|
||||
inputs={"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data},
|
||||
sampling_params=sampling_params,
|
||||
request_id=request_id,
|
||||
lora_request=self.lora_request,
|
||||
)
|
||||
return result_generator
|
||||
|
||||
async def start(self) -> None:
|
||||
pass
|
||||
|
||||
async def chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
final_output = None
|
||||
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
||||
async for request_output in generator:
|
||||
final_output = request_output
|
||||
|
||||
results = []
|
||||
for output in final_output.outputs:
|
||||
results.append(
|
||||
Response(
|
||||
response_text=output.text,
|
||||
response_length=len(output.token_ids),
|
||||
prompt_length=len(final_output.prompt_token_ids),
|
||||
finish_reason=output.finish_reason,
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
async def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
generated_text = ""
|
||||
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
||||
async for result in generator:
|
||||
delta_text = result.outputs[0].text[len(generated_text) :]
|
||||
generated_text = result.outputs[0].text
|
||||
yield delta_text
|
||||
|
||||
async def get_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
raise NotImplementedError("vLLM engine does not support get_scores.")
|
||||
106
src/AntSK.LLamaFactory/llamafactory/llamafactory/cli.py
Normal file
106
src/AntSK.LLamaFactory/llamafactory/llamafactory/cli.py
Normal file
@@ -0,0 +1,106 @@
|
||||
import os
|
||||
import random
|
||||
import subprocess
|
||||
import sys
|
||||
from enum import Enum, unique
|
||||
|
||||
from . import launcher
|
||||
from .api.app import run_api
|
||||
from .chat.chat_model import run_chat
|
||||
from .eval.evaluator import run_eval
|
||||
from .extras.env import VERSION, print_env
|
||||
from .extras.logging import get_logger
|
||||
from .extras.misc import get_device_count
|
||||
from .train.tuner import export_model, run_exp
|
||||
from .webui.interface import run_web_demo, run_web_ui
|
||||
|
||||
|
||||
USAGE = (
|
||||
"-" * 70
|
||||
+ "\n"
|
||||
+ "| Usage: |\n"
|
||||
+ "| llamafactory-cli api -h: launch an OpenAI-style API server |\n"
|
||||
+ "| llamafactory-cli chat -h: launch a chat interface in CLI |\n"
|
||||
+ "| llamafactory-cli eval -h: evaluate models |\n"
|
||||
+ "| llamafactory-cli export -h: merge LoRA adapters and export model |\n"
|
||||
+ "| llamafactory-cli train -h: train models |\n"
|
||||
+ "| llamafactory-cli webchat -h: launch a chat interface in Web UI |\n"
|
||||
+ "| llamafactory-cli webui: launch LlamaBoard |\n"
|
||||
+ "| llamafactory-cli version: show version info |\n"
|
||||
+ "-" * 70
|
||||
)
|
||||
|
||||
WELCOME = (
|
||||
"-" * 58
|
||||
+ "\n"
|
||||
+ "| Welcome to LLaMA Factory, version {}".format(VERSION)
|
||||
+ " " * (21 - len(VERSION))
|
||||
+ "|\n|"
|
||||
+ " " * 56
|
||||
+ "|\n"
|
||||
+ "| Project page: https://github.com/hiyouga/LLaMA-Factory |\n"
|
||||
+ "-" * 58
|
||||
)
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
@unique
|
||||
class Command(str, Enum):
|
||||
API = "api"
|
||||
CHAT = "chat"
|
||||
ENV = "env"
|
||||
EVAL = "eval"
|
||||
EXPORT = "export"
|
||||
TRAIN = "train"
|
||||
WEBDEMO = "webchat"
|
||||
WEBUI = "webui"
|
||||
VER = "version"
|
||||
HELP = "help"
|
||||
|
||||
|
||||
def main():
|
||||
command = sys.argv.pop(1)
|
||||
if command == Command.API:
|
||||
run_api()
|
||||
elif command == Command.CHAT:
|
||||
run_chat()
|
||||
elif command == Command.ENV:
|
||||
print_env()
|
||||
elif command == Command.EVAL:
|
||||
run_eval()
|
||||
elif command == Command.EXPORT:
|
||||
export_model()
|
||||
elif command == Command.TRAIN:
|
||||
force_torchrun = os.environ.get("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
|
||||
if force_torchrun or get_device_count() > 1:
|
||||
master_addr = os.environ.get("MASTER_ADDR", "127.0.0.1")
|
||||
master_port = os.environ.get("MASTER_PORT", str(random.randint(20001, 29999)))
|
||||
logger.info("Initializing distributed tasks at: {}:{}".format(master_addr, master_port))
|
||||
subprocess.run(
|
||||
(
|
||||
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
|
||||
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
|
||||
).format(
|
||||
nnodes=os.environ.get("NNODES", "1"),
|
||||
node_rank=os.environ.get("RANK", "0"),
|
||||
nproc_per_node=os.environ.get("NPROC_PER_NODE", str(get_device_count())),
|
||||
master_addr=master_addr,
|
||||
master_port=master_port,
|
||||
file_name=launcher.__file__,
|
||||
args=" ".join(sys.argv[1:]),
|
||||
),
|
||||
shell=True,
|
||||
)
|
||||
else:
|
||||
run_exp()
|
||||
elif command == Command.WEBDEMO:
|
||||
run_web_demo()
|
||||
elif command == Command.WEBUI:
|
||||
run_web_ui()
|
||||
elif command == Command.VER:
|
||||
print(WELCOME)
|
||||
elif command == Command.HELP:
|
||||
print(USAGE)
|
||||
else:
|
||||
raise NotImplementedError("Unknown command: {}".format(command))
|
||||
@@ -0,0 +1,16 @@
|
||||
from .collator import KTODataCollatorWithPadding, PairwiseDataCollatorWithPadding
|
||||
from .data_utils import Role, split_dataset
|
||||
from .loader import get_dataset
|
||||
from .template import TEMPLATES, Template, get_template_and_fix_tokenizer
|
||||
|
||||
|
||||
__all__ = [
|
||||
"KTODataCollatorWithPadding",
|
||||
"PairwiseDataCollatorWithPadding",
|
||||
"Role",
|
||||
"split_dataset",
|
||||
"get_dataset",
|
||||
"TEMPLATES",
|
||||
"Template",
|
||||
"get_template_and_fix_tokenizer",
|
||||
]
|
||||
221
src/AntSK.LLamaFactory/llamafactory/llamafactory/data/aligner.py
Normal file
221
src/AntSK.LLamaFactory/llamafactory/llamafactory/data/aligner.py
Normal file
@@ -0,0 +1,221 @@
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
||||
|
||||
from datasets import Features
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from .data_utils import Role
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from .parser import DatasetAttr
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _convert_images(images: List[Any], dataset_attr: "DatasetAttr", data_args: "DataArguments") -> List[Any]:
|
||||
r"""
|
||||
Optionally concatenates image path to dataset dir when loading from local disk.
|
||||
"""
|
||||
outputs = []
|
||||
if dataset_attr.load_from in ["script", "file"]:
|
||||
for image in images:
|
||||
if isinstance(image, str) and os.path.isfile(os.path.join(data_args.dataset_dir, image)):
|
||||
outputs.append(os.path.join(data_args.dataset_dir, image))
|
||||
else:
|
||||
outputs.append(image)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_alpaca(
|
||||
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Dict[str, List[Any]]:
|
||||
r"""
|
||||
Converts alpaca format dataset to the standard format.
|
||||
"""
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
for i in range(len(examples[dataset_attr.prompt])):
|
||||
prompt = []
|
||||
if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list):
|
||||
for old_prompt, old_response in examples[dataset_attr.history][i]:
|
||||
prompt.append({"role": Role.USER.value, "content": old_prompt})
|
||||
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
|
||||
|
||||
content = []
|
||||
if dataset_attr.prompt and examples[dataset_attr.prompt][i]:
|
||||
content.append(examples[dataset_attr.prompt][i])
|
||||
|
||||
if dataset_attr.query and examples[dataset_attr.query][i]:
|
||||
content.append(examples[dataset_attr.query][i])
|
||||
|
||||
prompt.append({"role": Role.USER.value, "content": "\n".join(content)}) # "prompt\nquery"
|
||||
|
||||
if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool): # kto example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
|
||||
if examples[dataset_attr.kto_tag][i]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
dataset_attr.ranking
|
||||
and isinstance(examples[dataset_attr.chosen][i], str)
|
||||
and isinstance(examples[dataset_attr.rejected][i], str)
|
||||
): # pairwise example
|
||||
response = [
|
||||
{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.chosen][i]},
|
||||
{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.rejected][i]},
|
||||
]
|
||||
elif dataset_attr.response and isinstance(examples[dataset_attr.response][i], str): # normal example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
|
||||
else: # unsupervised
|
||||
response = []
|
||||
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
|
||||
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
||||
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_sharegpt(
|
||||
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Dict[str, List[Any]]:
|
||||
r"""
|
||||
Converts sharegpt format dataset to the standard format.
|
||||
"""
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
tag_mapping = {
|
||||
dataset_attr.user_tag: Role.USER.value,
|
||||
dataset_attr.assistant_tag: Role.ASSISTANT.value,
|
||||
dataset_attr.observation_tag: Role.OBSERVATION.value,
|
||||
dataset_attr.function_tag: Role.FUNCTION.value,
|
||||
dataset_attr.system_tag: Role.SYSTEM.value,
|
||||
}
|
||||
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
|
||||
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
|
||||
accept_tags = (odd_tags, even_tags)
|
||||
for i, messages in enumerate(examples[dataset_attr.messages]):
|
||||
if dataset_attr.system_tag and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag:
|
||||
system = messages[0][dataset_attr.content_tag]
|
||||
messages = messages[1:]
|
||||
else:
|
||||
system = examples[dataset_attr.system][i] if dataset_attr.system else ""
|
||||
|
||||
if len(messages) == 0:
|
||||
continue
|
||||
|
||||
aligned_messages = []
|
||||
broken_data = False
|
||||
for turn_idx, message in enumerate(messages):
|
||||
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
|
||||
logger.warning("Invalid role tag in {}.".format(messages))
|
||||
broken_data = True
|
||||
|
||||
aligned_messages.append(
|
||||
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
|
||||
)
|
||||
|
||||
if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
|
||||
dataset_attr.ranking and len(aligned_messages) % 2 == 0
|
||||
):
|
||||
logger.warning("Invalid message count in {}.".format(messages))
|
||||
broken_data = True
|
||||
|
||||
if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool): # kto example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
if examples[dataset_attr.kto_tag][i]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
dataset_attr.ranking
|
||||
and isinstance(examples[dataset_attr.chosen][i], dict)
|
||||
and isinstance(examples[dataset_attr.rejected][i], dict)
|
||||
): # pairwise example
|
||||
chosen = examples[dataset_attr.chosen][i]
|
||||
rejected = examples[dataset_attr.rejected][i]
|
||||
if (
|
||||
chosen[dataset_attr.role_tag] not in accept_tags[-1]
|
||||
or rejected[dataset_attr.role_tag] not in accept_tags[-1]
|
||||
):
|
||||
logger.warning("Invalid role tag in {}.".format([chosen, rejected]))
|
||||
broken_data = True
|
||||
|
||||
prompt = aligned_messages
|
||||
response = [
|
||||
{"role": tag_mapping[chosen[dataset_attr.role_tag]], "content": chosen[dataset_attr.content_tag]},
|
||||
{"role": tag_mapping[rejected[dataset_attr.role_tag]], "content": rejected[dataset_attr.content_tag]},
|
||||
]
|
||||
else: # normal example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
|
||||
if broken_data:
|
||||
logger.warning("Skipping this abnormal example.")
|
||||
continue
|
||||
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(system)
|
||||
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
||||
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def align_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
r"""
|
||||
Aligned dataset:
|
||||
prompt: [{"role": "user", "content": "..."}] * (2T - 1)
|
||||
response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
|
||||
system: "..."
|
||||
tools: "...",
|
||||
images: [],
|
||||
"""
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)
|
||||
else:
|
||||
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args)
|
||||
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
features = Features.from_dict(
|
||||
{
|
||||
"prompt": [
|
||||
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
||||
],
|
||||
"response": [
|
||||
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
||||
],
|
||||
"system": {"dtype": "string", "_type": "Value"},
|
||||
"tools": {"dtype": "string", "_type": "Value"},
|
||||
"images": [{"_type": "Image"}],
|
||||
}
|
||||
)
|
||||
kwargs = {}
|
||||
if not data_args.streaming:
|
||||
kwargs = dict(
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
load_from_cache_file=(not data_args.overwrite_cache),
|
||||
desc="Converting format of dataset",
|
||||
)
|
||||
|
||||
return dataset.map(
|
||||
convert_func,
|
||||
batched=True,
|
||||
remove_columns=column_names,
|
||||
features=features,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -0,0 +1,81 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Sequence
|
||||
|
||||
import torch
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
|
||||
@dataclass
|
||||
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Pads batched data to the longest sequence in the batch.
|
||||
|
||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||
the last n examples represent rejected examples.
|
||||
"""
|
||||
concatenated_features = []
|
||||
for key in ("chosen", "rejected"):
|
||||
for feature in features:
|
||||
target_feature = {
|
||||
"input_ids": feature["{}_input_ids".format(key)],
|
||||
"attention_mask": feature["{}_attention_mask".format(key)],
|
||||
"labels": feature["{}_labels".format(key)],
|
||||
}
|
||||
if "pixel_values" in feature:
|
||||
target_feature["pixel_values"] = feature["pixel_values"]
|
||||
|
||||
if "{}_token_type_ids".format(key) in feature:
|
||||
target_feature["token_type_ids"] = feature["{}_token_type_ids".format(key)]
|
||||
|
||||
concatenated_features.append(target_feature)
|
||||
|
||||
return super().__call__(concatenated_features)
|
||||
|
||||
|
||||
@dataclass
|
||||
class KTODataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for KTO data.
|
||||
"""
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
target_features = []
|
||||
kl_features = []
|
||||
kto_tags = []
|
||||
for feature in features:
|
||||
target_feature = {
|
||||
"input_ids": feature["input_ids"],
|
||||
"attention_mask": feature["attention_mask"],
|
||||
"labels": feature["labels"],
|
||||
}
|
||||
kl_feature = {
|
||||
"input_ids": feature["kl_input_ids"],
|
||||
"attention_mask": feature["kl_attention_mask"],
|
||||
"labels": feature["kl_labels"],
|
||||
}
|
||||
if "pixel_values" in feature:
|
||||
target_feature["pixel_values"] = feature["pixel_values"]
|
||||
|
||||
if "token_type_ids" in feature:
|
||||
target_feature["token_type_ids"] = feature["token_type_ids"]
|
||||
kl_feature["token_type_ids"] = feature["kl_token_type_ids"]
|
||||
|
||||
target_features.append(target_feature)
|
||||
kl_features.append(kl_feature)
|
||||
kto_tags.append(feature["kto_tags"])
|
||||
|
||||
batch = super().__call__(target_features)
|
||||
kl_batch = super().__call__(kl_features)
|
||||
batch["kl_input_ids"] = kl_batch["input_ids"]
|
||||
batch["kl_attention_mask"] = kl_batch["attention_mask"]
|
||||
batch["kl_labels"] = kl_batch["labels"]
|
||||
if "token_type_ids" in batch:
|
||||
batch["kl_token_type_ids"] = kl_batch["token_type_ids"]
|
||||
|
||||
batch["kto_tags"] = torch.tensor(kto_tags)
|
||||
return batch
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user